Pouya Shati

D.L. Pratt Building, 6 King's College Road, Toronto, ON M5S 3H5 pouya@cs.toronto.edu • +1 (647) 574-5876 • website

EDUCATION	 University of Toronto, Toronto, Canada 2019 Ph.D. in Computer Science Supervisors: Prof. Sheila McIlraith, Prof. Eldan Cohen Thesis: Interpretable and Constrained Machine Learning via Combinatorial Optimization 	- 2024
	 Affiliated with Vector Institute for Artificial Intelligence Sharif University of Technology, Tehran, Iran B.Sc. in Software Engineering Minor in Mathematics GPA: 18.52 / 20 Major GPA: 19.34 / 20 	- 2019
RESEARCH INTERESTS	 Interpretable and Constrained ML • Deep Learning and Generative AI • Operations Researce Combinatorial Optimization • Boolean Satisfiability • Formal Methods 	h
HONORS	 Accepted for the ISTernship program at IST Austria to work in Prof. Chatterjee group Ranked 270th nationwide and 15th regionwide in university entrance exam Awarded the School of Graduate Studies Conference Grant, University of Toronto Ranked 1st at Research Experience for Undergraduates program, Computer Engin Department, Sharif University of Technology 	2018 2014 2024 neering 2016
CONFERENCE PAPERS	 Neural Sequence Generation with Constraints via Beam Search with Cuts: A Case St VRP Pouya Shati, Eldan Cohen, Sheila McIlraith. SoCS 2024. Bi-Criteria Diverse Plan Selection via Beam Search Approximation Shanhe Zhong, Pouya Shati, Eldan Cohen. SoCS 2024. SAT-Based Learning of Compact Binary Decision Diagrams for Classification Pouya Shati, Eldan Cohen, Sheila McIlraith. CP 2023. Optimal Decision Trees For Interpretable Clustering with Constraints Pouya Shati, Eldan Cohen, Sheila McIlraith. IJCAI 2023. SAT-Based Approach for Learning Optimal Decision Trees with Non-Binary Features Pouya Shati, Eldan Cohen, Sheila McIlraith. CP 2021. 	udy on
JOURNAL PAPERS	 SAT-based Optimal Classification Trees for Non-Binary Data Pouya Shati, Eldan Cohen, Sheila McIlraith. Constraints, 28(2): 166-202. The Evolution of Indirect Reciprocity Under Action and Assessment Generosity Laura Schmid, Pouya Shati, Christian Hilbe, Krishnendu Chatterjee. Scientific reports, 11(1) 	: 1-14.
PROFESSIONAL ATTENDANCES	 The 17th International Symposium on Combinatorial Search + Doctoral Consortium The 34th International Conference on Automated Planning and Scheduling (ICAPS) Optimization Days 2024 The 29th International Conference on Principles and Practice of Constraint Program Doctoral Consortium Verification of Concurrent Systems Summer School The Second IPM Advanced School on Computing: Theory and Practice of Program Languages 	2024 2024 ming + 2023 2017 mming 2017
WORK EXPERIENCES	 Research-oriented internship at Fujitsu Laboratories of America, Inc. Capacitated Vehicle Routing Problems with Pickup and Deliveries Supervisor: Dr. Hayato Ushijima-Mwesigwa 	2021

RESEARCH PROJECTS	 Decoding Large Language Models using Beam Search with Cuts Supervisors: Prof. Sheila McIlraith and Prof. Eldan Cohen. Improving Reward Machine Expressiveness for Formal Goal Specification in RL Supervisors: Prof. Sheila McIlraith and Prof. Eldan Cohen. An Improved Coding for Straggler Mitigation in Distributed Matrix Multiplication Bachelor thesis. Supervisor: Prof. Hamid Zarrabi-Zadeh An Investigation of Direct and Indirect Reciprocity in the Contexts of Quantitative 		
	Information, Incomplete Information, and Communication Supervisor: Prof. Krishnendu Chatterjee		
	Supervisor: Prof. Elias Khalil		
	 Exploitation of Dependencies via Recourse Decomposition for Two-stage Stochastic Problems Supervisor: Prof. Merve Bodur 		
	 Unsupervised Learning of 3D Objects Using Synthetic 2D Images of Faces Drobabilistic Varification of Drogram Fairmase 		
	 Probabilistic Verification of Program Fairness Using Multidimensional Chromosomes for Genetic Evolution of Cellular Automata 		
	• Emergence of Cooperative Behavior by Using Genetic Algorithms for Playing Prisoner's Dilemma with Finite-Automata Strategies		
	 Extended Büchi Automaton of Records, a Formal Language 	Semantic for the Reo Coordination	
SELECTED COURSES	 Machine Learning for Mathematical Optimization, A+ Stochastic Programming and Robust Optimization, A+ Neural Networks and Deep Learning , A+ Topics in Knowledge Representation and Reasoning, A Advanced Propositional Reasoning, A+ Topics in Verification Program Synthesis, A+ Topics in Machine Learning, AI and Ethics, A+ Computability and Logic, A+ Algorithmic Game Theory, 20/20 Theory of Computation and Computational Complexit Approximation Algorithms, 20/20 Economical and Social Networks, 20/20 Graph Theory and its Applications, 20/20 Algebra 1, 19.6/20 Computer Architecture, 19.9/20 	ty, 20/20	
TEACHING ASSISTANTSHIP	 Theory of Languages and Automata (Head TA) Design of Algorithms (Head TA) Discrete Structures (Head TA) Knowledge Representation and Reasoning Introduction to the Theory of Computation Algorithm Design, Analysis and Complexity Computational Complexity and Computability Enriched Introduction to the Theory of Computation Software Verification and Testing Programming Languages Algorithmic Game Theory Artificial Intelligence Compiler Design Discrete Structures 	Fall 2017, Winter 2017 Fall 2017 Fall 2016 Fall 2024 Fall 2020, Fall 2023 S'20, S'21, F'22, W'23, W'24 Winter 2020, Winter 2021, Winter 2022 Winter 2020, Winter 2022 Fall 2019 Fall 2018 Fall 2018 Winter 2017 Winter 2017, Winter 2016	
	 Advanced Programming in Java 	Winter 2016	
PROJECTS	 SATree, Python Library for learning decision trees using SAT Sharif AI Challenge 2016-2018, Lead game design, graphics programming, and committee member Rasan game, developed for the visually impaired in Khwarizmi Student Competition 		
LANGUAGES	 Persian: Native, English: Fluent 		
TOOLS	• PyTorch, Java, Various SAT and MaxSAT solvers, Gurobi, MiniZinc, Google OR-Tools, Unity, LATFX		