
Feasible interpolation for lifted sequents

Phuong Nguyen ∗

McGill University

May 13, 2011

Abstract

The idea of feasible interpolation for propositional proof systems is to
derive lower bounds for propositional proofs using circuit lower bounds
for Craig’s interpolant. However, as far as we know, proof systems such
as constant-depth Frege do not admit feasible interpolation. We extend
the notion of feasible interpolation so that it is admitted by a number of
treelike propositional proof systems. This allows us to derive new lower
bounds for treelike Frege proof systems and new conditional lower bounds
for treelike Frege proof systems with modular counting connectives (all of
constant depth). We obtain our results by augmenting Kraj́ıček’s argu-
ment from [Kra97] with the idea from Maciel and Pitassi [MP06].

1 Introduction

Craig interpolation theorem for propositional logic states that if A(~p, ~q) ⊃
B(~p, ~r) is valid, where A(~p, ~q) and B(~p, ~r) are propositional formulas with all
free variables displayed, then there is a formula I(~p), i.e., an interpolant, such
that both A(~p, ~q) ⊃ I(~p) and I(~p) ⊃ B(~p, ~r) are valid. The problem of deter-
mining the complexity of the interpolant is interesting because of the following
observation, due to Mundici, that if we can always find an interpolant I of size
polynomial in the size of A and B, then NP ∩ co-NP ⊆ NC1/poly . So far
superpolynomial lower bounds on the size of I are known only under the re-
striction that it is a monotone formula (or more generally a monotone circuit)
[AB87].

Kraj́ıček’s notion of feasible interpolation for a propositional proof sys-
tem P stems from a related problem, where now a P-proof of the implication
A(~p, ~q) ⊃ B(~p, ~r) is also given [Kra94, Kra97]. A propositional proof system P
is said to admit feasible interpolation if given any P-proof π of an implication
A(~p, ~q) ⊃ B(~p, ~r), an interpolant I(~p) can be computed by a boolean circuit
of size polynomial in the size of π. If P has feasible interpolation, then the
task of proving super polynomial lower bounds for P can be reduced to proving

∗Supported by an NSERC Postdoctoral Fellowship. Email: pnguyen@cs.toronto.edu



super polynomial lower bound for circuits that compute the interpolants. (The
idea of such a reduction is also used in [BPR97].) As a result, the exponential
lower bound for monotone circuits [Raz85, AB87, Pud97] gives exponential lower
bounds for several propositional proof systems, including Resolution [Kra97] and
Cutting Plane [BPR97, Pud97]. See also [Raz95, Kra98, IPU94, Pud99, PS98].

On the other hand, under some plausible complexity assumption the propo-
sitional proof systems for which we are currently not able to prove super poly-
nomial lower bounds do not admit feasible interpolation. For example, it is
shown in [KP98] that unless the RSA cryptographic scheme is not secure, ex-
tended Frege systems do not have feasible interpolation. By a similar approach,
it is shown in [BPR00] that unless the Diffie–Hellman secret key exchange can
be broken by polynomial size circuits, TC0-Frege systems do not have feasible
interpolation. Recently, it is shown that a certain depth-3 Frege system does
not have feasible interpolation unless there are polytime algorithm solving the
so-called mean-payoff game problem [AM11]. Note, however, that these results
are proved by showing that the existence of polynomial size interpolants for
some particular tautologies would violate some complexity hypothesis (i.e., the
security of RSA or Diffie–Hellman protocols, or intractability of the mean-payoff
games). It is still plausible that the above systems have feasible interpolation
for other tautologies.

A recent paper reviving interest in feasible interpolation is [Kra10]. In this
paper Kraj́ıček introduces a notion called chain feasible interpolation. The intu-
ition behind this is as follows. Suppose that there are constant-size Frege proofs
of a tautology of the form

¬
(

C1 ⊢ Φ ∧ (

m−1
∧

i=1

Ci
∼= Ci+1) ∧ Cm ⊢ Ψ

)

where Ci are first-order L-structures (for some signature L) and Φ,Ψ are two
Σ1

1 sentences that cannot be satisfied simultaneously in an L-structure. Then
there ought to be a first-order L-sentence γ that separates Φ and Ψ, i.e., such
that for all structures A:

(A ⊢ Φ ⇒ A ⊢ γ) ∧ (A ⊢ Ψ ⇒ A ⊢ ¬γ)

Now if we can show that no such γ exists for some signature L and sentences
Φ,Ψ, then the above tautology does not admit short constant-size Frege proofs.

Here we will consider another approach by using the idea of [MP06]; see
also [Ngu07, MNP11]. The intuition behind these papers is as follows. Suppose
that some sequent S requires cut-free Frege proofs of size at least s. Then a
“lifted” version of S, i.e., the sequent that is obtained from S by substituting
formulas that express the Parity function for all variables appearing in S, should
require constant-depth Frege proofs of size at least s as well. So far this is still
an open problem, although under some special settings lower bounds for the
proofs of the lifted sequents can be proved, see [MNP11]. This kind of “lifting”
has already be considered in [Kra94], although there the lifting functions are
Sipser’s functions.

2



The problem can be stated more generally for other propositional proof sys-
tems, such as constant-depth Frege augmented with modulo counting connec-
tives (the so-called ACC-Frege systems) or threshold connectives (TC0-Frege).
The Parity function must be replaced by other functions that satisfy certain
hardness conditions against the class of cut formulas under consideration (i.e.,
ACC circuits or TC0 circuits). We call these functions the lifting functions.

The kind of interpolation property we consider in this paper is as follows.
A propositional proof system P is said to have lifted feasible interpolation, or
just lifted interpolation, provided that given a proof π of a lifted version of the
implication A(~p, ~q) ⊃ B(~p, ~r), there is an interpolant C(~p) that can be computed
by a circuit of size polynomial in the size of A(~p, ~q) ⊃ B(~p, ~r) and the length of
π (i.e., the number of sequents in π).

Our proof is an adaptation of Kraj́ıček’s proof of the feasible interpolation
property for Resolution and cut-free LK [Kra97, Theorem 3.1]. The idea is to
show that the proof of the implication can be used to construct a protocol for
the associated KW game. In order to make this construction possible in the
presence of the cut rule, we need to use the fact that the lifting function is hard
to compute by the cut formulas. In essence, the two players in the KW game
can always make progress just as in the case of cut-free proofs, because there
are always enough truth assignments for the variables in the lifted sequents that
satisfy the players’ choice as well as the cut formulas. Our argument, however,
only works for treelike proofs, because it seems indispensable that the players
be able to figure our their past moves.

Our result is presented and proven in Section 2. First, we give some basic
definitions.

1.1 Proof systems

We use sequent calculi. PK is Gentzen’s propositional calculus over the set of
connectives {∧,∨,¬}; see for example [CN10, Chapter II]. The axioms of PK

consist of
p −→ p, ⊥ −→ , −→ ⊤

In Figure 1 we list only the logical rules of PK. Apart from these it has also
the usual structural rules: exchange, weakening, and contraction.

We will also discuss extensions of PK using connectives ⊕b
r. The meaning of

⊕b
r(A1, A2, . . . , Am) is that, modulo r, exactly b formulas among A1, A2, . . . , Am

are true. For r ≥ 2, PK[r] denotes the extension of PK by having the connec-
tives ⊕b

r for 0 ≤ b < r. The axioms of PK[r] consist of those of PK, together
with

A −→ ⊕1
r(A), ⊕1

r(A) −→ A

The rules for these connectives are given in Figure 2. Here F stands for a list
of formulas.

The depth of a literal is 0. The depth of other formulas is defined inductively
as usual. For a system P among PK and PK[r], depth-d P (or just d-P) is
the subsystem where all cut formulas have depth at most d; note that we can

3



Γ −→ ∆, A
¬-left

¬A,Γ −→ ∆

A,Γ −→ ∆
¬-right

Γ −→ ∆,¬A
A,B,Γ −→ ∆

∧-left
(A ∧B),Γ −→ ∆

Γ −→ ∆, A Γ −→ ∆, B
∧-right

Γ −→ ∆, (A ∧B)

A,Γ −→ ∆ B,Γ −→ ∆
∨-left

(A ∨B),Γ −→ ∆

Γ −→ ∆, A,B
∨-right

Γ −→ ∆, (A ∨B)

Γ −→ ∆, A A,Γ −→ ∆
cut

Γ −→ ∆

Figure 1: Logical rules of PK

A,⊕b−1
r (F ),Γ −→ ∆ ⊕b

r (F ),Γ −→ A,∆
MOD-left

⊕b
r(A,F ),Γ −→ ∆

A,Γ −→ ⊕b−1
r (F ),∆ Γ −→ A,⊕b

r(F ),∆
MOD-right

Γ −→ ⊕b
r(A,F ),∆

Γ −→ ⊕a
r(F ),∆ Γ −→ ⊕b

r(G),∆
MOD-add

Γ −→ ⊕a+b
r (F,G),∆

Γ −→ ⊕a
r(F,G),∆ Γ −→ ⊕b

r(G),∆
MOD-substract

Γ −→ ⊕a−b
r (F ),∆

Figure 2: Rules for modular connectives

still prove sequent of arbitrary depth in this system. The size of a formula A,
size(A), is the total number of symbols in it; the size of a sequent S (or a proof
π), denoted by size(S) (resp. size(π)), is the sum of the size of all formulas in
S (or π). Also, the number of sequents in π, i.e. the length of π, is denoted by
st(π). For a proof system P, P⋆ denotes its subsystem where we require that
the proofs are treelike.

Definition 1.1. Suppose that S(~p, ~q, ~r) is a valid sequent, with all free variables
shown, of the form

Γ(~p, ~q) −→ ∆(~p, ~r)

Then an interpolant for S is a formula I(~p) such that both

Γ(~p, ~q) −→ I(~p), and I(~p) −→ ∆(~p, ~r)

are valid.

We will view I as a boolean function, and will be interested in its circuit
complexity.

4



1.2 Protocol for Karchmer–Wigderson game

Given two disjoint sets U, V ⊂ {0, 1}n, the Karchmer–Wigderson (KW) game
[KW88] is played by two players, called Alice and Bob, as follows. Alice gets
an element ~u ∈ U and Bob gets an element ~v ∈ V . They exchange bits of
information in order to agree on an index i where ui and vi differ, and we are
interested in the minimal number of bits that they need to communicate.

The notion of a protocol from [Kra97] is very well suited for proving feasible
interpolation theorem for propositional proof systems. A protocol for the KW
game consists of:

• a directed acyclic graph G,

• a strategy function, Next , that takes inputs of the form (~u,~v, x) where
~u ∈ U,~v ∈ V and x is a vertex of G, and outputs a node y such that (x, y)
is an edge of G,

• a collection {F (~u,~v) : ~u ∈ U,~v ∈ V } where each F (~u,~v) is a subset of
vertices of G and is called the consistency condition for (~u,~v).

These must satisfy the following conditions:

1. G has a single vertex of in-degree 0 which we call root. The vertices of G
of out-degree 0 are called leaves and are labelled by a formula of the form
ui = 0 ∧ vi = 1 or ui = 1 ∧ vi = 0.

2. For every pair ~u ∈ U,~v ∈ V the consistency condition F (~u,~v) has the
property that it contains root, the labels at the leaves in F (~u,~v) are valid
for (~u,~v), and that for each x ∈ F (~u,~v) the path P x

~u,~v in G, which starts
at x and is determined by the strategy function Next with inputs (~u,~v),
is contained in F (~u,~v).

A protocol is monotone if the labels of the leaves are of the form ui = 1∧vi =
0 only.

The communication complexity of the protocol is defined to be the minimum
number of communication bits that is required for the two players, one knowing
u and the other knowing v, to (i) determine whether an arbitrary node x belongs
to F (~u,~v), and (ii) to computes the next node Next(~u,~v, x). We will also call a
vertex of G a vertex of the protocol. (Because of (i), the consistency condition
F (~u,~v) above cannot be taken to be simply the path P root

~u,~v .)
The following theorem relates the complexity of a protocol to the size of a

circuit that separates U and V :

Theorem 1.2 ([Raz95, Kra97]). Let U, V be two disjoint subsets of {0, 1}n.
Suppose that there is a protocol (resp. a monotone protocol) for the KW game
on (U, V ) with k vertices and communication complexity t. Then there is a
circuit (resp. a monotone circuit) of size k2O(t) that separates U and V .

Conversely, suppose that there is a circuit (resp. monotone circuit) of size s
that separates U and V . Then there is a protocol (resp. monotone protocol) for
the KW game on (U, V ) that has s vertices and communication complexity 2.

5



This theorem can be used to prove the feasible interpolation theorem for
resolution and some other proof systems [Kra97, Theorem 3.1]. The important
property of these systems that is needed is that the sequents in a proof can
be evaluated using only a small amount of communication by the two players
who are given appropriate truth assignments to the variables. This property no
longer holds for proof systems where there are cuts, even when the cut formulas
are of depth one.

Here we observe that if the proof that we have is a treelike proof of the lifted
version of a tautology Γ(~p, ~q) −→ ∆(~p, ~r) (see Definition 2.1 below), then the
two players can play in much the same way as before by virtually ignoring the
cut formulas. This is because they can always find truth assignments to the
variables that make their move consistent. The treelikeness is crucial for our
argument. Essentially, it allows the two players, who are given a sequent in
the proof, to completely determine the unique path from the endsequent to the
given sequent. This means, in particular, that the players know earlier moves in
the protocol, so that they can determine (without communication) any future
moves that are on a sequent which is derived by the same inference as in a past
move.

Once feasible interpolation property is established, the following corollary of
[AB87] suffices to gives concrete lower bound:

Theorem 1.3. For n sufficient large, any monotone circuit that decides whether

a graph on n vertex contains a clique of size
√
n has size at least 2n

1/4

.

Feasible interpolation and the above circuit lower bound are combined to
give lower bounds for proofs of the following sequent:

Cliquen,
√
n −→ ¬Colorn,√n−1 (1)

where Cliquen,k and Colorn,ℓ are defined for n, k, ℓ ≥ 1 as follows.
First, Cliquen,k denotes the set of the following formulas, which together

express that the graph on {1, 2, . . . , n} that is encoded by ~p has a clique of size
at least k (there is an edge between two vertices j1, j2 iff pj1,j2 is true):

1.
∨n

j=1 qi,j for 1 ≤ i ≤ k (qi,j says that the i-th vertex in the clique is vertex
j),

2. ¬qi1,j ∨ ¬qi2,j for 1 ≤ j ≤ n, 1 ≤ i1 < i2 ≤ k (no vertex is listed twice in
the clique),

3. ¬qi1,j1 ∨ ¬qi2,j2 ∨ pj1,j2 for 1 ≤ i1 < i2 ≤ k and 1 ≤ j1 6= j2 ≤ n (there is
an edge between any two vertices in the clique).

Next, Colorn,ℓ denotes the set of the following formulas, which together
express that the graph encoded by ~p as above can be colored properly with ℓ
colors:

1.
∨ℓ

i=1 ri,j for 1 ≤ j ≤ n (each vertex j is colored by some color),

6



2. ¬ri1,j ∨ ¬ri2,j for 1 ≤ i1 < i2 ≤ ℓ, 1 ≤ j ≤ n (each vertex is colored by
only one color),

3. ¬ri,j1 ∨ ¬ri,j2 ∨ ¬pj1,j2 for 1 ≤ i ≤ ℓ, 1 ≤ j1 < j2 ≤ n (no edge has two
endpoints of the same color).

Also, let ¬Colorn,ℓ denote the set of the negation of the formulas in Colorn,ℓ,
written in negation normal form.

2 Interpolation theorem for lifted sequents

Definition 2.1. Let S be a sequent with variables ~p = p1, p2, . . . , pn and f a
formula on m variables. Then S(f) denotes the sequent obtained from S by
replacing each variable pi by f(xi), where xi = xi,1, xi,2, . . . , xi,m is a new set
of distinct variables.

Below we will denote the new set of variables for pi, qi, ri by xi,yi, zi, re-
spectively.

The sequent S(f) is called a lifted sequent of S. We will use Paritym (or just
Parity) for f , where Paritym(x1, x2, . . . , xm), is the parity of the number of 1
among x1, x2, . . . , xm. We need the following crucial property of this function:

Theorem 2.2 (H̊astad [H̊as86]). If C is a depth-d AC0 circuit of size 2n
1/(d+1)

,
then, for sufficiently large n, C cannot compute Parity correctly on more than

a 1/2 + 1/2n
1/(d+1)

fraction of the inputs.

Using this we can prove the following lemma; for a proof see [Ngu07, Cor.
4.8], [MNP11, Lemma 5.4].

Lemma 2.3. Fix a d ≥ 1. Let m be sufficiently large, and x1,x2, . . . ,xk be
disjoint sets of variables, where each xi has m variables xi,1, xi,2, . . . , xi,m. Let C

be any formula of depth d+1 and size at most 2m
1/(d+2)

(C may contain variables

other than the x). Suppose that there are at least a fraction of 4k/2m
1/(d+2)

truth assignments to the variables in C that satisfy C. Then, given any values
u1, u2, . . . , uk ∈ {0, 1}k, there exists a truth assignment that satisfies C and that
gives Parity(xi) the value ui, for 1 ≤ i ≤ k.

This lemma is used for showing that, under proper setting of the parameters,
the function Next is well defined for an internal node of the protocol.

Now we state our main theorem. Recall that st(π) denotes the number of
sequents in a proof π.

Theorem 2.4. Let S0 = Γ0(~p, ~q) −→ ∆0(~p, ~r) be a valid sequent, and π a
d-PK⋆ proof of the lifted sequent S0(Paritym), for some constant d ≥ 1. Suppose

that the number of steps in π, st(π), satisfies 4st(π) ≤ 2m
1/(d+2)/size(S0), and

that no sequent in π has size greater than 2m
1/(d+2)

. Then there is a circuit I(~p)
of size at most O(st(π)) that computes an interpolant for S0. Furthermore, if ~p
only occur positively (or negatively) in Γ0 or ∆0, then the circuit is monotone.

7



Note that the theorem can be stated using fst(π) instead of st(π), where
fst(π) is the number of fresh inferences in π, see Definition 2.12 below. This is
always at most the total number of logical inferences in π (i.e., excluding the
structural inferences).

Before proving the theorem, let us mention a standard application for a lifted
version of the sequent (1).

Corollary 2.5. Fix a constant 1 ≤ d ∈ N. Let n be sufficiently large, and
m ≥ n4(d+2). Then any d-PK⋆ proof of the sequent

Cliquen,
√
n(Paritym) −→ ¬Colorn,√n−1(Paritym) (2)

has at least Ω
(

2n
1/4)

many sequents.

Proof. Apply Theorem 2.4. Here let S0 be the sequent (1) which has size at

most 3n3. Thus if 4st(π) ≥ 2m
1/(d+2)/size(S0), then st(π) > 2n/3/4 and we are

done. Also, if any sequent in π has size greater than 2m
1/(d+2)

then we are

also done. So suppose that st(π) < 2m
1/(d+2)/size(S0), and that no sequent in π

has size greater than 2m
1/(d+2)

. The theorem gives an upper bound of O(st(π))
for the size of a monotone circuit that computes the clique problem. So the
conclusion follows from Theorem 1.3.

The next theorem is proved in the same way as Theorem 2.4 and Corollary
2.5. Here we want to get a conditional lower bound for d-PK⋆[r], and we need
a hypothetical hard function for AC0[r] in the same way that Parity is hard for
depth-d ACC circuits.

Conjecture 2.6. Let r ≥ 2 and d ≥ 1. Suppose that there is a balanced function
f that satisfies the following condition: if C is any depth-(d+1) AC0[r] circuit

of size less than 2n
1/(d+2)

, then for sufficiently large n, C does not compute f

correctly for more than a fraction of 1/2 + 1/2n
1/(d+2)

inputs.

For a function f we let fm denote f when it takes exactly m inputs.

Theorem 2.7. Suppose that Conjecture 2.6 is true, and let f be a function that
satisfies the conjecture. Let S0 = Γ0(~p, ~q) −→ ∆0(~p, ~r) be a valid sequent, and π
a d-PK⋆[r] proof of the lifted sequent S0(fm). Suppose that the number of steps

in π, st(π), satisfies 4st(π) ≤ 2m
1/(d+2)/size(S0), and that no sequent in π has

size greater than 2m
1/(d+2)

. Then there is a circuit I(~p) of size at most st(π)c,
for some constant c > 0, that computes an interpolant for S0. Furthermore, if ~p
only occur positively (or negatively) in Γ0 or ∆0, then the circuit is monotone.

The proof of this theorem is almost identical to the proof of Theorem 2.4
given below. Note that although the new connectives have unbounded fanin,
they have binary introduction rules.

The next corollary is derived in the same way as the previous corollary:

8



Corollary 2.8. Suppose that Conjecture 2.6 is true, and let f be a function
that exists by the conjecture. Then any d-PK⋆[r] proof of

Cliquen,
√
n(fm) −→ ¬Colorn,√n−1(fm)

has size at least 2cn
1/4

for some constant c > 0.

Note that in order to get super-polynomial lower bounds, it suffices to con-
sider such an f that can be computed by sub-exponential size circuits (e.g.,
circuits of size 2o(n)).

2.1 Proof of Theorem 2.4

Let n, s, t denote respectively the length of ~p, ~q, ~r. Let

U = {~u ∈ {0, 1}n : ∃~q ∈ {0, 1}s
∧

A∈Γ0

A(~u, ~q)}

V = {~v ∈ {0, 1}n : ∃~r ∈ {0, 1}t
∧

B∈∆0

¬B(~v, ~r)}

Because S0 is a valid sequent, U ∩ V = ∅. By Theorem 1.2 it suffices to define
a protocol for the game on (U, V ) with at most st(π) many nodes and constant
communication complexity.

The nodes of the protocol are sequents of π. To describe the consistency
condition F (~u,~v) we need a few notations. First, given ~u, Alice fixes ~q that
satisfy

∧

A∈Γ0

A(~u, ~q)

Similarly, given ~v, Bob picks ~r that satisfy

∧

B∈∆0

¬B(~v, ~r)

Because the proof is treelike, each formula in any sequent of π has at most
one descendant in the endsequent S0(Parity). We say that a formula is owned
by Alice if it has a descendant in the antecedent of S0(Parity). Any other
formula is owned by Bob. For convenience, we will write xA (resp. xB) for the
variables x that appear in a formula owned by Alice (resp. Bob). A pseudo
truth assignment for a sequent S in π assigns a single value for each variable in
y and z, but for each variable xi,j in x it may give two different values, one for
xA
i,j and one for xB

i,j .
The reason why our result apply for proofs with cut (instead of cut-free

proofs) is essentially because we can ignore small depth formulas by looking
only at the set of pseudo (partial) truth assignments that satisfy all depth-d
formulas in the antecedents and falsify all depth-d formulas in the succedents.
We call these critical pseudo (partial) truth assignments.

9



Definition 2.9. A pseudo (partial) truth assignment for a sequent S = Γ −→ ∆
is said to be critical if it satisfies

∧

A∈Γ, depth(A)≤d

A ∧
∧

B∈∆, depth(B)≤d

¬B (3)

Note that if there is no depth-d formula in S, then all pseudo truth assign-
ments are critical.

Ideally we want to focus only on “big” formulas in S, i.e., formulas of the
form A(Parity) which are obtained from substituting Parity formulas for the
variables of a formula A. By restricting to critical pseudo truth assignments of S
we almost achieve this; however, S may contain subformulas of Parity that have
depth greater than d, and thus a critical pseudo truth assignment may become
useless because, for example, it falsifies some such a formula in the antecedent
of S. To handle these formulas we make use of the treelike structure of the
proof. The idea is that these formulas must come from some Parity formula
that at some point on the path from the root of the proof stands by itself in
the sequent (as opposed to being part of another formula). This means that the
value of such a Parity formula must be known to both players. For example,
if Parity(xA

1 ) is a formula in the antecedent, then both players know that it is
true. Consequently, the players can agree on a common truth assignment to the
variables xA

1 without any communication.

Definition 2.10. We say that a set of variables xA
j (or xB

j , yj, zj) is deter-

mined for a sequent S if some occurrence of Parity(xA
j ) appears as a formula

(as opposed to a proper subformula) in some sequent on the path from the end-
sequent S0(Parity) to S.

For each sequent S in π, the two players fix a common partial pseudo truth
assignment to its determined variables without communication as follows. Sup-
pose without loss of generality that xA

1 ,y2,x
B
3 , z4, . . . are determined variables

for S and that they become determined in that order as we follow the path
starting from the endsequent to S. The partial pseudo truth assignment is de-
fined inductively. For example, suppose that some truth values for xA

1 have
been agreed upon between the two players. Then at the moment when y2 be-
come determined, the two players choose a truth assignment to y2 so that it
makes Parity(y2) true or false depending on whether the formula appears in
the antecedent or succedent, and such that the fraction of critical pseudo truth
assignments to the remaining variables is as large as possible. If there are more
than one such partial truth assignment, the players break tie by taking the first
in some lexicographical order. In the set F (~u,~v) for the protocol defined below,
the sequents are also chosen so that this fraction is large, i.e., at least 1

st(π)σ(S)

for a function σ(S) that we will now define.
The two players can be viewed as constructing a path in the tree π that

starts from its root S0(Parity) and goes toward some leaf. Every time they
meet a binary inference they have to choose between the two top sequents. In
general the total fraction of critical pseudo truth assignments may decrease, but

10



the players will always try to construct paths with a heuristic to maximize this
fraction. We use the following notion.

We say that an inference in π is tall if its principal formula contains an
instance of Parity . Note that these formulas cannot be cut, so they must remain
in the final sequent S0(Parity) (though some identical copies can be eliminated
using contraction). The players will make consistent choice when they meet a
binary tall inference, in the sense that the paths that they construct satisfy the
following condition. Suppose that a binary tall inference with the same principal
formula appears twice, then the path follows the same auxiliary formula in both
case. For example, suppose that the path contains both S3 and S6 which are
derived using the following binary tall inferences:

S1 S2

S3

=
Γ1 −→ ∆1, A(Parity) Γ1 −→ ∆1, B(Parity)

Γ1 −→ ∆1, A(Parity) ∧B(Parity)

S4 S5

S6

=
Γ2 −→ ∆2, A(Parity) Γ2 −→ ∆2, B(Parity)

Γ2 −→ ∆2, A(Parity) ∧B(Parity)

Then either both S1 and S4 are on the path, or both S2 and S5 are on the path.

Definition 2.11. An S0(Parity)–S path in π is said to be consistent if it sat-
isfies the above condition.

In other words, using the notion of a fresh inference defined below, the
choices made at tall binary inferences on a consistent path can be completely
determined by the choices made at these inferences.

Definition 2.12. A tall binary inference with bottom sequent S in π is called
fresh if the principal formula contains some undetermined variables and has not
appeared on the S0(Parity)–S path as the principal formula of the same rule.

Essentially, the fresh inferences are the only places where the players need
to communicate in order to compute the Next function.

Definition 2.13. Let S be a sequent in π such that the S0(Parity)–S path,
named P , is consistent. Then σ(S) is the total number of contiguous blocks of
sequents on P that are not the bottom sequent of a fresh inference.

Note that σ(S0(Parity)) = 0, and σ(S) increases as we go further from
S0(Parity), but that σ(S) is always at most the total number of distinct sub-
formulas of S0.

Now we define the consistency condition F (~u,~v). The leaves in F (~u,~v) are
those sequents S = Γ −→ ∆ such that for some determined variables xA

i and
xB
i we have

ui = Parity(xA
i ) 6= vi = Parity(xB

i )

To define the internal nodes of F (~u,~v) we use the following notation. For
each sequent S = Γ −→ ∆ we let S ′ = Γ′ −→ ∆′ be the sequent obtained from
S by simplifying it using the pseudo partial truth assignments to the determined
variables of S as specified above.

11



Now the internal nodes of F (~u,~v) are those sequents S = Γ −→ ∆ that are
not the leaves and that satisfy the following conditions:

(i) The S0(Parity)–S path in π is consistent.

(ii) S is involved (either as the bottom or as a top sequent) in a fresh (binary
tall) inference.

(iii) The fraction of critical pseudo truth assignments to the variables in S ′ is
at least 1

st(π)σ(S) .

(iv) Any critical pseudo truth assignment (to the variables in S ′) that gives
the Parity formulas owned by Alice the values from ~u, ~q and the Parity
formulas owned by Bob the values from ~v, ~r falsifies S ′. In other words,
the following are True:

∧

A(~P , ~Q)∈Γ′, owned by Alice

A(~u, ~q) ∧
∧

A(~P , ~Q)∈∆′, owned by Alice

¬A(~u, ~q) (4)

∧

B(~P ,~R)∈Γ′, owned by Bob

B(~v, ~r) ∧
∧

B(~P ,~R)∈∆′, owned by Bob

¬B(~v, ~r) (5)

Lemma 2.14. Any sequent S that satisfies (iii) and (iv) above must contain
both Parity(xA

i ) and Parity(xB
i ) for some i.

In particular, an internal node of F (~u,~v) is necessarily not an axiom. Later
we will actually show that the Next function is well defined for such a sequent.

Proof of Lemma 2.14. Let k denote the total number of occurrences of all ~p, ~q, ~r

variables in S0. Then k ≤ size(S0). Since 4st(π) ≤ 2m
1/(d+1)/size(S0) and σ(S) ≤

size(S0), it can be verified that 1/st(π)σ(S) ≥ 4k/2m
1/(d+1)

. Lemma 2.3 implies
that we can set the values of the Parity formulas to be ~u,~v, ~q, ~r appropriately.
Here C is the conjunction of all depth-d formulas in the antecedent, and the
negation of all depth-d formulas in the succedent of S. So if no pair Parity(xA

i )
and Parity(xB

i ) appear simultaneously, then (iv) implies that the sequent S is
not a tautology, contradicts the fact that it is in π.

Now it is easy to verify that the endsequent S0(Parity) is an internal node of
F (~u,~v). Also, deciding whether a sequent is a leaf of F (~u,~v) can be done by the
two players without communication, because they both agree on some common
values for the determined variables. In addition, conditions (i–iii) can be checked
by each player separately, while (4) and (5) can be evaluated separately by the
appropriate players, so to verify (iv) each player only needs one bit to transmit
their result. As a result, membership in F (~u,~v) can be computed using two bits
of communication.

Next, given an internal node S of F (~u,~v), we show how to compute the next
sequent Next(S), which must be a sequent in F (~u,~v). There are two cases.

12



Case I: S is the bottom sequent of a fresh inference.
Without loss of generality, suppose that the principal formula in S isA(Parity)∧

B(Parity), so S is derived by a ∧-right inference:

T1 T2
S

=
Γ −→ ∆, A(Parity) Γ −→ ∆, B(Parity)

Γ −→ ∆, A(Parity) ∧B(Parity)

Moreover, on the S0(Parity)–S path A(Parity) ∧ B(Parity) has not been used
as the principal formula in any ∧-right inference.

Note that the formula A(Parity)∧B(Parity) cannot be cut and will appear in
the final sequent. Therefore it is owned by either Alice or Bob. The player who
owns this formula knows the values of A(Parity) and B(Parity), and will choose
the one that has the same value as A(Parity) ∧ B(Parity) and communicates
one bit to indicate whether Next(S) is T1 or T2 accordingly.

Without loss of generality, suppose thatA(Parity)∧B(Parity) andA(Parity)
are both false, and hence Next(S) = T1. First consider the case where A is a
variable and the variables in A(Parity) are not determined in S. So the variables
in A(Parity) become determined in T1. If T1 is not a leaf of F (~u,~v), then the
choice of the players’ common truth assignment to these variables guarantees
that the fraction of critical pseudo truth assignments for T ′

1 is at least that of S ′.
In this case it is easy to verify that both (4) and (5) remain true for Next(S), so
(iv) holds for Next(S). In addition, conditions (i–iii) hold for Next(S) because
they hold for S, and because of the fact that S and Next(S) have the same set of
critical pseudo truth assignments and that σ(S) = σ(Next(S)). Thus Next(S)
is an internal node of F (~u,~v).

The case where A is not a variable, or if A is a variable but the variables in
A(Parity) are already determined, is straightforward, because there are no new
determined variables.

Case II: S is not the bottom sequent of any fresh inference.
In this case S must be the top sequent of a fresh inference. Basically we

want to start from S and follow a path in π until we reach (the bottom sequent
of) a fresh inference. So consider applying the following operations repeatedly
on the subtree of π rooted at S:

1. Prune all branches that are not consistent.

2. Prune all subtrees that are rooted at a leaf of F (~u,~v).

3. If a sequent T is obtained by a binary rule whose principal formula is a
subformula of a Parity formula and has depth greater than d, then keep
only the subtree rooted at the top sequent whose auxiliary formula has
the same value as the principal formula (if both of them have the same
value, then keep only the left one).

4. Prune the subtrees rooted at those sequents T that are derived by a fresh
(binary tall) inference (so that such a T becomes a leaf of T ).

13



The players can perform these operations individually without communication.
This is because, for example, for 3. the principal formula only involved deter-
mined variables, and the players agree on a common truth assignment to the
determined variables.

Let T denote the resulting tree. The sequent Next(S) is defined as follows.
If T contains a leaf of F (~u,~v), then let Next(S) be the lexicographically first
such a sequent. Otherwise, Next(S) is the leaf of T that has the most fraction of
critical pseudo truth assignments. Note that Next(S) can be computed by the
players without communication. We now argue that it also belongs to F (~u,~v).
We consider the case where T does not contain any leaf of F (~u,~v). We will
show that in this case Next(S) is an internal node of F (~u,~v).

Consider an internal node T of the tree T . Note that T has two parents
just in case it is derived by a binary inference whose principal formula has
depth at most d. In this case, it can be seen that the set of critical pseudo
truth assignments for T is the union of that of its parents. On the other hand,
in the case where T has a single parent, the fraction of critical pseudo truth
assignment of its parent is always the same as that of T . From this it follows
that the fraction of critical pseudo truth assignments for Next(S) is at least 1

st(π)

that of S, because the size of T is at most st(π). Observe that σ(T ) = σ(S)+1.
This shows that condition (iii) holds for Next(S). The fact that conditions (i),
(ii) and (iv) hold for Next(S) can be easily verified.

This completes the proof of the first part of the theorem. For the statement
about monotone circuit, suppose for example that ~p only positively in Γ0. Then,
whenever a set xA

i becomes determined, it must appear in the antecedent. This
means that the leaves of F (~u,~v) are always labelled with labels of the type
ui = 1 ∧ vi = 0. So the resulting circuit is monotone.

3 Conclusion

In using the hardness of Parity (against depth-d AC0 circuits), one issue is
the presence of formulas of depth greater than (the fixed constant) d. These
are large subformulas of Parity . In [MNP11] this is handled by requiring that
the family of sequents that we consider satisfy some special condition (call the
Statman property there). This condition guarantees that, as we travel the proof
from the root toward a leaf, any time a compound formula is broken down we
can set them to a constant; so, effectively, large subformulas of Parity disappear
as soon as they arise. In Section 2 we utilize the treelike structure of the proof
to resolve this issue, i.e., we make the two players agree on a common partial
truth assignment that kill all these formulas.

Another place in our argument in Section 2 where the treelikeness of the
proofs plays a crucial role is Case II. If the proof is daglike we have to make an
analysis similar to this case every time we encounter a binary inference intro-
ducing a formula of the form A(Parity) ∧B(Parity) or A(Parity) ∨B(Parity).
So we can only get an exponentially small (in the length of π) lower bound on
the fraction of critical pseudo truth assignments, and this is not sufficient for

14



applying Lemma 2.3.
Let us mention again the conjecture that underlies the project of [MP06].

The idea is that the minimum number of steps in a depth-d PK proof of a
lifted sequent S(Parity) ought to be the same as the minimum number of steps
in a cut-free proof of S (here we allow axioms of the form A −→ A for any
formula A.) The hope is to prove this for depth-d PK and extend it to proof
systems with modular counting gates; this would then provide superpolynomial
lower bounds for these systems, although the hard sequent for, say d-PK[2], is
of depth much greater than d. The conjecture is open even for treelike proofs.
Here, and in [MNP11], it is shown that S(Parity) requires same lower bound in
d-PK⋆ as that of S in cut-free PK⋆, for several sequents S. These results are not
obtained by proving the conjecture for these sequents, but instead by adapting
the known proofs of lower bounds for cut-free proofs to prove lower bounds for
depth-d proofs. Proving the conjecture directly even for these sequents would
be interesting.

Acknowledgements

I would like to thank Jan Kraj́ıček and an anonymous referee for comments,
and for pointing out a wrong claim in an earlier version of this paper.

References

[AB87] Noga Alon and Ravi Boppana. The monotone circuit complexity of
boolean functions. Combinatorica, 7(1):1–22, 1987.

[AM11] Albert Atserias and Elitza Maneva. Mean-payoff games and proposi-
tional proofs. accepted for publication in Information and Computa-
tion, 2011.

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower Bounds for
Cutting Planes Proofs with Small Coefficients. Journal of Symbolic
Logic, 62(3):708–728, 1997.

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On Interpolation
and Automatization for Frege Systems. SIAM Journal on Computing,
29(6):1939–1967, 2000.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof
Complexity. ASL Perspectives in Logic Series. Cambridge University
Press, 2010.

[H̊as86] Johan H̊astad. Computational limitations for small depth circuits.
PhD thesis, Massachusetts Institute of Technology, 1986.

15



[IPU94] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper
and lower bounds for tree-like cutting planes proofs. In In Proceedings
IEEE Symposium on Logic in Computer Science, pages 220–228, 1994.

[KP98] Jan Kraj́ıček and Pave Pudlák. Some consequences of cryptographical
conjectures for S1

2 and EF. Information and Computation, 140(1):82–
94, January 1998.

[Kra94] Jan Kraj́ıček. Lower bounds to the size of constant-depth proposi-
tional proofs. Journal of Symbolic Logic, 59:73–86, 1994.

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. Journal of Symbolic
Logic, 62(2):457–486, 1997.

[Kra98] Jan Kraj́ıček. Discretely ordered modules as a first-order exten-
sion of the cutting planes proof system. Journal of Symbolic Logic,
63(4):1582–1596, 1998.

[Kra10] Jan Kraj́ıček. A form of feasible interpolation for constant depth frege
systems. Journal of Symbolic Logic, 75(2):774–784, 2010.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for con-
nectivity require super-logarithmic depth. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pages 539–550,
1988.

[MNP11] Alexis Maciel, Phuong Nguyen, and Toniann Pitassi. Lifting lower
bounds for tree-like proofs. submitted, 2011.

[MP06] Alexis Maciel and Toniann Pitassi. A conditional lower bound for a
system of constant-depth proofs with modular connectives. In Proc.
21st IEEE Symposium on Logic in Computer Science, 2006.

[Ngu07] Phuong Nguyen. Separating DAG-Like and Tree-Like Proof Systems.
In Proc. 22nd IEEE Symposium on Logic in Computer Science, pages
235–244, 2007.

[PS98] Pavel Pudlák and Jiŕı Sgall. Algebraic models of computations and
interpolation for algebraic proof systems. In Paul Beame and Sam
Buss, editors, in Proof Complexity and Feasible Arithmetic, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
volume 39, pages 279–295. American Mathematical Society, 1998.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs
and monotone computations. Journal of Symbolic Logic, 62(3):981–
998, 1997.

[Pud99] Pavel Pudlák. On the complexity of propositional calculus. In in Sets
and Proofs, Invited papers from Logic Colloquium 97, pages 197–218.
Cambridge University Press, 1999.

16



[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity
of some Boolean functions. Mathematics of the USSR, 31:354–357,
1985.

[Raz95] Alexander A. Razborov. Unprovability of lower bounds on the circuit
size in certain fragments of bounded arithmetic. Izvestiya of the R.
A. N., 59(1):201–224, 1995.

17


