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Abstract
Constrained clustering is a semi-supervised task
that employs a limited amount of labelled data,
formulated as constraints, to incorporate domain-
specific knowledge and to significantly improve
clustering accuracy. Previous work has considered
exact optimization formulations that can guarantee
optimal clustering while satisfying all constraints,
however these approaches lack interpretability. Re-
cently, decision trees have been used to produce in-
herently interpretable clustering solutions, however
existing approaches do not support clustering con-
straints and do not provide strong theoretical guar-
antees on solution quality. In this work, we present a
novel SAT-based framework for interpretable clus-
tering that supports clustering constraints and that
also provides strong theoretical guarantees on so-
lution quality. We also present new insight into
the trade-off between interpretability and satisfac-
tion of such user-provided constraints. Our frame-
work is the first approach for interpretable and con-
strained clustering. Experiments with a range of
real-world and synthetic datasets demonstrate that
our approach can produce high-quality and inter-
pretable constrained clustering solutions.

1 Introduction
Clustering is a core unsupervised machine learning problem
that aims to partition a dataset into subgroups of similar data
points. In practice, it is often used to discover meaningful
sub-populations such as customer segments [Wu and Chou,
2011] or groups of correlated genes [Thalamuthu et al., 2006].
Constrained clustering is a semi-supervised learning task that
exploits small amounts of supervision, provided in the form
of constraints, to incorporate domain-specific knowledge and
to significantly improve clustering performance [Wagstaff and
Cardie, 2000; Wagstaff et al., 2001]. The most popular types
of clustering constraints are so-called instance-level pairwise
must-link constraints, cannot-link constraints, and additional
types of constraints that can be translated to such pairwise
constraints [Davidson and Ravi, 2005; Liu and Fu, 2015].
In the past decades, the topic of constrained clustering has

received significant attention and different constrained clus-
tering algorithms have been proposed [Bilenko et al., 2004;
Pelleg and Baras, 2007; Liu et al., 2017; Cohen et al., 2020].
In particular, approaches that are based on exact optimiza-
tion formulations, such as integer programming, constraint
programming, and satisfiability have obtained state-of-the-art
performance [Davidson et al., 2010; Berg and Järvisalo, 2017;
Dao et al., 2017; Babaki et al., 2014].

Our interest is in developing an approach to constrained
clustering that yields interpretable solutions with strong so-
lution quality guarantees. Recent approaches to clustering
via decision trees have yielded a degree of interpretabil-
ity by exposing clustering rationale in the branching struc-
ture of the tree [Frost et al., 2020; Moshkovitz et al., 2020;
Bertsimas et al., 2021; Gamlath et al., 2021]. However, these
approaches do not support the incorporation of clustering con-
straints. Moreover, little is known about the compatibility
of such clustering constraints with decision-tree clustering.
While optimal decision trees have received significant atten-
tion in recent years, most of the literature is focused on clas-
sification tasks [Ignatiev et al., 2021].

In this work, we present the first approach for interpretable
and constrained optimal clustering based on decision trees.
We make the following contributions:

1. We present a novel SAT-based encoding of optimal con-
strained clustering that is interpretable via a decision
tree. Our formulation supports two well-known clus-
tering objectives as well as pairwise instance-level clus-
tering constraints. To the best of our knowledge, this
is the first approach for inherently-interpretable con-
strained clustering.

2. We introduce novel techniques for efficient encoding of
clustering problems and for improving search perfor-
mance. Specifically, we introduce the notion of distance
classes to support bounded suboptimal clustering, and a
set of pruning rules to reduce the number of clauses.

3. We empirically evaluate our approach over real-world
and synthetic datasets and show that it leads to high-
quality, inherently-interpretable clustering solutions that
satisfy a given set of pairwise constraints.

4. We present theoretical and empirical results on the trade-
off between interpretability via decision trees and satis-
faction of user-provided clustering constraints.
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2 Preliminaries
2.1 Decision Trees for Constrained Clustering
Definition 1 (Decision Tree). Given a set of features 𝐹 and
number of clusters 𝑘, a decision tree  is a set of branch-
ing nodes 𝐵 , a set of leaf nodes 𝐿, a root node 𝛿 ∈ 𝐵 ,
a parent function 𝑝 ∶ 𝐵 ∪ 𝐿 → 𝐵 , left and right child
functions 𝑙, 𝑟 ∶ 𝐵 → 𝐵 ∪ 𝐿, a node feature selection func-
tion 𝛽 ∶ 𝐵 → 𝐹 together with a threshold selection func-
tion 𝛼 ∶ 𝐵 → 𝑑𝑜𝑚(𝐹 ), and finally a leaf labelling function
𝜃 ∶ 𝐿 → [1..𝑘].
Definition 2 (Tree Cluster Assignment). Given a dataset 𝑋,
and the number of clusters 𝐾 , a decision tree  direct each
point 𝑥 ∈ 𝑋 ⊂ 𝑅|𝐹 | to one of its leaves by starting from the
root and recursively moving to its left or right child, depending
on whether the value of the chosen feature is less than or equal
to the threshold, or not. The point is then assigned the cluster
label of the leaf, represented by Θ(𝑥).

The tree clustering Θ partitions 𝑋 into 𝑘 clusters such
that each cluster is non-empty,

∑

𝑥𝑖∈𝑋
1[Θ𝐷(𝑥𝑖) = 𝑘] ≥ 1 ∀𝑘 ∈ 1..𝐾.

Consistent with recent work [Frost et al., 2020], each cluster
is allowed to spread across multiple leaves to improve expres-
siveness and the ability to satisfy user-provided constraints.
If two points are in the same cluster (resp. different clusters),
they are said to be clustered together (resp. separately).
Definition 3 (Pairwise Clustering Constraints). Given a
dataset 𝑋, a set of pairs of data points named must-link con-
straints 𝑀𝐿, and a set of pairs of data points named cannot-
link constraints 𝐶𝐿, a clustering Θ is said to respect the
constraints if it clusters all of must-link pairs together and all
of cannot-link pairs separately:

∀(𝑥1, 𝑥2) ∈ 𝑀𝐿 ∶ Θ(𝑥1) = Θ(𝑥1) (1)
∀(𝑥1, 𝑥2) ∈ 𝐶𝐿 ∶ Θ(𝑥1) ≠ Θ(𝑥1) (2)

Definition 4 (Minimum Split and Maximum Diameter).
Given a dataset 𝑋, the number of clusters 𝑘, and a clustering
Θ ∶ 𝑋 → 1..𝑘, the minimum split is the shortest distance
between two points that are clustered separately,

𝑀𝑆 = 𝑚𝑖𝑛({|𝑥1 − 𝑥2| |Θ(𝑥1) ≠ Θ(𝑥2)}, (3)
and the maximum diameter is the longest distance between
two points that are clustered together,

𝑀𝐷 = 𝑚𝑎𝑥({|𝑥1 − 𝑥2| |Θ(𝑥1) = Θ(𝑥2)}. (4)
We assume |𝑥𝑖 − 𝑥𝑗| to be the Euclidean distance, however

any totally ordered measure of distance is applicable.
2.2 Problem Definitions
We consider two well-known clustering objectives [Dao et al.,
2017]: (1) minimizing the maximum diameter (MD); (2) a bi-
criteria objective that consists of minimizing the maximum
diameter and maximizing the minimum split ([MD,MS]).
Specifically, we consider bounded approximations parameter-
ized by 𝜖 such that 𝜖 = 0 indicates an optimal solution (or
Pareto optimal for [MD,MS]).

Problem 1 (MD 𝜖-Optimal Tree Clustering). Given a dataset
𝑋, number of clusters 𝑘, a set of must-links constraints 𝑀𝐿,
a set of cannot-links constraints 𝐶𝐿, decision tree depth 𝑑,
and approximation parameter 𝜖, find a complete decision tree
 of depth 𝑑 such that:

1. Θ respects the constraints 𝑀𝐿 and 𝐶𝐿;
2. 𝑀𝐷 ≤ 𝑀𝐷∗ + 𝜖,
where ∗ is an optimal solution with respect to the objec-

tive of minimizing the maximum diameter.
Problem 2 (MS-MD 𝜖-Pareto Optimal Tree Clustering).
Given a dataset 𝑋, number of clusters 𝑘, a set of must-links
constraints 𝑀𝐿, a set of cannot-links constraints 𝐶𝐿, deci-
sion tree depth 𝑑, and approximation parameter 𝜖, find a com-
plete decision tree  of depth 𝑑 such that:

1. Θ respects the constraints 𝑀𝐿 and 𝐶𝐿;
2. 𝑀𝑆 ≥ 𝑀𝑆∗ − 𝜖;
3. 𝑀𝐷 ≤ 𝑀𝐷∗ + 𝜖,

where ∗ is a Pareto optimal solution with respect to the bi-
criteria objective of maximizing the minimum split and mini-
mizing the maximum diameter.

Note that Problem 1 and Problem 2 are not always feasible
since a decision tree of a given depth cannot represent all pos-
sible clusterings, and may not be able to represent any clus-
tering that satisfies the 𝑀𝐿 and 𝐶𝐿 constraints. However in
Proposition 1 we show that for every clustering there exists a
tree of certain depth that can represent it.1
Proposition 1 (Decision Tree Completeness). Given a
dataset 𝑋 and an arbitrary clustering Θ𝐶 such that

∀𝑥1, 𝑥2∶(Θ𝐶 (𝑥1) ≠ Θ𝐶 (𝑥2)) → (∃𝑗 ∈ 𝐹 ∶ 𝑥1[𝑗] ≠ 𝑥2[𝑗])

there exists a complete decision tree  of sufficiently high
depth 𝑑, which partitions 𝑋 into the same clusters ∀𝑥 ∈ 𝑋 ∶
Θ(𝑥) = Θ𝐶 (𝑥).2

3 SAT-based 𝜖−Optimal Tree Clustering
In this section, we present our approach for solving the prob-
lems in Section 2.2. First, we present a way to simplify our
handling of pairs while still maintaining the approximation
guarantee. Then, we present a novel SAT-based encoding for
interpretable and constrained tree clustering.
3.1 Distance Classes
To encode the 𝜖-approximation in Problem 1 and Problem 2,
we divide the set of all pairs of data points based on their dis-
tance into 𝜇 non-overlapping intervals called distance classes
 = {𝐷1, 𝐷2, ..., 𝐷𝜇} such that the smallest and largest dis-
tances in each class are less than 𝜖 apart. Specifically, we
employ a greedy procedure that sorts all pairs from the small-
est distance to the largest and greedily adds them one by one,

1We only consider cases where the 𝑀𝐿 and 𝐶𝐿 constraints are
consistent, i.e., where there exists a clustering that satisfies these con-
straints. For example, if the same pair of points is found in both the
𝑀𝐿 and 𝐶𝐿 constraints, there exists no clustering that would satisfy
these constraints.

2All proofs appear in the extended version [Shati et al., 2023].
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creating new classes as needed to guarantee that the distances
in each class are at most 𝜖 apart. All pairs in the same class
are treated similarly w.r.t. being clustered together or not.

In order to maximize the minimum split, we consider the
index 𝜆+ such that any pair of data points in distance classes
𝐷1..𝐷𝜆+ must be clustered together (Eq. (5)). Similarly, to
minimize the maximum diameter, we consider the index 𝜆−
such that any pair in distance classes 𝐷𝜆−+1..𝐷𝜇 must be clus-
tered separately (Eq. (6)).

((𝑥1, 𝑥2) ∈ 𝐷𝑤, 𝑤 ≤ 𝜆+) → Θ𝐶 (𝑥1) = Θ𝐶 (𝑥2) (5)
((𝑥1, 𝑥2) ∈ 𝐷𝑤, 𝑤 > 𝜆−) → Θ𝐶 (𝑥1) ≠ Θ𝐶 (𝑥2) (6)

Note that in any feasible clustering, for all 𝜆+ and 𝜆− val-
ues that satisfy (Eqs. (5) and (6)), we have that MS ≥
𝑚𝑖𝑛({|𝑥1 − 𝑥2| | (𝑥1, 𝑥2) ∈ 𝐷𝜆++1}) and MD ≤ 𝑚𝑎𝑥({|𝑥1 −
𝑥2| | (𝑥1, 𝑥2) ∈ 𝐷𝜆−}). We therefore focus on optimizing the
indices 𝜆+ and 𝜆− to obtain 𝜖-optimal solutions to Problem 1
and Problem 2 (Proposition 2).
Proposition 2 (MD and MS-MD 𝜖-approximation). Let Θ
be a tree cluster assignment. We have that:

1. If Θ is an optimal solution w.r.t minimizing 𝜆− then Θ
is an 𝜖-optimal solution w.r.t the MD objective.

2. If Θ is a Pareto-optimal solution w.r.t minimizing 𝜆−
and maximizing 𝜆+ then Θ is an 𝜖-Pareto optimal solu-
tion w.r.t the bi-criteria MD-MS objective.

3.2 MaxSAT Encoding
A SAT formula is a conjunction of clauses, a clause is a dis-
junction of literals, and a literal is either a Boolean variable or
its negation. A clause is satisfied if at least one of its literals
is true. The SAT problem consists of finding an assignment
of the variables that satisfies all clauses in a formula [Biere
et al., 2009]. We model the construction of 𝜖-optimal con-
strained clustering trees as Partial MaxSAT, an optimization
variant of SAT that divides clauses into hard and soft clauses,
requiring variable assignments to satisfy all hard clauses and
to maximize the number of satisfied soft clauses.
Variables
Table 1 describes the set of Boolean variables.

𝑎𝑡,𝑗 Feature 𝑗 is chosen for the split at branching node 𝑡
𝑠𝑖,𝑡 Point 𝑖 is directed towards the left child, if it passes

through branching node 𝑡
𝑧𝑖,𝑡 Point 𝑖 ends up at leaf node 𝑡

𝑔𝑡,𝑐 The cluster assigned to leaf 𝑡 is or comes after 𝑐
𝑥𝑖,𝑐 The cluster assigned to point 𝑖 is or comes after 𝑐
𝑏−𝑤 (The negation of) whether the pairs in distance

class 𝑤 should be clustered separately
𝑏+𝑤 The pairs in class 𝑤 should be clustered together

Table 1: Boolean Variables in our Model

Clauses
We encode the construction of the decision tree (Eqs. (7)-
(15)) following Shati et al. [2021], a state-of-the-art SAT-
based decision-tree classifier that naturally supports numeric
features that are prevalent in clustering problems. These
clauses guarantee that exactly one feature is chosen at each
branching node (Eqs. (7)-(8)), the points are directed to the
left or right child of each branching node based on their value
of the chosen feature (Eqs. (9)-(10)), the appearance of points
at leaves correctly correspond to the path that they are directed
through within the tree (Eqs. (11)-(13)), and thresholds are
non-trivial (Eqs. (14)-(15)).34

(¬𝑎𝑡,𝑗 ,¬𝑎𝑡,𝑗′ ) ∀𝑡 ∈ 𝐵 , 𝑗 ≠ 𝑗′ ∈ 𝐹 (7)
(
⋁

𝑗∈𝐹
𝑎𝑡,𝑗) ∀𝑡 ∈ 𝐵 (8)

(¬𝑎𝑡,𝑗 , 𝑠𝑖,𝑡,¬𝑠𝑖′ ,𝑡) ∀𝑡 ∈ 𝐵 , 𝑗 ∈ 𝐹 , (𝑖, 𝑖′) ∈ 𝑂𝑗(𝑋) (9)
(¬𝑎𝑡,𝑗 ,¬𝑠𝑖,𝑡, 𝑠𝑖′ ,𝑡)
∀𝑡 ∈ 𝐵 , 𝑗 ∈ 𝐹 , (𝑖, 𝑖′) ∈ 𝑂𝑗(𝑋), 𝑥𝑖[𝑗] = 𝑥𝑖′ [𝑗]

(10)
(¬𝑧𝑖,𝑡, 𝑠𝑖,𝑡′ ) ∀𝑡 ∈ 𝐿, 𝑥𝑖 ∈ 𝑋, 𝑡′ ∈ 𝐴𝑙(𝑡) (11)
(¬𝑧𝑖,𝑡,¬𝑠𝑖,𝑡′ ) ∀𝑡 ∈ 𝐿, 𝑥𝑖 ∈ 𝑋, 𝑡′ ∈ 𝐴𝑟(𝑡) (12)
(𝑧𝑖,𝑡,

⋁

𝑡′∈𝐴𝑙 (𝑡)

¬𝑠𝑖,𝑡′ ,
⋁

𝑡′∈𝐴𝑟(𝑡)

𝑠𝑖,𝑡′ )

∀𝑡 ∈ 𝐿, 𝑥𝑖 ∈ 𝑋
(13)

(¬𝑎𝑡,𝑗 , 𝑠#1𝑗 ,𝑡) ∀𝑡 ∈ 𝐵 , 𝑗 ∈ 𝐹 (14)
(¬𝑎𝑡,𝑗 ,¬𝑠#|𝑋|

𝑗 ,𝑡) ∀𝑡 ∈ 𝐵 , 𝑗 ∈ 𝐹 (15)
The following clauses extend the basic decision tree encod-

ing to support 𝜖-optimal clustering trees that satisfy the 𝑀𝐿
and 𝐶𝐿 constraints. The clauses in Eq. (16) guarantee well-
formed unary encoding of cluster labels in each leaf.5

(𝑔𝑡,𝑐 ,¬𝑔𝑡,𝑐+1) ∀𝑡 ∈ 𝐿, 𝑐 ∈ [1..𝑘 − 2] (16)
Eqs. (17)-(18) guarantee that the label assigned to each data

point matches the label of leaf the data point reaches.
(¬𝑧𝑖,𝑡,¬𝑔𝑡,𝑐 , 𝑥𝑖,𝑐) ∀𝑡 ∈ 𝐿, 𝑥𝑖 ∈ 𝑋, 𝑐 ∈ [1..𝑘 − 1] (17)
(¬𝑧𝑖,𝑡, 𝑔𝑡,𝑐 ,¬𝑥𝑖,𝑐) ∀𝑡 ∈ 𝐿, 𝑥𝑖 ∈ 𝑋, 𝑐 ∈ [1..𝑘 − 1] (18)
Eqs. (19)-(20) break the ties between the equivalent cluster

assignments. We consider two cluster assignments Θ1 and Θ2

equivalent if there exists a relabelling, Γ ∶ 𝐾 → 𝐾 , such that
Γ◦Θ1 = Θ2. To break ties, we force each 𝑥𝑖 in the ascending
order to be assigned to the first empty cluster, if it needs a new
one. This guarantees that there are no two feasible solutions
that are relabellings of each other. Note that we do not elimi-
nate viable solutions, since any clustering can be renamed into
an equivalent one that respects this property.

(¬𝑥𝑐,𝑐) ∀𝑐 ∈ [1..𝑘 − 1] (19)
(¬𝑥𝑖,𝑐 ,

⋁

𝑖′<𝑖
𝑥𝑖′,𝑐−1) ∀𝑥𝑖 ∈ 𝑋, 𝑐 ∈ [2..𝑘 − 1], 𝑐 < 𝑖 (20)

3The set 𝑂𝑗(𝑋) contains all consecutive pairs of points when or-
dered according to feature 𝑗 and the set 𝐴𝑙(𝑡) (𝐴𝑟(𝑡)) contains all
nodes that have 𝑡 as descendent of their left (right) child.

4For a detailed description of the clauses in Eqs. (7)-(15), we refer
the reader to Shati et al. [2021].

5A unary encoding is well-formed if it does not include the se-
quence 01 at any point.
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The clause in Eq. (21) alongside the tie-breaking ones guar-
antee that all clusters are non-empty, assuming |𝑋| ≥ 𝐾 . If
we substitute 𝑘 with 𝑘′ < 𝑘 in Eq. (21), 𝑘′ clusters are guar-
anteed to be non-empty. Thus, we can enforce minimum 𝑘′
and maximum 𝑘 clusters. In our experiments we focus on the
setting where all clusters are non-empty.

(
⋁

𝑖
𝑥𝑖,𝑘−1) (21)

Eqs. (22)-(24), namely the unconditional separating
clauses, guarantee that pairs in 𝐶𝐿 are clustered separately.

(𝑥𝑖,1, 𝑥𝑖′,1) ∀(𝑖, 𝑖′) ∈ 𝐶𝐿 (22)
(¬𝑥𝑖,𝑘−1,¬𝑥𝑖′,𝑘−1) ∀(𝑖, 𝑖′) ∈ 𝐶𝐿 (23)
(¬𝑥𝑖,𝑐 ,¬𝑥𝑖′,𝑐 , 𝑥𝑖,𝑐+1, 𝑥𝑖′,𝑐+1)
∀(𝑖, 𝑖′) ∈ 𝐶𝐿, 𝑐 ∈ [1..𝑘 − 2]

(24)

Eqs. (25)-(26), namely the unconditional co-clustering
clauses, guarantee that pairs in 𝑀𝐿 are clustered together.

(¬𝑥𝑖,𝑐 , 𝑥𝑖′,𝑐) ∀(𝑖, 𝑖′) ∈ 𝑀𝐿, 𝑐 ∈ [1..𝑘 − 1] (25)
(𝑥𝑖,𝑐 ,¬𝑥𝑖′,𝑐) ∀(𝑖, 𝑖′) ∈ 𝑀𝐿, 𝑐 ∈ [1..𝑘 − 1] (26)

Eqs. (27)-(29), namely the conditional separating clauses,
guarantee that a 𝑏−𝑤 variable being set to false forces the pairs
in distance class 𝑤 to be clustered separately.

(𝑏−𝑤, 𝑥𝑖,1, 𝑥𝑖′,1) ∀𝐷𝑤 ∈ , (𝑖, 𝑖′) ∈ 𝐷𝑤 (27)
(𝑏−𝑤,¬𝑥𝑖,𝑘−1,¬𝑥𝑖′,𝑘−1) ∀𝐷𝑤 ∈ , (𝑖, 𝑖′) ∈ 𝐷𝑤 (28)
(𝑏−𝑤,¬𝑥𝑖,𝑐 ,¬𝑥𝑖′,𝑐 , 𝑥𝑖,𝑐+1, 𝑥𝑖′,𝑐+1)
∀𝐷𝑤 ∈ , (𝑖, 𝑖′) ∈ 𝐷𝑤, 𝑐 ∈ [1..𝑘 − 2]

(29)

Eqs. (30)-(31), namely the conditional co-clustering
clauses, guarantee that a 𝑏+𝑤 variable being set to true forces
the pairs in distance class 𝑤 to be clustered together.

(¬𝑏+𝑤,¬𝑥𝑖,𝑐 , 𝑥𝑖′,𝑐)
∀𝐷𝑤 ∈ , (𝑖, 𝑖′) ∈ 𝐷𝑤, 𝑐 ∈ [1..𝑘 − 1]

(30)
(¬𝑏+𝑤, 𝑥𝑖,𝑐 ,¬𝑥𝑖′,𝑐)
∀𝐷𝑤 ∈ , (𝑖, 𝑖′) ∈ 𝐷𝑤, 𝑐 ∈ [1..𝑘 − 1]

(31)

Eqs. (32)-(34) guarantee that the distance classes are parti-
tioned according to valid 𝜆+ and 𝜆− values, i.e., that 𝐷1..𝐷𝜆+distance classes are clustered together, and 𝐷𝜆−+1..𝐷𝜇 dis-
tance classes are clustered separately.

(¬𝑏−𝑤, 𝑏
−
𝑤−1) ∀𝐷𝑤 ∈ , 𝑤 > 1 (32)

(¬𝑏+𝑤, 𝑏
+
𝑤−1) ∀𝐷𝑤 ∈ , 𝑤 > 1 (33)

(¬𝑏+𝑤, 𝑏
−
𝑤) ∀𝐷𝑤 ∈  (34)

Smart Pairs
Since each pair of points has corresponding clauses that han-
dle being clustered together or separately, a naive encoding
will be quadratic in the number of points |𝑋|. This is sig-
nificant since all the other parts of the encoding are linear in
|𝑋|. To reduce the number of clauses, we see the set of points
as nodes in a graph and exploit connections between pairs.
Pairs that are forced to be clustered together are represented
by positive edges and pairs that are force to be clustered sep-
arately by negative edges. The positive edges imply a set of

connected components of points that will be clustered together
while a negative edge between nodes in different components
indicates that each of the components are mutually exclusive,
i.e., each component will be in a different cluster. The order
<∗, which sorts the pairs based on distance and breaks ties ar-
bitrary, is used to greedily build the set of positive edges (𝐸+)
and the set of negative edges (𝐸−). As we incrementally build
the sets, each new edge can be classified as inner or crossing,
based on the previous members in 𝐸+ and 𝐸−, to help us de-
tect infeasibility or redundancy of clauses.
Definition 5 (Inner and Crossing edges). Given the sets 𝐸+

and 𝐸−, a new edge is said to be an:
• Inner edge, if it connects two nodes within an existing

connected component based on 𝐸+.
• Crossing edge, if it connects two nodes in two connected

components based on 𝐸+ that are mutually exclusive
based on 𝐸−.

We will use edges and the pairs of points that they represent
interchangeably onward.

Since 𝐸+ (𝐸−) represents the set of pairs that are forced
to be clustered together (separately), an inner pair is forced
to have the same label and a crossing pair to have differ-
ent labels. We make use of this fact to avoid adding co-
clustering clauses Eqs. (25, 26, 30, 31) or separating clauses
Eqs. (22, 23, 24, 27, 28, 29) when it is redundant to do so. Fur-
thermore, we can conclude infeasibility when an inner (cross-
ing) pair is forced to be clustered separately (together).

Our treatment of the unconditional clauses Eqs. (22-26)
and of the conditional ones Eqs. (27-31) differ in two ways.

1. For the unconditional clauses the 𝐸+ and 𝐸− sets are re-
spectively constructed from 𝑀𝐿 and 𝐶𝐿 links. For con-
ditional ones however, we also include the pairs that are
implied to be co-clustered (separated), due to the order
of distance imposed by 𝜆+ and 𝜆− values. Note that im-
plied pairs for the processing of conditional co-clustering
clauses are not valid for the processing of conditional
separating clauses.

2. If the unconditional separation or co-clustering of a pair
is infeasible, the problem is infeasible. However, for con-
ditional clauses, we only fix the corresponding 𝑏+𝑤 or 𝑏−𝑤variable to satisfy the conditional clause.

The detailed procedure is described in the extended version
[Shati et al., 2023].
Objective
In Section 3.1 we established that in order to find an 𝜖-
approximation of an MS-MD Pareto optimal solution, we
need to find a solution that is Pareto optimal with regards
to maximizing 𝜆+ and minimizing 𝜆−. Similarly, for an 𝜖-
approximation of an MD optimal solution we need to find a
solution that minimizes 𝜆−. Note that 𝜆+ and 𝜆− are the num-
ber of 𝑏+𝑤 and 𝑏−𝑤 variables set to true, respectively.

𝜆+ =
∑

𝑤
1(𝑏+𝑤 = 𝑡𝑟𝑢𝑒) (35)

𝜆− =
∑

𝑤
1(𝑏−𝑤 = 𝑡𝑟𝑢𝑒) (36)
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To minimize 𝜆−, we simply introduce a soft clause with unit
weight for each ¬𝑏−𝑤 (Eq. (37)). To obtain a Pareto-optimal
solution, we can optimize any function that is increasing w.r.t
𝜆− and decreasing w.r.t 𝜆+ as objective. We opt for minimiz-
ing the simple combination of 𝜆− −𝜆+ and model it using the
soft clauses in Eq. (37) and Eq. (38).

(¬𝑏−𝑤) 𝑤 ∈ 𝑊 (37)
(𝑏+𝑤) 𝑤 ∈ 𝑊 (38)

For the MD objective, the 𝑏+𝑤 variables and the clauses in Eqs.
(30)-(31) become irrelevant and can be removed.

4 Experiments
4.1 Experiment Setup
We use the Loandra solver [Berg et al., 2019] to solve our tree
clustering encoding. Loandra is an any-time solver that guar-
antees optimality if run to completion, but can also produce
intermediate solutions. We run experiments on a server with
two 12-core Intel E5-2697v2 CPUs and 128G of RAM.
Datasets. We run experiments on seven real datasets from
the UCI repository [Dua and Graff, 2017] and four synthetic
datasets from FCPS [Ultsch and Lötsch, 2020]. The datasets
vary in size, number of features, and number of clusters, as
presented in Table 2. For all datasets, we normalize the values
of each feature in the range [0, 100] so that features with larger
values do not dominate the pairwise distances.
Constraint Generation. We evaluate the performance of
our approach for different number of constraints, relative to
the dataset size. Specifically, for a given 𝜅 value with 0 ≤
𝜅 ≤ |𝑋|−1

2 , we generate a set of 𝜅 ⋅|𝑋| random clustering con-
straints following Wagstaff and Cardie [2000]: (1) We gener-
ate 𝜅 ⋅ |𝑋| pairs of data points without repetition; (2) For each
pair, we generate a ML constraint if both data point share the
same ground-truth label and a CL constraint otherwise.
Evaluation. We evaluate the quality of the obtained cluster-
ings based on ground-truth labels using two well-known ex-
ternal clustering evaluation metrics: the Adjusted Rand Index
(ARI) [Hubert and Arabie, 1985] and the Normalized Mutual
Information (NMI) [Strehl and Ghosh, 2002].
4.2 Baselines
Constrained Clustering (CC). We compare our approach
with optimal constrained clustering formulation that is not re-
stricted to conform to a decision tree. To do so, we remove
the tree-related components of the encoding, namely the vari-
ables [𝑎𝑡,𝑗], [𝑠𝑖,𝑡], [𝑧𝑖,𝑡], [𝑔𝑡,𝑐] and the clauses in Eqs. (7)-(18).
Instead, we introduce the clauses in Eq. (39) that guarantee
a well-formed unary encoding of labels.6 When used with
the MD objective and 𝜖 = 0.0, this baseline is equivalent to
the maximum diameter constrained clustering formulations in
previous works [Dao et al., 2016; Dao et al., 2017], i.e., it has
the same set of (feasible and) optimal solutions. However, this

6Note that these clauses are redundant in the encoding of tree
clustering as the condition is already enforced for the leaves.

baseline also supports 𝜖-approximation and the [MD,MS] ob-
jective for a fair comparison with our approach.

(𝑥𝑖,𝑐 ,¬𝑥𝑖,𝑐+1) ∀𝑥𝑖 ∈ 𝑋, 𝑐 ∈ [1..𝑘 − 2] (39)
Mixed Integer Optimization (MIO). To our knowledge,
the only approach in the literature for constructing tree-based
clustering using discrete optimization is the MIO model in
Bertsimas et al. [2021]. While their model does not support
clustering constraints, we can extend it to incorporate such
constraints. However, Bertsimas et al. note that their model
does not scale well and therefore do not present any experi-
mental results and instead focus on a heuristic procedure that
does not have any solution quality guarantees and cannot nat-
urally support clustering constraints. Due to the relevance of
the MIO model to our work, we have implemented the model
using the Gurobi v10 solver and extended it to support clus-
tering constraints (description of the extended MIO model ap-
pears in the extended version [Shati et al., 2023]).
4.3 Results
For our first set of experimental results presented in Table 2,
we solve the tree clustering problem for our datasets with
different values of 𝜅. We fix the value of approximation at
𝜖 = 0.1. Consistent with previous work [Dao et al., 2016;
Babaki et al., 2014], we set the solver time limit to 30 minutes.
To avoid bias in results due to a specific set of constraints, we
generate 20 random sets of constraints and report average val-
ues for the evaluation metrics and the runtime. Note that it
might not be possible for a tree clustering with a fixed depth to
satisfy all of the constraints, in particular in high-dimensional
datasets with complex patterns where a large number of uni-
variate splits may be needed to fit the ground-truth constraints.
Thus, we also report the number of feasible runs (out of the
20 random constraint sets) while excluding infeasible and un-
known7 cases from the computed average ARI.

The results show that our approach can produce high qual-
ity interpretable solutions with non-zero 𝜖 values in the time
limit. We observe that the [MD,MS] Pareto optimality objec-
tive leads to higher quality solutions compared to MD in all
but a few cases without significant overhead in runtime.

Interestingly, we observe that tree clustering almost always
leads to higher quality solutions compared to CC. This seems
unintuitive since CC is strictly more expressive than tree clus-
tering. We conjecture that both clustering objectives tend to
perform better with tree clustering because of its inherently
restricted solution space, resulting in potentially worse objec-
tive values but higher ARI scores.

Figure 1 highlights the benefit of both tree clustering (◦)
and the Pareto objective (dashed). While the difference in
ARI in unconstrained clustering (𝜅 = 0) is negligible, as we
increase the number of constraints we observe that tree-based
clustering significantly outperforms CC and the Pareto objec-
tive tends to perform better than the MD objective when con-
straints are limited. Figure 1 also shows the percentage of fea-
sible instances vs. 𝜅 (bars) and demonstrates that as problems
become more constrained, it may be infeasible to find a tree

7Instances where the solver timed out without finding a feasible
solution are considered “unknown”.
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Dataset 𝜅 [MD,MS] MD
ARI ARI (CC) Feas. Time (s) ARI ARI (CC) Feas. Time (s)

Iris 0.0 0.6 0.6 20 0.6 0.62 0.7 20 0.4
|𝑋| = 150 0.1 0.83 0.78 20 0.7 0.71 0.55 20 0.4
|𝐹 | = 4 0.25 0.86 0.8 20 0.7 0.81 0.6 20 0.4
𝐾 = 3 0.5 0.91 0.8 20 0.8 0.88 0.63 20 0.5
𝑑 = 3 1.0 0.95 0.91 16 0.7 0.94 0.71 16 0.4
Wine 0.0 0 0 20 0.7 0.38 0.21 20 0.6

|𝑋| = 178 0.1 0.69 0.53 20 1.2 0.41 0.19 20 0.6
|𝐹 | = 13 0.25 0.79 0.57 20 1.8 0.6 0.2 20 0.9
𝐾 = 3 0.5 0.82 0.5 20 6.9 0.72 0.2 20 5.4
𝑑 = 3 1.0 0.93 0.72 20 8.8 0.89 0.23 20 8
Glass 0.0 0.22 0.22 20 2.1 0.18 0.26 20 1.2

|𝑋| = 214 0.1 0.19 0.1 20 9.3 0.16 0.11 20 3.3
|𝐹 | = 9 0.25 0.24 0.06 20 61.1 0.16 0.05 20 35.1
𝐾 = 7 0.5 0.26 0.07 19 954.1 0.24 0.01 20 624.9
𝑑 = 4 1.0 - 0.1 0 193.8 - 0.01 0 200.1

Ionosphere 0.0 0.01 0.01 20 2.4 0.16 0.08 20 2
|𝑋| = 351 0.1 0.28 0.11 20 33.7 0.15 0.09 20 10.2
|𝐹 | = 34 0.25 0.5 0.22 11 598.9 0.48 0.12 11 880.9
𝐾 = 2 0.5 - 0.38 0 29.5 - 0.18 0 31.4
𝑑 = 3 1.0 - 0.78 0 5.8 - 0.76 0 5.7
Seeds 0.0 0.68 0.66 20 1.8 0.57 0.68 20 0.5

|𝑋| = 210 0.1 0.68 0.64 20 1 0.67 0.54 20 0.5
|𝐹 | = 7 0.25 0.73 0.63 20 1.3 0.72 0.52 20 0.7
𝐾 = 3 0.5 0.78 0.64 14 1.5 0.78 0.52 14 1.2
𝑑 = 3 1.0 0.9 0.79 1 0.7 0.93 0.72 1 0.7
Libras 0.0 0.21 0.22 20 1802.8 0.2 0.16 20 1802.9

|𝑋| = 360 0.1 0.17 0.17 20 1159.1 0.15 0.12 20 941.6
|𝐹 | = 90 0.25 0.17 0.14 20 1080 0.14 0.1 20 681.9
𝐾 = 15 0.5 0.18 0.11 20 866.2 0.14 0.07 20 305.1
𝑑 = 5 1.0 0.18 0.11 20 1518.3 0.14 0.06 20 859.4
Spam 0.0 0 0 20 38 -0.02 -0.01 20 41.5

|𝑋| = 4601 0.1 - 0.04 0 358.9 - 0.05 0 379.4
|𝐹 | = 57 0.25 - 0.07 0 286.1 - 0.13 0 312.6
𝐾 = 2 0.5 - 0.08 0 151.1 - 0.25 0 152.9
𝑑 = 3 1.0 - 0.51 0 77.1 - 0.51 0 77.9
Lsun 0.0 0.44 0.39 20 1.2 0.39 0.39 20 0.8

|𝑋| = 400 0.1 0.95 0.65 20 1 0.74 0.25 20 0.7
|𝐹 | = 2 0.25 1 0.94 20 1 0.89 0.25 20 0.6
𝐾 = 3 0.5 1 1 20 0.9 0.96 0.26 20 0.6
𝑑 = 3 1.0 1 1 20 0.9 0.98 0.48 20 0.6

Chainlink 0 0.12 1 20 3 0.11 0.06 20 2
|𝑋| = 1000 0.1 0.89 1 17 5 0.84 0.01 17 5.5
|𝐹 | = 3 0.25 0.89 1 1 1.8 0.91 0.03 1 1.7
𝐾 = 2 0.5 - 1 0 1.3 - 0.05 0 1.2
𝑑 = 3 1.0 - 1 0 1 - 0.56 0 0.9
Target 0.0 0.36 0.36 20 5.7 0.33 0.33 20 3.7

|𝑋| = 770 0.1 1 1 20 2.8 0.64 0.57 20 18.8
|𝐹 | = 2 0.25 1 1 20 2.7 0.87 0.45 20 9.9
𝐾 = 6 0.5 1 1 20 2.4 0.95 0.25 20 4.4
𝑑 = 4 1.0 1 1 20 2.2 0.99 0.45 20 1.9

WingNut 0.0 1 1 20 2.5 1 0.15 20 2
|𝑋| = 1016 0.1 1 1 20 1.7 0.99 0.2 20 1.3
|𝐹 | = 2 0.25 1 1 20 1.6 0.99 0.28 20 1.2
𝐾 = 2 0.5 1 1 20 1.6 1 0.49 20 1.2
𝑑 = 3 1.0 1 1 20 1.6 1 0.82 20 1.2

Table 2: Interpretable constrained clustering with 𝜖 = 0.1 averaged over 20 runs.
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Figure 1: Results for 𝜖 = 0.1 averaged over 20 runs and 11 datasets.

clustering of a given depth that satisfies all the constraints, ex-
posing the trade-off between interpretability via decision trees
and satisfaction of user-provided clustering constraints.

Next, we investigate how depth impacts the feasibility of
finding a tree that satisfies the clustering constraints. Table 3
shows that deeper trees can resolve the infeasibility problem
in some datasets, e.g., Glass and Ionosphere, however in Spam
we find that even with a depth of four we are not able to find
decision trees for any of the random constraint sets. Another
interesting observation is that unnecessarily deep trees could
lead to a lower score, demonstrating the potential benefit of
restricted solution spaces induced by shallow trees. We ob-
served similar trends for the NMI metric and provide the re-
sults in the extended version [Shati et al., 2023].
Comparison with MIO. Our experiments with the MIO
baseline found that it is unable to find a feasible solution for
any of the datasets for the depths specified in Table 2 across
multiple runs, both in constrained and unconstrained settings.
This result is consistent with Bertsimas et al.’s [2021] obser-
vation on the limited scalability of their MIO formulation and
emphasizes the strong performance of our approach.
Ablation Study. Finally, we study the impact of the smart
pairs procedure (Section 3.2) and the 𝜖-approximation (Sec-
tion 3.1) on the performance of our approach. Unlike the 𝜖-
approximation, smart pairs is guaranteed to not change the set
of feasible solutions and the set of optimal solutions. How-
ever, since there could be multiple optimal solutions, the dif-
ferent encoding may still lead to an optimal solution with a
slightly different ARI score. The results presented in Table 4
show that the aforementioned methods can reduce the number
of clauses and runtimes without meaningful decrease in score.
5 Conclusion
In this work, we present the first approach for interpretable
and constrained clustering using decision trees. Specifically,
we present a novel SAT-based encoding for constructing clus-
tering trees that approximate two well-known clustering ob-
jectives. Our experiments on a range of real-world and syn-
thetic datasets demonstrate the ability of our approach to pro-
duce high-quality and interpretable clustering solutions that
incorporate user-provided clustering constraints.

Our work raises several interesting questions to investigate
in future work. As there are potentially many Pareto-optimal
solutions, investigating and empirically evaluating strategies
or tools, e.g. multi-objective solvers [Jabs et al., 2022], for ex-
ploring the Pareto front and selecting promising solutions is

Dataset 𝑑 ARI Feas. Time (s)

Iris
2 0.83 2 0.3
3 0.91 20 0.8
4 0.88 20 0.8

Wine
2 0.87 2 0.4
3 0.82 20 6.9
4 0.71 20 6.2

Glass
3 - 0 2.6
4 0.26 19 953.6
5 0.22 20 35.8

Ionosphere
2 - 0 0.8
3 - 0 29.5
4 0.69 18 731.7

Seeds
2 - 0 0.3
3 0.78 14 1.5
4 0.74 20 2.1

Libras
4 0.16 2 1801.4
5 0.18 20 866.2
6 0.17 20 315.4

Spam
2 - 0 35
3 - 0 151.1
4 - 0 975.6

Lsun
2 1 20 0.9
3 1 20 0.9
4 1 20 1.1

Chainlink
2 - 0 0.8
3 - 0 1.3
4 1 20 3.4

Target
3 - 0 1.8
4 1 20 2.5
5 1 20 4

WingNut
2 1 20 1.5
3 1 20 1.7
4 1 20 2.1

Table 3: Tree clustering with the [MD,MS] objective for different
tree depths (𝜅 = 0.5, 𝜖 = 0.1) averaged over 20 runs.

Dataset Setting ARI Time (s) # Clauses

Libras
SP & 𝜖=0.1 0.18 866.4 2,082,261.2

𝜖=0.1 0.16 822.0 3,888,452.0
𝜖=0.0 0.16 1197.1 4,140,872.0

Spam
SP & 𝜖=0.1 Inf. 151.6 3,823,479.2

𝜖=0.1 Inf. 332.7 24,980,546.4
𝜖=0.0 Inf./Unk. 864.0 69,166,751.4

WingN
SP & 𝜖=0.1 1.00 1.7 95,879.25

𝜖=0.1 1.00 4.2 1,128,700.4
𝜖=0.0 OOM† 98.3 3,449,740.4

†OOM indicates an out-of-memory error.
Table 4: Ablation study ([MD,MS]) averaged over 20 runs.

an interesting direction for future work. One of the challenges
identified in this work is that highly-constrained problems in
complex, high-dimensional datasets can become infeasible for
a given tree depth. In future work, we would like to investi-
gate strategies to overcome this challenge, e.g., by converting
the hard clustering constraints into soft constraints that are en-
couraged rather than required to be satisfied.
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