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Motivation

o Decision trees as interpretable classifiers
o However, number of splits exponential in depth

o Binary Decision Diagrams as more compact alternatives

o Same split across each level




Our Contribution

(¢]

Propose SAT-based encoding for learning max-accuracy BDDs

(¢]

Model the size of the BDD as a secondary objective

(¢]

Introduce and model Multi-Dimensional BDDs as more expressive alternatives

(¢]

Demonstrate improved compactness with maintained accuracy in experiments




> Binary Decision Diagrams

Background

o MaxSAT




Binary Decision Diagrams (BDD)

o

Rooted, directed, acyclic graph

(¢]

Representation of a Boolean function

(¢]

Historically utilized towards hardware synthesis

(¢]

Recent focus on BDD classifiers
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Binary Decision Diagrams (BDD)

Unreduced and unordered Reduced and ordered




MaxSAT

o Set of binary variables X = {xg, X, ..., X}
o Set of clauses
o Each clause C; is a subset of literals X’ U =X

o Find an assignment M: X’ — {false, true}

o Satisfy all hard clauses Cj,
> Maximize the number of satisfied soft clauses Cq




> BDD Encoding

° Size Optimization

Encodings

o> Multi-dimensional BDDs

o Expressiveness relations




BDD Encoding

> Direct encoding of numerical features

o Based on [Shati, Cohen, Mcllraith, CP2021]

o Employ splits at each node
o (feature, threshold)

o The alternative: binarize features in advance

o @xcessive number of features




BDD Encoding

> Direct encoding of numerical features
o Based on [Shati, Cohen, Mcllraith, CP2021]

Empty terminals

0 ? 0 1

o Learn ordered but unreduced BDDs

o Reduction in a second stage




BDD Encoding

o Hard clauses:

o Variables:

° Qg j: The feature chosen at split s is or comes before j.

s,j, ™ ,}Il) S{‘gmaijF 5 d . . .. . .
s,i+ Point x; is directed to the left child at split s.

O‘,g?[) § < Smax

(¢]
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(
(
(
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s 5y s, 4 11d€,# } § < Smaz:j er
A Ctlz) teNr.li.lbeK
V Ct !} 1 e NT
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BDD Encoding

o Hard clauses:

o Variables:

° Qg j: The feature chosen at split s is or comes before j.
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(¢]

C¢ 1: Output label [ is assigned to terminal node t.

(
(
(
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! ! ° dg ;: Point x; is directed to the left child at split s.
as,0) S < Smax ,
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BDD Encoding

o Hard clauses:

o Variables:

° Qg j: The feature chosen at split s is or comes before j.

‘lm Qs j11) § < SmagyJ € F L . . .
© ds,i- Point x; is directed to the left child at split s.

Qs § < Smax

(¢]

g iy s i1, yiyy dsiy) 8 < Smans € B (i1, 32) € Oj(X) C¢ 1: Output label [ is assigned to terminal node t.

(¢]

0;: Point x; is classified correctly.

(
(as,
(
(s, s 115 s iy s s iy) 8 < Smaz,J € F, (i1,12) € Of (X)
(
(
(

s 5y s, 4 11d€,# } § < Smaz:j er

—CelysCt, ) teNp Il e K > Exactly one feature is selected at each split.
V Ct !) L e NT

leL o Selected feature enforces order of values.
( v _'d:.‘:‘,!':- v ds,ij ct,y;' ¥ _ur‘]’.':) t € NT] €Iy S X
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o Soft clauses:

(0;) x, € X




BDD Encoding

> Variables:
o Hard clauses: o ,
° Qg j: The feature chosen at split s is or comes before j.
(a s> s, j41) § < Smaz J € F R . |
(a, . ° dg ;: Point x; is directed to the left child at split s.
Qg S < Smax ’
(ﬁﬂ-,g,fl-, iy odsis) 8 < Smassj € F (in, i) € 0;(X) ° Ct1: Output label [ is assigned to terminal node ¢.
(5 s s i1, iy dsiy) $ < Smazyj € F, (iy,1) € (,);(X) ° 0;: Point x; is classified correctly.
(—u’i ,37 ERE! 11d-;,# } § < Smaz:j € F
(eea,, =) teNp Il e K o Exactly one feature is selected at each split.
(\ e te Ny
leL o Selected feature enforces order of values.
( V _'ds,‘i1 V ds,‘iaci:,yu_'ﬂz') le NTami €X
$EAL(t) s€AR(t) o Exactly one label is selected at each leaf.

o Soft clauses:

o

The leaf and point labels match for a correctly classified point.
(0:) ;€ X




BDD Encoding

o Hard clauses:

o Variables:

° Qg j: The feature chosen at split s is or comes before j.

‘lm Qs j11) § < SmagyJ € F L . . .
© ds,i- Point x; is directed to the left child at split s.

Qs § < Smax

(¢]

s s s j i1y Asiyys s in) S < Smaz, J € F(i1,12) € 0;(X) C¢ 1: Output label [ is assigned to terminal node t.

(
(as,
(
(s, s 115 s iy s s iy) 8 < Smaz,J € F, (i1,12) € Of (X)
(
(
(

(¢]

0;: Point x; is classified correctly.

s 5y s, 4 11d€,# } § < Smaz:j er

(e]

1, e, teNp e K Exactly one feature is selected at each split.

V(H} tENT

(o]

Selected feature enforces order of values.

el
( v —Id..,-,!'? v d._.;,i, Ct,y“_‘ﬂi) I e NT, T € X .
seAL(t) s€An(t) o Exactly one label is selected at each leaf.

o Soft clauses:

(o]

The leaf and point labels match for a correctly classified point.

(O,f) r; € X

o

Number of correctly classified points are maximized.
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Size Optimization

o Model the size of BDD’s reduced version

o For each decision node:
o Can it be replaced by one of its children?

o Can it be merged with one of the previous
decision nodes in the same level?

> Two approaches:
o 1-stage: add as a secondary objective to accuracy
o 2-stage: use as a post-processing step to choose empty node labels




Size Optimization

o Hard clauses:

o Variables:

° . Terminals t; and t, have been assigned different output
(_'(tl [ _'Cfg E:_'Jfl tg) (tlktﬂn A} S G("‘jmam):l S K |a€1e’|§2
(7€t 1, €ty 15 O, 1) (b1, 12,4) € Glsmaz), L € K o bt,A: The sequence of A labels starting from terminal node t
(Cty 15 Chots Ot 1) (t1,t9,A) € G($maz). 1 € K (inclusive) cannot be divided into two equal sub-sequences.
(bA (t1/ALAS Jt1,tg] (h,tQ,A] € G(Sma:r) © _rtl.tz,A: The sequence of A labels startihg from termihal node t;
s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).

T AL AA G AL CA L) A E PlSmaz), i <to <272 [A§ < Al € K

o Soft clauses:
(V rusma;bas) A € P(smaq),t <2 [A

0<ta<t

o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— D) U{(tr + 20 1 12 +27 1 A)|(tr, 12, A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

o Hard clauses:

o Variables:

° . Terminals t; and t, have been assigned different output
(_'(tl [ _'Cfg E:_'Jfl tz) (tlktﬂn A} € G(smam):l S K |a€1e’|t;2
(7€t 1, €ty 15 O, 1) (b1, 12,4) € Glsmaz), L € K o bt,A: The sequence of A labels starting from terminal node t
(Cty 15 Chy 15 Oy 1) (t1,19,A) € G(8maz), 1 € K (inclusive) cannot be divided into two equal sub-sequences.
(bA It /ALA: 01, 1,) (t1,t9,A) € G(Smaa) © _rtl.tz,A: The sequence of A labels startihg from termihal node t;
s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).

T AL AA G AL CA L) A E PlSmaz), i <to <272 [A§ < Al € K

o Soft clauses:
(V rusma;bas) A € P(smaq),t <2 [A

0<ta<t

o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— D) U{(tr + 20 1 12 +27 1 A)|(tr, 12, A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

o Hard clauses:

o Variables:

° . Terminals t; and t, have been assigned different output
(_'(tl [ _'Cfg E:_'Jfl tg) (tlktﬂn A} S G("‘jmam):l S K |a€1e’|§2
(7€t 1, €ty 15 O, 1) (b1, 12,4) € Glsmaz), L € K o bt,A: The sequence of A labels starting from terminal node t
(Cty 1y Cty 11 Ot 1) (t1,t9,A) € G($maz). 1 € K (inclusive) cannot be divided into two equal sub-sequences.
(bA (t1/ALAS Jt1,tg] (h,tQ,A] € G(Sma:r) © _rtl.tz,A: The sequence of A labels startihg from termihal node t;
s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).

T AL AA G AL CA L) A E PlSmaz), i <to <272 [A§ < Al € K

o Soft clauses:
(V rusma;bas) A € P(smaq),t <2 [A

0<ta<t

o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— D) U{(tr + 20 1 12 +27 1 A)|(tr, 12, A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

o Hard clauses:

o Variables:

° . Terminals t; and t, have been assigned different output
(_|(t1 Iy Tty 15 0ty tz) (tlatﬂu A} € G(""maru ¢k |af,2’|?
(7€t 1, €ty 15 O, 1) (b1, 12,4) € Glsmaz), L € K o bt,A: The sequence of A labels starting from terminal node t
(Cty 15 Chots Ot 1) (t1,t9,A) € G($maz). 1 € K (inclusive) cannot be divided into two equal sub-sequences.
(bA (11 /AL A 01, 1) (t1,t2,A) € G(8pmaz) 0 jrtptz,A: The sequence of A labels startil_wg from termil.wal node t;
s is equal to the sequence of A labels starting from terminal node ¢,
(ﬁ?'tm. taAAs Tt A6 L Cio A w) A€ P($maz),t <tg <272 [A 0 <Al € K (both inclusive).

T AL AA G AL CA L) A E PlSmaz), i <to <272 [A§ < Al € K

o Soft clauses:
(V rusma;bas) A € P(smaq),t <2 [A

0<ta<t

o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— D) U{(tr + 20 1 12 +27 1 A)|(tr, 12, A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

> Hard clauses: ° Variables:
° . Terminals t; and t, have been assigned different output
(_'Ch Iy Cty 1y 04y, tz) (tht?& A) € G(Smam)sl eK Iatt)}a’lg? ' ’
(€15 1 Oty 1) (t1,t2,4) € Gi(smaz), L € K ° bt,A3 The sequence of A labels starting from terminal node t
(Co.1sCha 1, Ot 1) (t1,t2,A) € G(8maz),l € K (inclusive) cannot be divided into two equal sub-sequences.
(bA (t1/A].A 70 tg] (11 t A] € G(‘imaa:) ° Tty tyA The sequence of A labels starting from terminal node t;
1 1, A1y M . A

s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).
(=71t A, A A C AL CA1s]) A E P(Smaz) ti <tg <22 [A 0 < Al € K

° The differences in labels are correctly represented.
> Soft clauses:

( V ngﬂ,tA,A;_'btA,A) Ae P(gmaz),t < 2517:.:1:/A

0<ta<t

o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— 1) U{(t1 + 27 1 12+ 27 1 A)[(t1,82,A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

> Hard clauses: > Variables:
° . Terminals t; and t, have been assigned different output
(_'(tl [ _'(“fg I _'Jfl tg) (tlktﬂn A} S G("‘jmam):l S K |agle,|§2 ! ?
(7€t 1, €ty 15 O, 1) (b1, 12,4) € Glsmaz), L € K o bt,A3 The sequence of A labels starting from terminal node t
(Cty 15 Chots Ot 1) (t1,t9,A) € G($maz). 1 € K (inclusive) cannot be divided into two equal sub-sequences.
(b& It1/ALAS thjtﬁ] (tl,tQ,A] € G(Smaa:) © _rtl.tz,A: The sequence of A labels startihg from termihal node t;
s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).
(=71t A, A A C AL CA1s]) A E P(Smaz) ti <tg <22 [A 0 < Al € K

o The differences in labels are correctly represented.
> Soft clauses:

( V Ti,AtAA, DA A) A € P(Smag),t < 25m02 /A > A node cannot be replaced by one of its children if their
0<ty <t descendants are labelled differently.
o Definitions:

G(1) = {(0,1,2)}
G(p) = Glp— 1) U{(t1 + 27 1 12+ 27 1 A)[(t1,82,A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

o Variables:

o Hard clauses:
° . Terminals t; and t, have been assigned different output
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( V Ti,AtAA, DA A) A € P($maz),t < 2°me= /A > A node cannot be replaced by one of its children if their
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> Definitions: > A node cannot be merged with one of the previous ones if their

G(1) = {(0,1,2)} descendants are labelled differently.

G(p) = Glp— D) U{(tr + 20 1 12 +27 1 A)|(tr, 12, A) € G(p — 1)}
U{(t,t+2r 1 2°)0 <t <201}




Size Optimization

o Variables:

o Hard clauses:
° . Terminals t; and t, have been assigned different output

(ﬁftl Iy Tty 15 0ty tz) (tlafﬂu } € G("mm)vl ek Iagglg 1 2
(2t 1y Cta 15 O, 1) (b1 19, A) € G($maz ), € K o bt,A3 The sequence of A labels starting from terminal node t
(Gt Cia 1 Ot 1) (t1,t9,A) € G(8maz),l € K (inclusive) cannot be divided into two equal sub-sequences.
(bA (t1/A]LAs Jtl,t-g] (tl,tg,ﬂ] € G(Sma:r) © _rtl.tz,A: The sequence of A labels startihg from termihal node t;

s is equal to the sequence of A labels starting from terminal node ¢,
(Tt A A A "C AL Coontsl) A E PlSmar) tt <ty <2 [A0 <Al € K (both inclusive).
(=71t A, A A C AL CA1s]) A E P(Smaz) ti <tg <22 [A 0 < Al € K

[e]

The differences in labels are correctly represented.
> Soft clauses:

( V Tty AtAA, DA A) A € P(Smag),t < 2°me= [A > A node cannot be replaced by one of its children if their
0<ty<t - | descendants are labelled differently.

o Definitions:

[e]

A node cannot be merged with one of the previous ones if their
G(1) = {(0,1,2)} descendants are labelled differently.

G(p) =Gp—1)U{(t1 +27 " t2 + 27 L A)|(t1,t2,A) € G(p — 1)}
U{(t,t+2r 1 2°)j0 <t < 2P 1}

[e]

The number of nodes that can be replaced or merged are
maximized.
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Multi-dimensional BDD

o Multi-dimensional splits:
o Specified by directional inner BDDs (DIBDD) rather feature threshold pairs

o DIBDD with dimension D:
o Operates on D ordinary splits

> Has two terminals, representing left (1) and right (0) directions
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Multi-dimensional BDD

> Multi-dimensional BDDs (MDBDD):
o Operates on multi-dimensional splits rather than ordinary ones

> Can be transformed into ordinary BDDs

B (o—
2 el | sm
1(0| 1

1 1|0




Multi-dimensional BDD

° BDD encoding: o MDBDD encoding:

—
Split 1 W Binarization o /8l
Split2 W Binarization K¢S
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Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

° a(s n),j+ The feature chosen at split h of directional

o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

° d(s n),i : Point x; is directed to left at split h of
directional inner BDD s.

° gy : Terminal t of directional inner BDD s is assigned

> New hard clauses:

(@(s,0).5s (s ) 41) (s,;h) € Su,j e F the label 1.
(@(s,n)0) (s,h) € Sy
(S8 )3 B s ) 415 s )i s ) ) (s,h) € Sir,j € F, (ir,ia) € 0;(X)
(S ) > () 1> s ) i s ) ) (5,h) € Sy, j € F. (i1, iz) € 07 (X)
(=85 .+ (s, ) Hl,d(gh),#x) (s,h) € Su,j e F
\/ d(s,h),a‘: v —'d(s,h),@,ds,iﬁa,t] se€SaeX,teNp
hcAp(s.t) he Ay (s,t)
\/ disn i V (s py is sy ) seSreXteNs
heAp(s.t) he Ay (s,t)
(é50) s€S




Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

o a(s n),j+ The feature chosen at split h of directional

o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

° d(s n),i : Point x; is directed to left at split h of
directional inner BDD s.

° gy : Terminal t of directional inner BDD s is assigned

> New hard clauses:

(@(s,0).5s (s ) 41) (s,;h) € Su,j e F the label 1.
(@(s,n)0) (s,h) € Sy
(S8 )3 B s ) 415 s )i s ) ) (s,h) € Sir,j € F, (ir,ia) € 0;(X)
(S ) > () 1> s ) i s ) ) (5,h) € Sy, j € F. (i1, iz) € 07 (X)
(=85 .+ (s, ) Hl,d(gh),#x) (s,h) € Su,j e F
\/ d(s,h),a‘: v —'d(s,h),@,ds,iﬁa,t] se€SaeX,teNp
hcAp(s.t) he Ay (s,t)
\/ disn i V (s py is sy ) seSreXteNs
heAp(s.t) he Ay (s,t)
(é50) s€S




Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

° a(s n),j+ The feature chosen at split h of directional

o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

° d(s n),i : Point x; is directed to left at split h of
directional inner BDD s.

° Cg¢ : Terminal t of directional inner BDD s is assigned

> New hard clauses:

(@(s,0).5s (s ) 41) (s,;h) € Su,j e F the label 1.
(@(s,n)0) (s,h) € Sy
(S8 )3 B s ) 415 s )i s ) ) (s,h) € Sir,j € F, (ir,ia) € 0;(X)
(S ) > () 1> s ) i s ) ) (5,h) € Sy, j € F. (i1, iz) € 07 (X)
(=85 .+ (s, ) Hl,d(gh),#x) (s,h) € Su,j e F
\/ d(s,h),i: v _'d(s,h),iads,ia_‘as,t] se€SaeX,teNp
hcAp(s.t) he Ay (s,t)
\/ disn i V (s py is sy ) seSreXteNs
heAp(s.t) he Ay (s,t)
(€s0) s€S




Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

° a(s n),j+ The feature chosen at split h of directional

o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

° d(s n),i : Point x; is directed to left at split h of
directional inner BDD s.

° Cs¢ : Terminal t of directional inner BDD s is assigned

> New hard clauses:

(@(s1),5» T0(s,h),41) (s,h) € S, j € F the label 1.
(@(s,n)0) (s,h) € Sy
(S8 )3 B s ) 415 s )i s ) ) (s,h) € Sir,j € F, (ir,ia) € 0;(X)
(S ) > () 1> s ) i s ) ) (5,h) € Sy, j € F. (i1, iz) € 07 (X)
(=85 .+ (s, ) Hl,d(gh),#x) (s,h) € Su,j e F
\/ d(s,h),i: v _'d(s,h),iads,ia_‘as,t] se€SaeX,teNp
hcAp(s.t) he Ay (s,t)
\/ disn i V (s py is sy ) seSreXteNs
heAp(s.t) he Ay (s,t)
() ses




Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

° Qs p),j+ The feature chosen at split h of directional
o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

o &(S,h),i : Point x; is directed to left at split h of

° New hard clauses: directional inner BDD s.

° Cs¢ : Terminal t of directional inner BDD s is assigned

(@(s.1).5> 7 (s,1),51+1) (5,h) € S j € F the label 1.

(@(s.n),0) (s,h) € Sy

(5 1)+ A(ss1).3415 Dy s s 1)) (8,h) € Sy, j € I\ (i1,12) € 0j(X) > Exactly one feature is selected at each split of each DIBDD.
(2(s,1),5 O(s,h), 415 _'é(s,h),ilad}is,h),iz) (8,h) € Su,j € F,(i1,12) € 0; (X)

(s )35 0(s.1) 1 1=‘Jik(s,h),#;) (s,h) € Sm,j € F

(N i i e, ) se8,ze X teNs

hcAp(s.t) he Ay (s,t)

( \/ rﬂs,h),i, V ﬂff(,,.,h),i, ~ds i, Cs 1) seS .z e X, teNg

heAp(s.t) he Ay (s,t)

(@) s€8




Multi-dimensional BDD

o Kept hard clauses: enforce labels and correct > Variables:
classification

° Qs p),j+ The feature chosen at split h of directional

o Kept soft clauses: maximize correct classification inner BDD s is or comes before j.

o &(S,h),i : Point x; is directed to left at split h of

° New hard clauses: directional inner BDD s.

° Cs¢ : Terminal t of directional inner BDD s is assigned

(@(s,1), 3 0(5,1).541) (s;h) € Sm,j e F the label 1.

(a(s,h},ﬂ) (S, h) - SH

(58(s,1),» O(s,h), 41 Dis,h) g » (s 1) i) (s,h) € Sy, j € F, (i1,12) € 0;(X) > Exactly one feature is selected at each split of each DIBDD.
(_'a(s,h),j&a(s,h),j+la _'(?(s,h),ilag[s,h),iz) (Sah) S SH&J € F& (ilyi2) € OJ:(X)

(s, 1,33 B ), 41 s ) ) (s,h) €Sy, jeF > Selected feature enforces order of values.

( \/ é\(s,h),ia v _'g(s,h),i: ds,i: _‘a;,t] sc S, I € X,t € J\G’w

hcAp(s,t) hcAp(s,t)

( V &E.‘;,h),iﬁ V _'g(.‘;,h),ia _'d“i,iaa‘i,t] §€ S? Ti € ‘X'Jt € N’_';*

hCAR(S,t) hCz’lL(s,t)

(€s,0) s€S




Multi-dimensional BDD
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Expressiveness relations

o Given: D¢ptqr = D1 + Dy + -+ + Dy

Multi-dimension BDD
on s splits

< BDDs on D;,¢q; splits




Expressiveness relations

o Given: D¢ptqr = D1 + Dy + -+ + Dy

BDDs on s splits < |V|u|t|—d|mens!on 5bD < BDDs on D¢y¢q; Splits
on s splits




> Objectives

o Setup
EXperimentS > Performance

° Size optimization

o Multi-dimensional BDD




Objectives

> Does our encoding outperform the state of the art in runtime and training accuracy?

> Do the 1-stage and 2-stage approaches improve compactness and how do they affect testing
accuracy?

> Do multi-dimensional BDDs enable us to employ a higher number of features in our
solutions?

T




Setup

o Baseline: Hu et al. [2022]
o Learns max-accuracy BDDs with binary classification and binary features

o Datasets: 11 datasets from the UCI repository

o Solver: Loandra with 15 minutes time limit




Performance

o Higher training accuracies

o Shorter runtimes

Training Accuracy

Runtime / Timeout

Splits | Ours | Huetal. | Tie | Ours | Huetal. | Tie
4 2 0 6 5 0 3
5 3 1 4 3 0 5
6 3 0 5 3 0 5

Number of improvements compared to Hu et al.




Performance

o Higher training accuracies

o Shorter runtimes

° Improvements seen in both numerical
and binary datasets

Training Accuracy Runtime / Timeout

Splits | Ours | Huetal. | Tie | Ours | Huetal. | Tie
4 2 0 6 5 0 3
5 3 1 4 3 0 5
6 3 0 5 3 0 5

Number of improvements compared to Hu et al.

Accuracy (%)

Time (s)

Dataset Splits . .
urs  Huet al. [16]  Ours  Hu et al. [16]
lonosphere 4 94.9 90.6 TO O
x| |# K| 5 @ 952 85.8 TO TO
a1 RE| 2 b a96.6 a0.6 TO TO
Monk2 4 T4.6 T4.6 85.49 473.43
1X| | |K]| 5 846 84.6 185.3 A16.37
169 b 2 b 1000 100 (.35 1.09




Size Optimization

o Use 5-fold cross validation and study testing accuracy, training accuracy, and size

o Parameter f3: the weight of accuracy against size in objective
° B € R: Accuracy weighted (1-stage)
o B = ool: Accuracy prioritized (1-stage)

o B = oo?: 2-stage approach
o B = def: No size optimization




Size Optimization

o 1-stage and 2-stage approaches significantly improve compactness
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Size Optimization

o Compactness helps with testing accuracy and generalization
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Multi-dimensional BDD

o 5-fold cross validation

> Sequence of dimensions as parameter

o Utilize 2-stage size optimization




Multi-dimensional BDD

o Testing accuracy is close to upper bound of expressiveness
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Multi-dimensional BDD

> Solutions are more compact than upper bound of expressiveness
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Multi-dimensional BDD

o Clauses are significantly shorter
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Multi-dimensional BDD

o Performance on Adult dataset
o 32K points and 105 features
° 60m timeout

> Number and length of clauses scale significantly better
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Multi-dimensional BDD

o Performance on Adult dataset

o 32K points and 105 features
° 60m timeout

o Solutions are produced for higher number of total dimensions

90% | |m1-DM2-DE3-DMA4D

| | L 1 1 |
I I

456 7 8 910111213141516

Sum of Dimensions




Summary

(o]

SAT-based encoding for learning BDD classifiers

° Numerical feature encoding
o Multi-label

o

BDD size optimization
o 1-stage (as a secondary objective)
o 2-stage (as a post-processing step)

(@)

Multi-dimensional BDDs
> Directional inner BDDs and multi-dimensional splits
o Expressiveness bounds

[¢)

Experiments:

o Better performance than the state of the art

o Significant compactness with little cost to accuracy

o Better generalization through size reduction

o Multi-dimensional BDDs to enable high number of total splits




Future Work

o Allow more control to 2-stage size optimization

o> Encode nested directional BDDs

° Investigate strategies to balance the two objectives

o Analyze the effects of the dimension sequence parameter
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