SAT-based Approach for Learning Optimal Decision Trees with Non-Binary Features

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

UNIVERSITY OF TORONTO

CP 2021

SEPTEMBER 13, 2021

Overview

- **Decision trees** are popular classification models
 - provide interpretability and accuracy
 - constructed via greedy heuristics or exact methods
 - exact optimization methods largely focus on **binary features**
- **Our contribution:** an approach to handle **non-binary** features effectively
 - outperforms the state of the art on **non-binary** datasets with two popular objectives

Background

Classification

• A popular application of machine learning

• Labelling function learned from labelled data set

• The goal is to achieve high accuracy on unseen data points

• **Decision trees** are **interpretable**:

- human-readable
- amenable to further (logical) reasoning

• Prime candidates for **safety-critical** applications

- Branching nodes perform a split on a given feature and threshold
- Leaf nodes assign a label

- A set of features F and integer labels C
- A decision tree: $\mathcal{D} = (\mathcal{T}, \beta, \alpha, \theta)$:
 - \mathcal{T} tree structure $(\mathcal{T}_{\beta}, \mathcal{T}_{L}, \delta, p, l, r)$
 - β feature selection function
 - α threshold selection function
 - $\circ~\theta$ leaf labelling function

• Recursive prediction for point *x*_{*i*}:

$$\Theta(t, x_i) = \begin{cases} \theta(t) & \text{if } t \in \mathcal{T}_L \\ \Theta(l(t), x_i) & \text{else if } x_i[\beta(t)] \le \alpha(t) \\ \Theta(r(t), x_i) & \text{else} \end{cases}$$

Ways to construct decision trees:

- 1. Local search and heuristics
- **2**. Combinatorial optimization:
 - optimality guarantees
 - additional constraints

Optimization Problem

SAT:

- A set of variables $\mathcal{X} = \{x_0, x_1, \dots, x_n\}$ and a set of clauses $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$
- Find an assignment $\mathcal{M}: \mathcal{X} \to \{false, true\}$ that satisfies **all** clauses

MaxSAT:

- All hard clauses \mathcal{C}_h should be satisfied
- The number of satisfied **soft** clauses \mathcal{C}_s needs to be **maximized**

Encoding

Encoding Components

- It is straight-forward to encode:
 - feature selection
 - leaf labelling
 - presence at leaves
- The challenging component is the **split**
- How can we model a numerical threshold?

Split Encoding

- Existing approach:
 - only support **binary** features!
 - transform numerical and categorical features into a set of binary ones
 - can lead to a huge number of features
 - Avellaneda's [2020], Hu et al.'s [2020], and Verhaeghe et al.'s [2020] employ this approach

Numerical	Binary
4	001
9	011
1	000
4	001
12	111

Categorical	Binary
А	001
В	010
А	001
С	100

Split Encoding

- New idea:
 - encode the **direction** for each Point instead
 - validate the directions according to the **order** of values
 - the directions for **absent** points are encoded as well

Variables:

- $a_{t,j}$: feature j is chosen at node t
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Parameters:

- set of features *F* and integer labels *C*
- $^{\rm o}\,$ set of training examples ${\mathcal X}\,$
- labelling $\gamma: X \to C$
- tree structure $T = \{\delta, T_B, T_L, p, l, r\}$

Variables:

- $a_{t,j}$: feature j is chosen at node t
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Clauses:

• Exactly one feature is chosen at each branching node

$$\left(\neg a_{t,j}, \neg a_{t,j'} \right) \qquad t \in \mathcal{T}_B, j \neq j' \in F$$

$$\left(\bigvee_{j \in F} a_{t,j} \right) \qquad t \in \mathcal{T}_B$$

Variables:

- $a_{t,j}$: feature *j* is chosen at node *t*
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Clauses:

• The directions for splits are in order

$$\begin{pmatrix} \neg a_{t,j}, s_{i,t}, \neg s_{i',t} \end{pmatrix} \qquad t \in \mathcal{T}_B, j \in F, (i,i') \in O_j(\mathcal{X})$$
$$\begin{pmatrix} \neg a_{t,j}, \neg s_{i,t}, s_{i',t} \end{pmatrix} \quad t \in \mathcal{T}_B, j \in F, (i,i') \in O_j(\mathcal{X}), x_i[j] = x_{i'}[j]$$

Variables:

- $a_{t,j}$: feature j is chosen at node t
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Clauses:

• The splits are **non-trivial**

$$\begin{pmatrix} \neg a_{t,j}, s_{\#_j^1, t} \end{pmatrix} \qquad t \in \mathcal{T}_B, j \in F$$

$$\begin{pmatrix} \neg a_{t,j}, s_{\#_j^{|\mathcal{X}|}, t} \end{pmatrix} \qquad t \in \mathcal{T}_B, j \in F$$

Variables:

- $a_{t,j}$: feature j is chosen at node t
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Clauses:

• Presence at leaves matches the split directions

$$\begin{pmatrix} \neg z_{i,t}, s_{i,t'} \end{pmatrix} \qquad t \in \mathcal{T}_L, x_i \in \mathcal{X}, t' \in A_l(t) \\ \begin{pmatrix} \neg z_{i,t}, \neg s_{i,t'} \end{pmatrix} \qquad t \in \mathcal{T}_L, x_i \in \mathcal{X}, t' \in A_r(t) \\ \begin{pmatrix} z_{i,t}, \bigvee_{t' \in A_l(t)} \neg s_{i,t'}, \bigvee_{t' \in A_r(t)} s_{i,t'} \end{pmatrix} \qquad t \in \mathcal{T}_L, x_i \in \mathcal{X}$$

Variables:

- $a_{t,j}$: feature j is chosen at node t
- $s_{i,t}$: point *i* is directed left at node *t*
- $z_{i,t}$: point *i* ends up at leaf *t*
- $g_{t,c}$: label c is assigned to leaf t

Clauses:

• At most one **label** is chosen at each leaf

$$(\neg g_{t,c}, \neg g_{t,c'}) \qquad t \in \mathcal{T}_L, c \neq c' \in C$$

Learning Decision Trees

Two main **objectives:**

- Min-depth:
 - correctly classify **all** of the training points
 - find the **lowest depth** possible
 - solved by iterative **SAT** instances
- Max-accuracy:
 - maximize the number of correct classifications
 - use a fixed **depth**
 - solved via MaxSAT

Extension to Categorical Features

• Use the same idea for categorical splits:

• no need to validate order in directions, checking equality is enough

- enables **power set** branching:
 - min-depth: potentially more shallow solution
 - max-accuracy: potentially more accurate solution

Experimental

Experimental Setup

Objective	Language	Solver	Baseline	Baseline's Solver
Min-Depth	C++	MiniSAT	Avellaneda's [2020] SAT-based approach	MiniSAT
Max-Accuracy	Java	Loandra	Hu et al.'s [2020] MaxSAT approach	Loandra
			Verhaeghe et al.'s [2020] Constraint Programming approach	Oscar

• The chosen baselines are the state-of-the-art algorithms for their respective objectives

Goals

• The benefits and applications of the two **objectives** are well-studied

- Focus on optimization performance:
 - find the solutions **faster**
 - find **near-optimal** solutions in **time-out** scenarios

Datasets

0

	Type	Name	X	$ F_N $	$ F_B $	$ F_C $	\tilde{f}	C
		Banknote	1372	4	0	0	5016	2
 Three types of datasets: 		Breast Cancer	116	9	0	0	891	2
		Cryotherapy	90	5	1	0	93	2
 mostly numerical features 		Immunotherapy	91	6	1	0	166	2
 mostly categorical features mostly binary features 	Ν	Ionosphere	351	32	2	0	8114	2
		Iris	150	4	0	0	119	3
	Ures User Knowledge 258 5 0 0 431 Vertebral Column 310 6 0 0 1741	User Knowledge	258	5	0	0	431	4
		1741	2					
		Wine	178	13	0	0	1263	1263 3
	В	$\operatorname{Car}^{\ddagger}$	1728	6	0	0	15	2
	Б	Monk2	169	4	2	0	11	2

Min-Depth Results

- On non-binary datasets, our approach is significantly faster than the baseline
- As expected, the existing approach works better on **binary** datasets

Dataset	Min Depth	Tim	e (s)
Dataset	Mill Deptil	Ours	SAT $[3]$
Banknote	4	5.82	T/O [4]
Breast Cancer	4	6.59	T/O [4]
Cryotherapy	4	0.08	0.24
Immunotherapy	4	0.18	1.3
Ionosphere	?	T/O [4]	T/O [3]
Iris	4	0.04	0.17
User Knowledge	5	1.31	59.44
Vertebral Column	5	87.35	T/O [5]
Wine	3	0.11	14.75
Car	8	T/O [8]	89.1
Monk2	6	2.73	0.28

Max-Accuracy Results

- On **non-binary** datasets, our approach is significantly faster than the baselines
- As expected, existing approaches work better on **binary** datasets
- Our approach still finds optimal solutions for binary datasets most of the time

Dataset	Depth	Solution Cost			Time (s)			
Dataset	Depth	Ours	MaxSAT [15]	CP [23]	Ours	MaxSAT [15]	${\rm CP}~[23]$	
Banknote	2	100	176	100	16.83	T/O	512.21	
	3	23	550	100	105.79	T/O	T/O	
	4	0	88	100	18.98	T/O	T/O	
	2	19	24	19	5.07	T/O	22.19	
Breast Cancer	3	9	25	12	242.16	T/O	T/O	
	4	0	18	11	20.79	T/O	T/O	
	2	5	5	5	0.57	3.68	4.21	
Cryotherapy	3	1	1	1	0.73	17.57	27.39	
	4	0	0	0	0.75	24.14	7.61	
	2	8	8	8	0.99	10.53	5.22	
Immunotherapy	3	4	4	4	3.81	T/O	146.45	
	4	0	1	0	1.27	T/O	18.53	
	2	29	41	29	155.06	T/O	T/O	
Ionosphere	3	21	186	29	T/O	T/O	T/O	
	4	10	76	28	T/O	T/O	T/O	
	2	6	-	-	0.6	-	-	
Iris	3	1	-	-	0.77	-	-	
	4	0	-	-	0.82	-	-	
	2	35	-	-	1.94	-	-	
User Knowledge	3	10	-	-	3.29	-	-	
	4	1	-	-	3.86	-	-	
	2	45	46	45	15.79	T/O	67.91	
Vertebral Column	3	32	44	42	T/O	T/O	T/O	
	4	15	39	42	T/O	T/O	T/O	
117:	2	6	-	-	1.25	-	-	
Wine	3	0	-	-	1.62	-	-	
Car	2	250	250	250	12.67	9.2	2.16	
	3	182	182	182	Т/О	т/О	5.99	
	4	122	122	122	Т/О	Т/О	14.09	
Monk2	2	57	57	57	2.74	4.38	1.38	
	3	42	42	42	T/O	826.31	3.6	
	4	32	31	31	T/O	T/O	8.12	

Summary

- Novel MaxSAT-based encoding for constructing optimal decision trees for datasets with numerical and categorical Features
- Can be employed by both **min-depth** and **max-accuracy** objectives
- Supports **power set** splitting on **categorical** features to achieve **compactness**
- Significantly outperforms the state of the art for **non-binary** datasets

Thank You!

Questions & Answers

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

UNIVERSITY OF TORONTO

CP 2021

SEPTEMBER 13, 2021