
Neural Sequence Generation with Constraints via Beam Search with Cuts: A Case Study on VRP

POUYA SHATI, ELDAN COHEN, SHEILA MCILRAITH

Summary

Vehicle Routing Problems

Framework

Beam Search (BS)

SoCS’24 + Doctoral Consortium

Experiments

[1] Kool, W.; van Hoof, H.; and Welling, M. 2018. Attention, Learn to Solve Routing
Problems! In ICLR.

[2] Williams, R. J. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning.

[3] Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and Subramanian, A. 2017. New
benchmark instances for the capacitated vehicle routing problem. EJOR.

Neural sequence generation can solve combinatorial optimization problems
- Lacks support for hard constraints
- Lacks guarantee when using Beam Search

Vehicle Routing Problems (VRP) are important combinatorial tasks
- Involve global constraints that require meticulous reasoning
- Existing neural methods do not support global constraints

Motivation

Contributions
Beam search with cuts
- Combines any pre-trained neural model with CSP requirements
Two requirements applicable in multiple settings
- Bin Packing in encoded IP - Regular Language encoded in SAT
- Solve 3 VRP variants with hard constraints

ResultsSatisfies requirements with negligible cost to quality

Scales exponentially better when problem size increases

Nodes: 𝑁 = {𝑛𝑖 |𝑛𝑖 ∈ ℝ × ℝ}
Objective: minimize total distance

CVRPM
Constrained Vehicle Routing Problem
with Maximum Tours:

Find a series of 𝒎 ∈ ℕ tours from
depot 𝒏𝒅 partitioning the nodes, s.t. the
sum of demands 𝑫: 𝑵 → ℕ in each
route is less than the capacity 𝒄 ∈ ℕ

3
2

4

4 3

2

1

4

Tours: 3
Capacity: 10

TSPR
Travelling Salesman Problem with
regular specification

Find one complete tour 𝒙 s.t. 𝝈(𝒙)
∈ 𝓐, where 𝚺𝑨 is an alphabet, 𝝈: 𝑵
→ 𝚺𝑨 an alphabet mapping, and 𝓐 a
Deterministic finite automata (DFA)

a

a

a

a

b

b

b

b

b

a

a

a

b

b b

Generate a sequence 𝒙 from tokens 𝚺

 next token prediction
function 𝐩: 𝚺∗ → 𝓟 𝚺

Optimize sequence score
𝜽(𝒙) = 𝚷𝒊 𝒑(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊)[𝒙𝒊+𝟏]

start 𝑤 promising
partial

solutions

Candidates
for next step

All possible expansions

Top 𝑤 scoring candidates

Final solutionsSolutions
are complete

Initialize with
empty solution

Neural Model:

Sets of partial solutions of size 𝑖: 𝑆𝑖

𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤(𝜃 𝑥. 𝑎 𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ)

Beam width (𝒘): number of partial solutions

Beam Search with Cuts (BSC)

Explicitly checks feasibility of partial solutions

𝑆𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥1:𝑤 ({𝜃(𝑥. 𝑎)│𝑥 ∈ 𝑆𝑖−1, 𝑎 ∈ Σ,
 ∃𝒙′: 𝒙. 𝒂. 𝒙′ ∈ 𝑹 ∧ [𝒙. 𝒂. 𝒙′ 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆] })

Impedes infeasible partial solutions from expanding further

Requirements

Bin Packing

Partition items 𝑰 with weights 𝑾: 𝑰 → ℕ into 𝒎 bins of capacity 𝒄

Encoded in Integer Programming

Neural model solving CVRP Bin Packing Requirement Solving CVRPM+ =
Nodes Demands Tours Capacity

Regular Language
Given alphabet 𝚺𝑨, alphabet, mapping 𝝈: 𝑵 → 𝚺𝑨 and DFA 𝓐,
find 𝒙 s.t. 𝝈(𝒙) ∈ 𝓐

Neural model solving TSP Regular Language Requirement Solving TSPR+ =

Encoded in Boolean Satisfiability

Setup Kool et al. [1]
- Uses attention layers and is trained using REINFORCE [2]
- Solves CVRP and TSP
- Used in beam search with cuts as a pre-trained neural model
- Used in beam search with large width as baseline

Solvers:
- IP: Gurobi
- SAT: Gluecard 4

Timeout limit:
- 10 seconds per CSP call

Datasets:
- Uchoa et al. [3]
- Synthetic, following [1]

Sequence Generation with Requirements

27 instances
from Uchoa et al.

18 satisfiedBS
Width
=8k

9 unsatisfied

BSC
Width

=4

BSC Satisfies all requirements
- Even when BS fails

With negligible cost to quality
- Up to 24% improvement

With smaller width and less runtime

Tightening Requirements

BS
Width
=8k

BSC
Width

=4

BSC can tighten requirements
with negligible cost to quality

Quality and tightness trade-off
until infeasibility

Scaling Problem Size
Reported lowest width needed
for requirement satisfaction

Requirement StrengthSolution Length

lo
g(

𝑤
)

BS

BSC
Width

=4

BSC’s performance remains stable
- Solves all instances in 1.73-1.95 seconds

Future Work

Add cuts due to equivalency checks between partial solutions

Application to neural models for other problems

Implementation of new requirements

Integration with Beam-stack search to enable backtracks

- Cache and query feasibility - Cut dominated solutions - Increase solution diversity

Δ Capacity

D
is

ta
nc

e

Presentation: Friday 7th, Session 3, 12pm

Iteration 4 Iteration 5

Promising
and
feasible

Width=2

Add Cut

Solve CSP

⨯

?

satisfied

Tightest requirement satisfied by
BS is detected, as a starting point

BS scales exponentially
- As solution length or requirement

strength is increased

start 𝑤 promising
partial feasible

solutions

Candidates
for next step

All possible expansions

Top 𝑤 scoring feasible candidates

Final solutions
Solutions are
complete and

feasible

Initialize with
empty solution

Similar procedure as BS
With added checks

	Slide 5

