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Neural sequence generation can solve combinatorial optimization problems
- Lacks support for hard constraints
- Lacks guarantee when using Beam Search

Vehicle Routing Problems (VRP) are important combinatorial tasks
- Involve global constraints that require meticulous reasoning
- Existing neural methods do not support global constraints

Motivation

Contributions
Beam search with cuts
- Combines any pre-trained neural model with CSP requirements
Two requirements applicable in multiple settings
- Bin Packing in encoded IP                - Regular Language encoded in SAT
- Solve 3 VRP variants with hard constraints

ResultsSatisfies requirements with negligible cost to quality

Scales exponentially better when problem size increases

Nodes: 𝑁 = {𝑛𝑖  |𝑛𝑖 ∈ ℝ × ℝ}
Objective: minimize total distance

CVRPM
Constrained Vehicle Routing Problem 
with Maximum Tours:

Find a series of 𝒎 ∈ ℕ tours from 
depot 𝒏𝒅 partitioning the nodes, s.t. the 
sum of demands 𝑫: 𝑵 → ℕ in each 
route is less than the capacity 𝒄 ∈ ℕ
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Tours: 3
Capacity: 10

TSPR
Travelling Salesman Problem with 
regular specification

Find one complete tour 𝒙 s.t. 𝝈(𝒙)
∈ 𝓐, where 𝚺𝑨 is an alphabet, 𝝈: 𝑵
→ 𝚺𝑨 an alphabet mapping, and 𝓐 a 
Deterministic finite automata (DFA)
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Generate a sequence 𝒙 from tokens 𝚺

                      next token prediction 
function 𝐩: 𝚺∗ → 𝓟 𝚺

Optimize sequence score
𝜽(𝒙) = 𝚷𝒊 𝒑(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊)[𝒙𝒊+𝟏]

start 𝑤 promising 
partial 

solutions

Candidates 
for next step

All possible expansions

Top 𝑤 scoring candidates

Final solutionsSolutions
are complete

Initialize with 
empty solution

Neural Model:

Sets of partial solutions of size 𝑖: 𝑆𝑖

𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤( 𝜃 𝑥. 𝑎 𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ )

Beam width (𝒘): number of partial solutions

Beam Search with Cuts (BSC)

Explicitly checks feasibility of partial solutions

𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤 ({𝜃(𝑥. 𝑎)│𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ,
 ∃𝒙′: 𝒙. 𝒂. 𝒙′ ∈ 𝑹 ∧ [𝒙. 𝒂. 𝒙′ 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆] })

Impedes infeasible partial solutions from expanding further

Requirements

Bin Packing

Partition items 𝑰 with weights 𝑾: 𝑰 → ℕ into 𝒎 bins of capacity 𝒄

Encoded in Integer Programming

Neural model solving CVRP Bin Packing Requirement Solving CVRPM+ =
Nodes Demands Tours Capacity

Regular Language
Given alphabet 𝚺𝑨, alphabet, mapping 𝝈: 𝑵 → 𝚺𝑨 and DFA 𝓐, 
find 𝒙 s.t. 𝝈(𝒙) ∈ 𝓐  

Neural model solving TSP Regular Language Requirement Solving TSPR+ =

Encoded in Boolean Satisfiability

Setup Kool et al. [1]
- Uses attention layers and is trained using REINFORCE [2]
- Solves CVRP and TSP
- Used in beam search with cuts as a pre-trained neural model
- Used in beam search with large width as baseline

Solvers:
- IP: Gurobi
- SAT: Gluecard 4

Timeout limit:
- 10 seconds per CSP call

Datasets:
- Uchoa et al. [3]
- Synthetic, following [1]

Sequence Generation with Requirements

27 instances 
from Uchoa et al.

18 satisfiedBS
Width
=8k

9 unsatisfied

BSC
Width

=4

BSC Satisfies all requirements
- Even when BS fails

With negligible cost to quality
- Up to 24% improvement

With smaller width and less runtime

Tightening Requirements

BS
Width
=8k

BSC
Width

=4

BSC can tighten requirements 
with negligible cost to quality

Quality and tightness trade-off 
until infeasibility

Scaling Problem Size
Reported lowest width needed 
for requirement satisfaction

Requirement StrengthSolution Length
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BSC’s performance remains stable
- Solves all instances in 1.73-1.95 seconds

Future Work

Add cuts due to equivalency checks between partial solutions

Application to neural models for other problems

Implementation of new requirements

Integration with Beam-stack search to enable backtracks

- Cache and query feasibility - Cut dominated solutions - Increase solution diversity
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Iteration 4 Iteration 5

Promising 
and 
feasible

Width=2

Add Cut

Solve CSP
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satisfied

Tightest requirement satisfied by 
BS is detected, as a starting point

BS scales exponentially
- As solution length or requirement 

strength is increased

start 𝑤 promising 
partial feasible 

solutions

Candidates 
for next step

All possible expansions

Top 𝑤 scoring feasible candidates

Final solutions
Solutions are 
complete and 

feasible

Initialize with 
empty solution

Similar procedure as BS
With added checks
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