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Abstract

It is known that constant-depth Frege proofs of some tagtetorequire
exponential size. No such lower bound result is known forengeneral
proof systems. We consider tree-like Sequent Calculusfpioavhich for-
mulas can contain modular connectives and only the cut fasnare re-
stricted to be of constant depth. Under a plausible harcaessmption con-
cerning small-depth Boolean circuits, we prove exponélatieer bounds for
such proofs. We prove these lower bounds directly from thepgdational
hardness assumption. We start with a lower bound for cet{reofs and
“lift” it so it applies to proofs with constant-depth cutsyBising the same
approach, we obtain the following additional results. Wavjite a much sim-
pler proof of a known unconditional lower bound in the caserghmodular
connectives are not used. We establish a conditional expiahseparation
between the power of constant-depth proofs that use diffen@dular con-
nectives. We show that these tree-like proofs with conadapth cuts cannot
polynomially simulate similar dag-like proofs, even whha tag-like proofs
are cut-free. We present a new proof of the non-finite axi@ahility of the
theory of bounded arithmetifAq(R). Finally, under a plausible hardness
assumption concerning the polynomial-time hierarchy, h@asthat the hi-
erarchyG? of quantified propositional proof systems does not collapse
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1 Introduction

Restricted proof systems have attracted a lot of attention, in large part due to
their role in automated theorem provers. For example, Haken [10] shtva¢d

the Pigeonhole Principle, a simple, natural and ubiquitous tautology, require
exponential-size Resolution proofs. This means that any theorem phatevorks

by constructing a Resolution proof — and that is virtually all propositionabdthe
rem provers — will require exponential time to prove the Pigeonhole Prinaiple
matter how efficient it is at finding a proof.

Various extensions of Resolution have also been investigated and shiwen to
limited in a similar way. For example, constant-depth Frege proofs, which we
call AC-Frege proofs because of their relation to the circuit cla€%, are also
unable to prove the Pigeonhole Principle in subexponential size [1, 1.7 A4
Cutting Planes have no subexponential-size proof of a certain basiépbeicon-
cerning colorings of undirected graphs [12, 25].

To this day, however, no lower bound result is known for any prostem
more general thal. C°-Frege. For example, a natural extensiomA@®’-Frege is
to permit the use of module connectives in the proofs, for some constantWe
call this proof systemACC°[r]-Frege, once again because of its relation to the
circuit classACC[r]. No lower bound is known foA CC[r]-Frege.

The Pigeonhole Principle lower bound fArC°-Frege was obtained by an in-
genious new model theoretic technique, together with an adaptation of the com-
binatorial argument used to prove thaC® circuits require exponential size to
compute the parity function [9, 11, 30]. Itis also known that whemdgq are dis-
tinct primes,ACC"[¢] circuits require exponential size to compute the mogulo
function [27]. Therefore, it is natural to hope that the technique bethiaidcircuit
lower bound might be useful in proving a lower bound € C°[q]-Frege proofs.
Unfortunately, attempts to prove the corresponding proof complexity lomandb
have been unsuccessful, despite considerable effort.

On the other hand, the lower bounds for the Cutting Planes proof systeen we
obtained by using circuit lower bounds directly, not the underlying teclasig
This approach relies on the fact that the Cutting Planes proof systemehaxtdiz
polation property: small Cutting Planes proofs of tautologies of a certainyigfu
small circuits computing a function related to the tautology. A lower bound on the
size of these circuits then implies a lower bound on the size of the proofsrtunf
nately, AC°-Frege and all of its extensions, includidgCC"[¢]-Frege, probably
do not have the interpolation property, as this would imply that Blum integers ca
be factored in tim@"" for arbitrary smalk [3].

The initial goal of this research was to discover another way of obtainimgf p
complexity lower bounds by using circuit lower bounds directly. The hope w



that this would result in new lower bounds for classes such@€°[q]-Frege.

Our work lead us to consider a related proof system.RKt*[r] denote tree-
like Sequent Calculus proofs in which formulas contain conjunctions, disns,
negations and modulo connectives of unbounded arity. Then restrict the cut for-
mulas to be of constant depth. We call this system constant-ddttjr|. This is
a natural proof system that has at least one advantage over thede§nélon of
constant-depth Frege systems: it is complete for all tautologies, not justacibn
depth formulas.

Note that the power of constant-ded@K*[r] is closely related to the power
of ACC'[r]-Frege: over constant-depth tautologies, the two systems are polyno-
mially equivalent. This means that for any constant-depth tautology, there is a
polynomial relation between the size of the smallest constant-dektHr| proof
and the size of the smalleAtCC°[r]-Frege proof.

The main result of this paper is a lower bound for constant-d&3i|[r].
The lower bound is conditional on a plausible hardness conjecture rcomge
ACC"[r] circuits, and uses the conjectured hardness result (directly) as a black
box.

To prove the lower bound, we start with a lower bound for cut-iRd&*[r]
and “lift” it to get a lower bound for constant-depfiK*[r], as follows. LetS
be a tautology that requires exponential-size cut-1&€*[r] proofs. Two com-
mon examples are the propositional Pigeonhole Principle [10] and the Statman
tautologies [29]. Extend the tautology by replacing each of the variabl8sbiyp
an AND-OR formula expressing &C' function f that is hard to approximate by
ACC[r] circuits. Each of these formulas is over a separate subset of the original
propositional variables. We call this tautolo§yf). We then essentially show that
the cut formulas, which arA CC°[r] formulas, are unable to help the proof figure
out the value of thef formulas contained in th&( f) tautology. In a sense, the
proof then reduces to a cut-free proof®f which we know requires exponential
size.

Our lower bound result applies to any tautolagjyhat satisfies certain natural
conditions. We observe that these conditions guarantee an exponeméiablound
for cut-free PK*[r] and then prove that these conditions imply a lower bound
for constant-deptl® K*[r]. The Pigeonhole Principle and the Statman tautologies
satisfy these conditions.

As far as we know, this is the first known lower bound result for an exten
sion of AC"-Frege under a complexity assumption seemingly weaker NiBn
not closed under complementation. In addition, note that sieenstant-depth
PK*[r] proofs of PHP(f) imply sizes ACC°[r]-Frege proofs of the Pigeon-
hole Principle. Therefore, our new lower bound is a necessary comdioa
lower bound on the size e CC [r]-Frege proofs of the Pigeonhole Principle.
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As mentioned above, our lower bound is conditional on a plausible hazdnes
conjecture concernindh CCP[r] circuits. This conjecture is similar to a known
hardness result foAC? circuits: there is a polynomial-siZC' function that
AC? circuits of depthd and subexponential size cannot compute correctly on
more than al/2 + 1/2”1/(d+l) fraction of the inputs [11]. In constrast, in the
case ofACC[r] circuits, the strongest hardness result known is much weaker: if
r is a prime power, then there is a polynomial-sN€' function thatACCP[r]
circuits of depthi and subexponential size cannot compute correctly on more than
al/2+ o(1) fraction of the inputs [27, 28]. It is natural to conjecture that a strong
hardness result also holds fAKCC°[r] circuits, with no restriction om: there is a
polynomial-sizeNC! function thatACC°[r] circuits of depthi and subexponen-
tial size cannot compute correctly on more tharya+ 1/2%"“*" fraction of the
inputs. Our lower bound result for constant-deftKK*[r| is conditional on this
conjecture.

In addition to our main lower bound result, we obtain several additionaltsesu
First, our lower bound technique can be applied to other proof systemex&m-
ple, letPK* denote the restriction @K*[r] where modular connectives are not
allowed. Because constant-def®li<* and AC-Frege are polynomially equiva-
lent over constant-depth tautologies, it is known that constant-d@pth proofs
of the Pigeonhole Principle have exponential size. By our technique ptaénca
much simpler proof of the fact that constant-dePK* proofs of PHP (MOD)
must have exponential size.

Second, we establish a conditional exponential separation betweenwke po
of constant-depth proofs that use different modular connectivegarticular, we
show that ifp is a prime that does not divide then, under the assumption that some
function in ACC?[p] is hard to approximate bACCP[r] circuits, there exists
a tautology that has polynomial-size constant-ddpi&*[p] proofs but requires
exponential-size constant-de®K*[r] proofs.

Third, it is known that depttfd + 1) tree-like ACC [r]-Frege proofs can poly-
nomially simulate deptl-(dag-like) ACCP[r]-Frege proofs [14]. By applying our
lower bound result to the Statman tautologies, and by using the fact thatdiuese
tologies have polynomial-size cut-fr&K proofs, we show that such a simulation
is not possible in the case of constant-ddpi{ | proofs: constant-depK*[r|
proofs cannot even polynomially simulate cut-fi@& proofs. In particular, this
implies that lower bounds for constant-defi®i[r] do not follow automatically
from lower bounds for constant-de g™ [r].

Finally, we apply our approach to Sequent Calculus style proofs systems
for quantified Boolean formulas. The syste@introduced by Krdgek and
PudBk [15] and given in its present form by Cook and Morioka [7], is aofro



system for reasoning about quantified Boolean formulas. The sySfers the
tree-like subsystem off obtained by restricting the cut rule to formulas with at
most: alternations of quantifiers. For ea¢hthe G} proof system is essentially

a nonuniform version of Buss’s well-studied bounded arithmetic systemwe

show that the hierarchy does not collapse, under a hardness assumption about
the polynomial-time hierarchy.

The rest of the article is organized as follows. In Section 2, we provitiride
tions and background, including a precise definition of the proof systachsfahe
Pigeonhole Principle and Statman tautologies. In Section 3, we define a tlass o
tautologies and show that these tautologies require exponential-sizeeeutde-
like proofs. In Section 4, we state our main result, the conditional lower dboun
for proof systems such as constant-depl{*[r]. We also provide an overview of
the lower bound proof. In Section 5, we prove the lower bound. In Secteand
7, we present applications of our main result. In addition to the results medtione
earlier, we prove a hierarchy theorem for constant-ddpi[r] proofs and we
give a new proof of the non-finite axiomatizability 6f\y(R). We conclude, in
Section 8, with open problems.

This paper extends and generalizes results that appeared in earkes pgp
the authors [19, 21].

2 Definitions and Background

In this section, we define several propositional proof systems bastheé @equent
Calculus, as well as the Pigeonhole Principle and Statman tautologies, alnd esta
lish some basic results concerning these proof systems and these tautolggies
also define related circuit classes and state known and conjecturebarésults

for these classes.

2.1 The Propositional Sequent Calculus

The propositional proof systems we consider in this paper are all vacnie
Sequent Calculus for AND, OR, NOT and modular connectives. (Ii@ed.2

we will consider the Sequent Calculus for quantified propositional logiatjnk-

las are defined as usual by using Boolean variables and the consectiver and

@®P. We allowV, A and@®? to have unbounded arity. For examplg Ay, ..., A,,)
denotes the logical OR of the multiset consistingdaf . . . , A,,. Similarly for the
AND and modular connectives. Thus commutativity of the connectives is implicit.
The formulasA() and V() will be used as True and False values and often repre-
sented byT and_L.



The fact that connectives have unbounded arity does not rule opbHsibility
that some occurrences of connectives may have arity two or that forrmags
contain adjacent layers of identical connectives, asg(in(A1, Az2), V(As, As)).
Binary connectives will often be written in the usual infix notation asliv B.

In addition, we will use square brackets, agih v ...V A,], to emphasize the
factthat4; v ...V A, denotes a formula consisting of— 1 binary connectives,
not the formula consisting of a single connectixeA, . .., A,). As usual, binary
OR’s and AND’s are left associative so that, for example, A Ay A Az A A4l
represents the formuld(A; A As) A As) A Ay).

The modular connectiv@’;, for 0 < b < r, is interpreted to be true if the sum
of its arguments is congruent tomodulor. In what follows, we will omit ther
subscript and simply write® when there is no confusion possible.

The proof systems operate saquentswhich are multisets of formulas of the
formA,,..., A, — Bi,..., B;. The intended meaning of the sequéEnt— A
is that the conjunction of the formulas Ihimplies the disjunction of the formulas
in A. Note that the empty sequefyt— ) is invalid.

Two sequent§” — A andl” — A’ areequalif I' = TV andA = A’ (as
multisets). In other words, if each formula that appears on one side @fueise
also appears on the same side of the other sequent, and with the samedyetue
contrastl’ — A andI” — A’ are said to baimilarif ' = TV andA = A’ as
sets That is, if each formula that appears on one side of one sequentglsara
on the same side of the other sequent but perhaps with a differenefreguFor
example, A, A — B andA — B, B are similar but not equal.

A proof of a sequentS is a tree of sequents such that the root of the tree is
S, the leaves of the tree are initial sequents and every non-leaf sequhbettiee
follows from its children by one of the inference rules. A sequent catcphoof
can also be a directed acyclic graph (dag) with similar properties.

Theinitial sequentgor axioms) are of the following form:

A—A  —A) VO0— —a) el()—

whereA is a formula, and < b < r.

The rules of inference are as follows. First we have simple structues suich
as weakening (formulas can always be added to the left or to the riglsasfieent)
and contraction (two copies of the same formula on the same side of a segoent
be replaced by one).

An instance of weakening in which the formula introduced was alreadgptes
in the sequent (as ih — A, A derivesI’ — A, A, A) will be called anexpan-
sion We will later use the following fact: two sequents are similar if and only if
they can be derived from each other using only contractions and gxpan



I — AA AT — A _
NEG-left —— NEG-right
-A T — A I — -4 A
ANEF),I' — A r —AA I — A(F),A _
AND-left AND-right
ANAF), T — A I' — A(AF),A
AT — A V(F),' — A I' — A V(F),A ,
OR-left OR-right
V(A F),I' — A I' — V(A F),A
AN (F),T — A @)(F),I — AA
MOD-left
@b (A, F),T — A
AT — e Y(F),A T — AalF),A _
MOD-right
I — ab(4,F),A
I — a%F),A T —aG),A
MOD-add

I — o'(F,G),A
I — @l(F,G),A T —&G),A

. MOD-substract
I — @ °(F),A

Figure 1: Logical rules

After the structural rules, we have the cut rule:

NA—A r— AA
r—A

cut

The formulaA is called thecut formula

The remaining rules are the logical rules, which are shown in Figure 1s€The
rules allow us to introduce each connective on either side of sequentbeda
rules,A is an individual formulaF, G stand for a multisets of formulas agd, F')

is short for{ A} U F. Note that even though the connectives/ and®? have un-
bounded arity, their introduction rules are binary rules. The rules fomibeular
connectives are adapted from [2]. Here we need the rules MOD-aaid/i®©D-
substract to have short derivations of the equivalences betweer\ibeOR for-
mulas that compute thefOD,, function, and the formulas using the modular con-
nectives. These equivalences are required for the proof of €e06.4 and 6.5.

In this article, we will often need to perform derivations that introducetyina



A B, I' — A r—AA ' — BA

AND-left2 AND-right2
(ANB),I' — A I' — (AAB),A
AT — A B I' — A I' — A BA _
OR-left2 OR-right2
(AvB),I' — A I' — (AVB),A

Figure 2: Additional rules for binary connectives

connectives. For example,
A B,T — A
(AANB),I' — A
Strictly speaking, the AND-left rule does not allows us to perform thisvdéon
in one step. To simplify both our upper and lower bound arguments, we adudl to 0
proof systems logical rules that allow the direct introduction of binary AdN&¥d
OR'’s. These rules are shown in Figure 2.

Definition 2.1. Let F' = {(I';,, — A,) : n € N} be a family of sequents. Then
P = {P, : n € N} is a family of PK*[r] proofs for F' if, for everyn, P, is a
valid (tree-like) proof of I",, — A,,). If modular connectives are not usedih
then we say thaP is a family of PK* proofs for F'. If the proofs are permitted
to be dag-like instead of just tree-like, then we say thas a family of PK|[r] or
PK proofs, respectively.

As usual, a formula can be represented as a tree whose leaves hteraihe
of the formula (variables and negated variables) and whose inner aoedhe
connectives. Thelepthof a formula is then the maximum number of blocks of
connectives of the same type along any path from the root to a leaf.

The depth of a proof is sometimes defined as the maximum depth of any
formula that occurs in it. For example, aaCC"[r]-Frege proof is simply a
PK ] proof in which every formula has constant-depth. SimilarlyAdt®-Frege
andPK.

In this article, however, we are mainly interested in proofs in which only the
depth of the cut formulas is limited.

Definition 2.2. A depthd PK*[r] proof is one in which all the cut formulas have
depth at most. We call thesel-PK”*[r] proofs. Aconstant-depti® K*[r] proof is
ad-PK*[r| proof, for some constant Similarly, forPK*, PK|[r| and PK.

We will only consider tautologies consisting of AND-OR formulas. These tau-
tologies will contain connectives of unbounded arity. Two tautologies wecaiit
sider are the Pigeonhole Principle and Statman tautologies. These will beddefin
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later in this section. Because the Sequent Calculus is cut-free completeotiie p
systemsd-PK*[r] andd-PK* are complete for all tautologies whil& CC°[r]-
Frege andA C-Frege are complete only for constant-depth tautologies.
Thesizeof a formula is the number of literals and connectives it contains. The
sizeof a sequent is the total size of its formulas. Hmeof a proof is the total size
of all the sequents it contains and that size is normally expressed in terms of th
size of the conclusion. For example ffis a family of sequents of sizg, then a
polynomial-sizeP K*[r] proof of F" would have sizeSW.

Definition 2.3. LetP; and P, be two propositional proof systems. Thensim-
ulatesP; if whenever a tautology has?, proof of sizes, then the tautology also
has aP; proof of size at most®(). In addition, P; p-simulatesP; if there is a
polynomial-time functiort’ that given aP, proof outputs &P; proof of the same
tautology.

The power of constant-deptPK*[r] is closely related to the power of
ACC"[r]-Frege when we consider only tautologies of constant depth:

Theorem 2.4. Consider the following proof systems: constant-dep#*|r],
constant-deptlPK[r] and ACC [r]-Frege. If a constant-depth tautology has a
proof of sizes in any of these proof systems, then it has a proof of size atsf0'st

in the other two. In other words, constant-def®iK*[r], PK[r] and ACC°[r]-
Frege p-simulate one another with respect to constant-depth tautologiesars/

for constant-dept®PK*, constant-deptiPK and AC°-Frege.

Proof. First, a constant-depfK*[r] proof is simply a special case of a constant-
depthPK][r] proof.

Second, all the formulas in a constant-depK[r] proof must be either sub-
formulas of the conclusion or formulas that will be the target of a cut. Tosre
in a constant-deptlP K [r| proof of a constant-depth tautology, all the formulas
must have constant depth, which implies that such a constant-8dgth] proof
is actually anACC°[r]-Frege proof.

Finally, any ACC°[r]-Frege proof of sizes and depthd can be transformed
into a tree-likeACCP[r]-Frege proof of siza®") and depthi + 1 [13]. Such a
proof is a special case of a constant-depi{*[r] proof. O

In this article, we are mainly interested in tdePK*[r] and d-PK* proof
systems, but our main theorem will be more general: it will apply to any version
of PK*[r] or PK* in which the cuts are limited to a sét We denote these proof
systems byPK*[r](C) andPK*(C). For exampled-PK* = PK*(C) whenC is
the set of deptht AND-OR formulas.



One final note: the addition of the rules for binary connectives (Figudoés
not significantly alter the power of the proof systems we consider in thigpépe
reason is simple: each of these rules can be easily simulated in three stegisgoy u
the original rules. In addition, lower bounds for proof systems that ircthése
extra rules obviously imply lower bounds for systems that include only theatig
rules.

2.2 Closure under Restrictions

Throughout this paper, we will apply partial truth assignments (also cadkdc-
tions) to sequents and proofs. In this section, we show th&tisfa sequent that
has a small proof and we apply a partial truth assignmeist éamd then simplify
S, then the resulting sequent also has a small proof. In fact, we will shawtHnedt
proof can be obtained by adapting the original proofof

First, we define precisely what we mean by applying a partial truth assignmen
to a sequent and then simplifying it.

Definition 2.5. (Restriction of a formula)Let f be a formula ang a partial truth
assignment to the variables ¢t Thenf|,, the restriction off by p, is defined
inductively as follows.

1. If f is a variable, thery|, is either the value assigned to that variable or the
variable itself, in case the variable is given no valuedoy

2. If f = —A, then consider(A|,), the result of replacingd by A|, in f. If
Al, = T,thenf|, = L. If A|, = L, thenf|, = T. Otherwise,f|, =

ﬂ(A‘p)-

3. If f = V(F), whereF is a multiset of formulas, then conside(F"”), the re-
sult of replacing each argumetit in F' by its restrictionB|,. If £’ contains
T, thenf|, = T. Remove every from F’. If F' is empty, therf|, = L. If
exactly oneB|, is leftin F, thenf|, = B|,. Otherwisef|, = V(F").

4. If f = A(F'), thenf|, is defined in a similar way but with. and T inter-
changed.

5. If f = @%(F), then considers’(F’) with F’ defined as before. Remove
every L from F'. If any B|, = T, remove it fromF” and subtract 1 from
b (modulor). If F"is empty and = 0, thenf|, = T. If F’ is empty and
b # 0, thenf|, = L. Otherwise f|, = ®%(F").

We then extend this definition to sequents as follows.
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Definition 2.6. (Restriction of a sequentletS =T' — A be a sequent anda
partial truth assignment. Thesi|,, the restriction ofS by p, is defined as follows.
Consider” — A/, the result of replacing every formul&in S by its restriction
Al,. If IV containsL or A’ containsT, thenS|, is the axiom— T. Otherwise,
remove every fromI” and everyl fromA’. ThenS|,isT" — A’

We now show that if a sequent has a small proof, then all of its restrictlsas a
have small proofs. The proof of this result uses the fact that we doemobve
duplicate formulas in defining the restriction of a sequent. (Later we will shatv
the same result holds for the quantified proof system

Definition 2.7. (Closure under restrictionsh proof systen® is closed under re-
strictionsif for any tautologyS and any partial truth assignment if S has aP
proof of size, thenS|, has aP proof of size at most

Lemma 2.8. All of the proof systems defined above are closed under restrictions.

Proof. Suppose thaP is one of these proof systems. To prove the lemma, we will
show that ifp is any restriction, then anf proof P can be transformed into&
proof P’ whose sequents are the restrictions of the sequents of the original proof

Let P’ be the result of replacing every sequétih P by its restrictionS|,. We
must show thaf”’ is a valid proof.

If S is an initial sequent, then it is easy to verify thgft, is also an initial
sequent. For example, suppose thas + — = and thatp setsxz to L. ThenS|,
is— T.

Now suppose that is the result of an inference iR. The argument splits into
cases depending on the rule used to irffer

Suppose that is inferred by an application of the OR-left rule frofi and
So:
’ S So ATl — A V(F), T — A
S V(A,F), T — A

whereA is a formula andF is a multiset of formulas. We will show that]|, can
be inferred fromS; |, andS,|,, which we know have replaces} andS; in P’
Consider how the restriction acts on these sequentd) lf= T, thenA4|, is
removed fromS; |, andV (A4, F')|, is removed fromS|,,. In that case, we have that
S|, = Si|, and those two sequents can be collapsel'inlf A|, = L, thenA4|,
is removed fromv (A, F)|,, which implies thatS|, = S|, and those two sequents
can be collapsed i#'.
Now, let F’ be the result of replacing eadh in F' by its restrictionB|,. If
F' containsT, thenV (F)|, is removed fromS;|, andV (A, F)|, is removed from
S|,, which implies thatS|, = S|, and those two sequents can be collapsed in
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P'. Remove everyl from F’. If F'is empty, thenv(A, F)|, = A|,, which
implies thatS:|, = S|,. If I’ contains a single3|,, thenV(F)|, = B|, and
V(A, F)|, = V(A|,, B|,), which implies thatS|, can be inferred fronf|, and
Sa|, by using the OR-left2 rule. IfF’| > 2, thenS]|, can be inferred fronst |,
andS:|, by an application of the OR-left rule.

The cases wher# is inferred in P by using other rules can be handled in a
similar way. The details are left to the reader.

Note thatP’ does not contain any connectives that were not already present
in P, and thus the size o’ is no greater than the size &% In addition, if P is
tree-like, then so i$”’. The depth of any formula i#’, including the cut formulas,
is no greater than the depth of the corresponding formul&.imherefore, since
P is one of the proofs systems defined earlier, the factkh@taP proof implies
that P’ is also &P proof. This proves the lemma. O

2.3 Hard Propositional Formulas

As mentioned in the introduction, the main result of this paper is a lower bound
that applies to every tautology that satisfies certain conditions. The Pigieonh
Principle and Statman tautologies, which we define in this subsection, are good
examples of such tautologies.

The (injective) Pigeonhole Principle withu pigeons and: holes, form >
n, intuitively states that ifn pigeons are placed inte holes, then (at least) one
hole must receive more than one pigeon. This tautology can be exprassied
following sequent, which we denote BBHP;":

n n
— /\ TPLjy - /\ “Pmj, P11 A P21, P11 ADP31s -5 Pm—1)n N\ Pmn
Jj=1 Jj=1
Whenm is much larger tham, typically whenm > 2n, we refer to this tautology
as the Weak Pigeonhole Principle. The case-= n + 1 is usually what is meant
simply by the Pigeonhole Principle. We will uBHP,, to denote the correspond-
ing tautologyPHP 1,

Exponential lower bounds have been proved on the size@{-Frege proofs
of the Pigeonhole Principle (fan = n + 1) [1, 17, 24]. By Theorem 2.4, this
also implies an exponential lower bound on the size of constant-degthand
constant-deptiP K* proofs of the Pigeonhole Principle.

Statman’s tautologies express a form of strong induction. The tautology for
strong induction up ta has variable®;, ¢;, i < n, and is given by the following
sequent, which we denoSSTATMAN,,:

— (1 Aqr), (AP AGa)s s [t AP Aan], e (1)
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where
Yi=[P1Va) A A (i V)
For exampleSTATMAN; is the sequent

— (=p1 A1), [(p1V 1) A=p2 A=gal, [(p1Va1) A(p2V ge)]

It is easy to see that the Statman sequents are tautologiesy; Letp; V ¢;.
ThenSTATMAN,, essentially states that if it is not the case tHats true for
all i, then there ig such thatd, is true for allk < j but A; is false. This is clearly
a tautology: simply lej be the smallestfor which A; is false.

The Statman sequents are known to require exponential-size cuPkee
proofs [29, 5, 6]. This lower bound will be proved in Section 3. It is thesib
lower bound that we will “lift” in order to obtain the main result of this paper.

In contrast, it is also known that the Statman sequents have polynomial-size
cut-freePK proofs. We prove this result here for completeness.

Theorem 2.9.([29, 5, 6]) The sequerBTATMAN,, has a cut-fredPK proof of
size polynomial im.

Proof. We construct a cut-fre®K proof inductively. It will be clear from our
construction that the proof has size polynomiakin Forn = 1 we have the
following proof of STATMAN{:

pP1— D1 Q1 — q1

weakening ——  weakening

PLPEN \eGaight L PRT NEGeright

— TP, P, — 7q1,P1, Q1 AND-right
— (e ) OR-right

— (p1 A—q1), (p1V q1)
For the inductive step, suppose that we have a proSfRATMAN,, _1:

— (p1 Aq1), <oy [Tn—2 A T Dn—1 A 1], Yn-1

The following is a proof 0STATMAN,,:
1. Apply NEG-right top,, — py:
— 7Pn, Pn
2. Apply weakening to (1) and AND-right2 witfTATMAN,, _1:

— (1 Aqr), ooy [Ya—2 A D=1 A 2Gn—1], [Yn—1 AP, Dn
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3. Apply NEG-right tog,, — qn:
— 7Gn; qn

4. Apply weakening to (3) and AND-right2 with (2):

— (P1AQ1), - 2 AP 1 A1), (-1 AP A5 Py
5. Apply OR-right to (4):

— (A Q1), - [n—2A P 1A -1, [ 1 AP AT, (PR V)
6. Apply weakening t8 TATMAN,,_; and AND-right2 with (5):

— (PLAq1)s s [t AP A ]y [Ya-1 A (Pn Y Gn)]

This last sequent ISTATMAN,, as desired. O

Even though the Statman sequents require exponential-size cuRiEe
proofs, it can be shown that they have snRIK* proofs if cut-formulas of depth
1 are allowed.

Theorem 2.10. The sequer8TATMAN,, has a polynomial-sizé-PK™* proof.

Proof. Start by deriving’; — ~;, for 1 <1 < n, where

Li={(mVa) - (piVa)}

Then, consider the following sequents:

— (p1 A—qu), (p1Var)
Fici — [vicaA-piApil, 0iVae) (2<i<n)
r, — Tn

The first two groups can be derived in a way similar to some of the sequents in
the proof of Theorem 2.9. The sequ&@TATMAN,, can then be obtained from
these sequents by repeated cuts on the formplag ¢;), starting withi = n. [
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2.4 Constant-Depth Boolean Circuits

In this article, we will consider the standard Boolean circuit clasA&s’,
ACC"[r], for constant-, andNC*. AC" and ACC"[r] circuits are of constant
depth and consist of gates of unbounded fanAiC® circuits allow only AND, OR
and NOT gates ACC"[r] also permitMOD,. gates. These gates output 1 when
the sum of their inputs is divisible by, NC! circuits are of logarithmic depth but
allow only NOT and binary AND and OR gates.

It is known thatAC® and ACC"[¢*] circuits of subexponential size cannot
compute theMOD,, function if p andq are distinct primes [11, 27]. In addition,
these circuits cannot approximatéOD,, very well:

1/(d+1)

Theorem 2.11. (Hastad [11]) If C is a depthd AC? circuit of size2” ,
then, for sufficiently large:, C' cannot comput&1OD,, correctly on more than a

(p— 1)/p+ 1/27"“*V fraction of the inputs.

Theorem 2.12. (Smolensky [27, 28])Suppose thgh and g are distinct primes. If
C is a depthd ACC[¢"] circuit of size2°(""*") | then, for sufficiently large, C
cannot computdlOD,, correctly on more than & — 1)/p + o(1) fraction of the
inputs.

Note how theAC° hardness result is stronger than the oneA€rC°[¢"]. It
is natural to conjecture that a stronger hardness result also holdsG&° [¢*],
wheng is prime, and even foACCO[r}, with no restriction onr.

More precisely, some of the results in this paper are conditional on the follow
ing two conjectures. We say that a Boolean functiohdakancedif evaluates to 0
and 1 on the same number of inputs.

Conjecture 2.13. Let p be a prime number that does not divideThere exists a
balanced polynomial-sizA CC°[p] functionf such that ifC is a depthd ACC]|r]
circuit of size2"1/(d“), then, for sufficiently large, C' cannot computg correctly
on more than a /2 + 1/27"“*" fraction of the inputs.

Conjecture 2.14. There exists a balanced polynomial-siX&! function f such
that if C is a depthd ACC [r] circuit of size2™’“""  then, for sufficiently large
n, C' cannot computg correctly on more than ah/2 + 1/2”1/((”1) fraction of the
inputs.

The first conjecture implies the separation of h€C°[r] circuit classes for
variousr. Whenp = 2, MODs, is a reasonable candidate for a hard function.

The second conjecture is weaker since the hard fungtimnonly required to
be inNC!. A balanced version of the majority function is a reasonable candidate
for a hard function.
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It is well known that a function has a polynomial-s&C* circuit if and only
if it has a polynomial-size AND-OR formula. Therefore, the second comjec
states that there is a balanced polynomial-size AND-OR formula that is hard to
approximate byACC[r] circuits.

3 Basic Lower Bound for Statman’s Sequents

In the previous section, we saw that the Statman sequents have polynomaltsize
free PK proofs. Those proofs were clearly not tree-like because in the inductio
step, the sequeMTATMAN,,_; was used more than once.

In this section, we will show that this is necessary: any cut-BP&&* proof of
the Statman sequents must be of exponential size [29, 5, 6]. We then alefams
of tautologies and point out that this lower bound applies to all of these taigslo
The proof of this lower bound will provide the backbone for the proahef main
result of this paper.

Theorem 3.1. (Statman lower bound)Any cut-freePK* proof of the sequent
STATMAN,, has size at least”.

We will use the following lemma in the proof of the theorem.

Lemma 3.2. Consider the sequeStTATM AN,,, which is of the form
— (A1 A B1), (A2 A Ba), ..., (A A By)

Suppose thaf’ is similar toSTATMAN,, and that7"” is the result of modifyin@’
by replacing one of the formulaé A B by eitherA, A(A), B or A(B). Then there
exists a partial truth assignmeptsuch that7”|p is similar to STATMAN,, 4,
modulo a possible renaming of the variables.

Proof of Theorem 3.11t will be easier to prove the lower bound for all sequents
that are similar t8 TATMAN,,. We will prove a lower bound on the number of
sequents in the proof, which, of course, is a lower bound on the size girtof.
The proof is by induction om.

The base case, fon = 1, is obvious since any sequent similar to
STATMAN; cannot be an axiom.

For the induction step, suppose that the lower bound holds for all sexjuen
similar toSTATMAN,,_;. Consider a cut-frePK* proof of a sequent similar
to STATMAN,,. Once againS cannot be an axiom. S8 must be derived by
either a contraction, weakening or an AND-right rule. In addition, movipghe
proof from the rootS, we must eventually reach a sequéhtderived by either
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an AND-right rule or by an instance of weakening that is not just an msipa.
(Recall that an expansion is an instance of weakening that introductteeacopy
of a formula that is already present in the sequent.)

Consider the weakening case and supposefthatderived fromI”. The se-
guentT must be similar taSSTATMAN,,. This implies that7” is similar to
STATMAN,, except for the fact that one of thé A B formulas is missing. It
is not hard to see that such a sequent cannot be a tautology, which impli¢giseth
weakening case cannot occur.

Therefore, T is derived from two sequent8’ and7” by an AND-right rule.
But then, by the lemma, there are partial truth assignmerisdp” such thaf”|,
andT"|, are both similar t8TATMAN,,_;. By induction, these restrictions
require proofs of size at leag8t—!. Therefore, by Lemma 2.8 andT" each
require a proof of that size, which implies that the total size of the prosfisfat
least2™, as desired. O

We now prove the lemma.

Proof of Lemma 3.2Recall thaSTATMAN,, is the sequent

— (o1 Aqr), [ A2 Agals - [Ya—1 A TPn A gn], e

where
Yo =[P1Va) N .. A(PnV aqn)]

Suppose thdl is similar toSTATMAN,,. There are two cases to consider de-
pending on which formula is broken up.

The first case is when an occurrencéf ; A—p; A—g;] is broken up, for some
i < n. This means thdf” is an expansion 8TATMAN,, with one occurrence
of [vi_1 A —p; A —g;] replaced by one of the followingsgi, A(=q;), (Yi—1 A —p;)
or A(yi—1 A —p;). In all cases, lep set bothp; andg; to T.

InT"|,, if j < 14, then every occurrence ¢f;_1 A =p; A —g;] is unchanged.
If 5 > i, then(p; V ¢;) is deleted from every occurrence [ofi_1 A —p; A —g;].
The formula(p; V ¢;) is also deleted from every occurrenceygf In addition, any
remaining occurrence ¢f;_1 A —p; A —g;| is deleted froni”|,. Forj > i, rename
everyp; andg; aspj_1 andg;_1, respectively. The sequefft|, is now similar
to STATMAN,, ;.

The second case is when an occurrence,das broken up. Thefl” is similar
to STATMAN,, but with one occurrence of, replaced by one of the following:
(Pa Van), A(Pn V qn), Ya—1 OF A(vn—1). Inthe first two subcases, lptset bothp,,
andg, to L. ThenT"|, is similar toSTATMAN,, ;.
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In the remaining two subcases, feset bothp,, andg, to T. Then the every
occurrence ofy,—1 A —p, A —¢y] is deleted froni”|, and that sequent is similar
to STATMAN,,_;. 0

The lower bound of Theorem 3.1 can be generalized to apply to all tautslogie
that satisfy the following set of conditions:

Definition 3.3. (Statman property)Ve say that a sequefthas theStatman prop-
erty of ordern if it satisfies the following conditions:

1. Sis of the form— T" wherel is not empty and consists of nonempty con-
junctions.

2. Removing fron$ every occurrence of any of these conjunctions results in an
invalid sequent.

3. Ifn > 2, then for all sequent¥’ similar to S the following condition holds.
For any formulan(F) of T' (for a multiset of formulag”) and for anyA € F,
let 77 be obtained fromi” by replacing simultaneously all occurrences of
A(F) by either A or A(F"), whereF”’ is F with one occurrence ofl re-
moved. Then there is a partial truth assignmerguch that7”|p has the
Statman property of order — 1, modulo a possible renaming of the vari-
ables.

We say that a family of sequertsS,, } has theStatman propertif, for everyn, S,
has the Statman property of order

This definition is for sequents that have all their formulas on the right. All
of our tautologies will have that form but this is only done for conveniendee
Statman property, as well as all the results presented later in this papbg gan-
eralized to sequents that have formulas on both sides. In that case;tin@ective
would play on the left the role that theconnective plays on the right.

The following lemma will be useful and follows directly from the definition.

Lemma 3.4. If S has the Statman property of order then every sequent similar
to S also has the Statman property of order

It is easy to verify that the Statman sequents have the Statman property. This
can be proved by induction om with the third condition following from Lem-
mas 3.2 and 3.4.

It is also easy to see that our proof of Theorem 3.1 applies not just to the
Statman sequents but to all sequents that have the Statman property.
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Theorem 3.5. If S has the Statman property of order then any cut-fredPK*
proof of S requires size™.

As mentioned earlier, the proof of this lower bound will provide the backbon
for the proof of the main result of this paper. In a sense, the lower bfmrnzit-
free proof systems will be lifted to apply to proof systems with limited cuts. The
lower bound will apply to certain extensions of any tautology that has the Sitatma
property. We therefore end this section by noting that the Pigeonholdieiatso
has the Statman property. (Note that the lower bound of Theorem 3.5 \gashalr
known to apply to the Pigeonhole Principle.)

Lemma 3.6. The Pigeonhole Principle has the Statman property.

Proof. Recall thaPHP,, is the sequent
n

n
— /\ Piks - /\ P(n+1)ks P11 A P21, P11 A P31, -5 Pan A Pnt1)n
k=1 k=1

The proof of the lemma is by induction an For everyn > 1, it is clear
that PHP,, is of the form specified in Definition 3.3. It is also easy to see that
if any of the conjunctions oPHP,, is removed, then we can find an assignment
that falsifies all of the remaining conjunctions. In particular, this establigtas
PHP; has the Statman property of order 1.

Now suppose that > 2. All that remains to show is that Part 3 of the definition
holds forPHP,,. Suppose thdf’ is similar toPHP,,. We will consider two cases,
depending on which formula is broken up.

First, suppose that this formula is a conjunction associated with a pigeon
saying that pigeonis not mapped to any hole. In this case7ih that formula will
be replaced by eithetp;,. or /\k# —pix, for some hole. Supposeitisp;,.. Letp
setp;, to true, all othep;;, to false, and all othey;,. to false. In other wordg; maps
pigeon: to holer, and nowhere else, and no other pigeon goes tothdlaéenT” |,
becomes similar to the pigeonhole principle with one less pigeon (pigeand
one less hole (hole). The inductive hypothesis and Lemma 3.4 imply tiiag,
has the Statman property of order 1. The partial truth assignment that works
for the case of\,_., —pix is similar: it sends pigeonto some hole other than

Second, suppose that the formula that is broken up is of the fppm p;,.),
saying that two pigeonisand; are both mapped to the same hpldn this case, in
T, (pir N pjr) Will be replaced by eithep;., A(pir), pjr OF A(pjr). Suppose it is
pir. Let p be the restriction that maps pigegio » and nowhere else, and no other
pigeon goes to hole. ThenT’|, once again becomes similar to the pigeonhole
principle with one less pigeon and one less hole. The other cases aredand
similarly. O
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4 Main Lower Bound Result and Overview of Proof

The Statman lower bound of the previous section is for cut-R&&*. We now
want to “lift” this lower bound so that it holds for stronger proof systemst @
be a set of formulas. Our main theorem is a lower bound for systems ofrtime fo
PK*[r](C) andPK*(C). Recall that these are versionsBK*[r] andPK* in
which the cuts are limited t6. For exampled-PK* = PK*(C) where( is the
set of depthd AND-OR formulas.

Theorem 3.5 essentially says that a seqyentth the Statman property is hard
for cut-free proofs. We will obtain sequents that are hard for prawtfs C cuts by
replacing each variable ii by a formula that is hard faf. For technical reasons,
we restrict ourselves to functions that are balanced.

Definition 4.1. Let f(x1, ..., z,) be a balanced Boolean function envariables.
LetC be a set of circuits. Thelfi is (o, €)-hard with respect t@ if the following
holds. Suppose tha(z1,...,xm,y1,-..,yx) IS @any conjunction of circuits that
are either inC or are negations of circuits i, with & > 0. If the total size of
Bis at mos2?("™), then whery is viewed as a function afy, ..., Zm, y1, - - - , Yk,
neither B nor —B computef correctly on more than &/2 + ¢(m) fraction of the
inputs.

For example, lef be the set of deptH-AND-OR formulas. By Theorem 2.11,
the parity function is(o, €)-hard with respect t@ wheres(m) = m!/(¢*+1) and
e(m) = 1/2m"“Y,

As another example, letbe prime and lef be the set of deptiformulas with
AND, OR, NOT andMOD » connectives. By Theorem 2.12, the parity function is
(0, €)-hard forC wheres = m!/(4*1) ande = o(1). In addition, Conjecture 2.14
asserts there is a balanced polynomial-3#@' function that is(c, €)-hard forC
where nows = m!/(@+1) ande = 1/2m"“""

Definition 4.2. Let S be a sequent with variables, ..., p, and f a formula on
m variables. ThenS(f) denotes the sequent obtained fréhby replacing each
variablep; by f(x%, 2%, ..., x%,) for a new set of variables?, 3, .. ., z!

3
rrm m:*

We are now ready to state our main theorem. Bdbe either thePK*[r] or
PK”* proof systems and I€t be a set of formulas. Suppose ti$abas the Statman
property of order and thatf is (o, €)-hard forC. We will prove a lower bound of
2" on the size of anyP(C) proof of S(f).

In applications, this lower bound is useful onl\if is at least superpolynomial
in the size ofS(f). Therefore, informally, the functions ande must satisfy the
following requirement; for sufficiently large, there existsn such that
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1. mis not too large, so th&" is superpolynomial in the size &f( f), and
2. m is not too small, so that Condition (2) below holds.

Theorem 4.3. (Main theorem) Let S be a sequent with the Statman property of
ordern and letk denote the number of variables$h LetP be either théP K*[r]

or PK* proof systems. Lef be a Boolean formula imn variables and suppose
that, as a Boolean functiory, is balanced ando, ¢)-hard for some sef of formu-
las that is closed with respect to subformulas and restrictions. Suppose:tisa

such that .
m > 3k +n?, o(m) > n, e(m) < onZ gk )

Then, the sequetsi( f) requiresP(C) proofs of size™.

The hypothesis of the main theorem is satisfied, for example, whés
STATMAN,,, P is PK*, C is the set of deptla- AND-OR formulas (so that
P(C) isd-PK*) and f is a polynomial-size AND-OR parity formula. In this case,
k= 2n, o(m) = mY@ ¢(m) = 1/2m"“"" so Condition (2) is satisfied for
any sufficiently large: by lettingm = 2n2(4+1) Then the sizeV of S(f) is n?(®
and2” > 2V \which is not only superpolynomial but exponentialNn

We end this section with an overview of the proof of the main theorem. The
complete proof will be given in the next section.

Suppose thab has the Statman property of orderand letP, C, f andm
satisfy the conditions of the theorem. In particuléris hard with respect tG.
Recall thatS must have the form— I" where each formula ifi' is a nonempty
conjunction. To keep things simple, suppose that all the formulaS(#j are
distinct and that the contraction rule is not used. Now suppose, by ditioa,
thatr is a smalltP(C) proof of S(f).

First, note thafS( f) is not an axiom. S&(f) must be derived by either weak-
ening, an AND-right rule or a cut on @ formula. The first two cases can be
handled in essentially the same way as in the Statman lower bound (Theorem 3.1).
So we will focus on the third case in this overview.

Suppose that(f) is derived fromg — T'(f) and— g¢,I'(f) by a cut on
g € C. In this context, we caly a side formula It could be that one of those
two sequents is easy to prove. A trivial example is wgea V(). In that case,
g — I'(f) can be derived from the axiom() — by weakening. But then the
validity of — ¢, T'(f) would essentially depend dn(f) sinceg = V() is false
for every possible truth assignment. Se> ¢, I'(f) should be just as hard to prove
as the original sequent— I'(f).

In general, with respect 0( f), we say that an assignmentistical for g —
['(f) if it satisfiesg and critical for— ¢, I'(f) if it falsifies g. Clearly, at least
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half the assignments will be critical for one of those two sequents. Sujipigse
— ¢,I'(f). Then the fact thag does not approximatg very well will allow us
to show that every truth assignment to the variablds oén be achieved by a large
number of critical truth assignments to the variables-ef ¢, T'(f).

For example, consider any variablef I". InT'(f), p is replaced byf. Since
f is hard forg, at least 1/4 of the assignments that falgjfgatisfy f and at least
1/4 of the assignments that falsifyfalsify f. We will later see how to extend this
to all the variables of".

Intuitively, what all this seems to indicate is that cuts(bformulas don't help
in a proof of S(f). This intuition will be formalized as follows. From the root of
, follow all paths until one of the following is reached: an axiom, a sequéetrgy
the first occurrence of one of the formulas $ff) is introduced by weakening,
or a sequent where one of the formulasiff) is introduced by an AND-right
rule (but not necessarily the first occurrence). This defines aemubtrof 7 in
which all sequents are of the form — A, T'(f) with all the formulas inA and
A belonging taC.

Generalizing the earlier definitions, we say that the formulas end A are
side formulagwith respect td’(f)) and that an assignmentdstical for a sequent
of this form if is satisfies all side formulas on the left and falsifies all sidenfdas
on the right.

All assignments are critical for the root sequétitf). In addition, critical
assignments are preserved as we gorufsom the root: ifT is derived fromT”
andT”, then every assignment critical f@t is also critical for at least one &f
andT”. This is essentially because of the soundness of the inference rules.

Now, if 7/ has at leas®™ leaves, then we are done: we have shown thist
large. Otherwise, &/2" fraction of all assignments is critical for some Idabf
7'. Note that this is a large number of assignments since, by Condition (2), the
total number of assignments is at lealst”.

We can now use oh essentially the same argument that was used in the proof
of the Statman lower bound. For example, supposefhatderived fromZ’ and
L" by an application of one of the AND-right rules that introduces a formula of
['(f). The fact thatl is of the formA — A, T'(f) implies thatL’ must be of the
form A — A, T(f) whereI” contains all the formulas df but with someA(F)
replaced by eithed or A(F”), and similarly forL":

L A— AT(f)  A— AT(f)
L A — AT(f)

In addition, all the partial truth assignments that are criticallfqwith respect to
['(f)) are also critical fol,” andL” (with respecttd”(f) andI'”( f), respectively).
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Because— T has the Statman property of ordey there is a partial truth
assignmenp’ to the variables of— T' such that(— I")|, = (— ¥’) has
the Statman property of order— 1. As explained earlier, the fact thdtis hard
with respect to the side formulas allows us to achigveiith a large number of
critical truth assignments to the variableslof In particular, as we will show later,
there is a partial truth assignmeritto the variables of.’ that is consistent with’
and such thal/|,» = (A|» — Al, ¥/(f)) still has a large number of critical
assignments (with respect¥d( f)).

The same holds fof”: there is a partial truth assignmetit to the variables
of L” such thatl”|.» = (A|;» — A, ¥"(f)), where— ¥” has the Statman
property of ordern — 1, and such that.”|.» has a large number of critical assign-
ments (with respect t&”(f)). The large number of critical assignments of both
L’'|,» andL”|.~ allows us to repeat the argument on these sequents and inductively
show that each of these sequents requires a proof of%ize Therefore, as in the
Statman lower bound; must be of size™.

As we said earlier, in the next section, we will turn this overview into a com-
plete proof of the main theorem. This will require careful calculations of rersb
of critical assignments. We will also address the possibility that contractiogs ma
be used in the proof.

5 Proof of Main Theorem

First, we precisely define the concepts of side formula and critical assignme

Definition 5.1. Let L be a sequent of the forth — A, I'. With respect td’", the
formulas ofA and A are calledside formulasand we say that a truth assignment
is critical for L (still with respect td) if it satisfies all the side formulas it and
falsifies all the side formulas iA.

In order to prove Theorem 4.3, we will need a few lemmas. Here it is crucial
that f be balanced.

Lemma 5.2. Let f(x4,...,z,,) be a balanced Boolean formula in variables
and suppose thaf is (o, ¢)-hard for some sef of formulas that is closed with
respect to restrictions. LeB(z,...,x,) be a conjunction of formulas that are

either inC or are negations of formulas i6. Suppose that the size 8fis no
greater than2°("™) and that a fraction of at leaste(m) truth assignments satisfy
B. Then, among all the assignments that satiBfyat least1 /4 satisfy f and at
least1/4 falsify f.
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Proof. Letr be the fraction of truth assignments that satiBfyThenr > 2¢(m).
Suppose that among the truth assignments that satisfiiere is a fractiorns that
satisfy f. We will show thats > 1/4. Because is balanced, a similar proof shows
that al/4 fraction of all assignments satisfyirg falsify f.

The assignments on whichB computesf correctly are those that satisfy ei-
ther—B A f or B A —f. Those assignments represen{tl@2 — rs) + r(1 — s)
fraction of all assignments. Singeis (o, €)-hard with respect t@, B computes
f correctly on no more than/2 + ¢(m) fraction of all assignments. Therefore,

1 1
§—rs+r(1—s)§§+6(m)

Sincee(m) < r/2, it follows thats > 1/4. O

Lemma 5.3. Let f be a balanced Boolean formula in variables and suppose
that f is (o, €)-hard for some sef of formulas that is closed with respect to re-
strictions. LetS be a sequent of the forthn — A, " wherel contains at least one
occurrence off. Suppose all the side formulas (with respedf}are inC and that
their total size is at mosi”("™). Suppose that the fractigrof assignments that are
critical for S'is at leastde(m). Then, for each truth value, there is an assignment
7 to the variables off such thatf(7) = v and S|, has at least a fractiorn/4 of
assignments that are critical.

Proof. Let W be the assignments to the variablesSabther thanz, . . ., z,,, the
variables off. Each assignment il has2™ extensions to all the variables i
Let W be those assignments Wi that have a fraction of at least2 extensions
that are critical forS. Together, all the assignmeni® — W, can be extended
to at mostl/2 of all critical assignments. Therefore, at leagp of all critical
assignments are extensions of assignmenigjin

Consider an arbitrary € W;. Sincet/2 > 2¢(m) and sinceC is closed under
restrictions, we can apply Lemma 5.2.4¢, to get that at least/4 of the critical
extensions ot give f valuev. Therefore, at least/8 of all critical assignments
give f valuev. In other words, at leasy'8 of all assignments to the variables®f
are critical and givef valuew.

On the other hand, among all the assignments to the variabfgsabmostl /2
give f the valuev. As a result, there is an assignmerto the variables of that
setsf tov and has a fraction of at lealst4 extensions that are critical. This implies
that at least/4 of the assignments &f| . are critical. O

Lemma 5.4. Let f be a balanced Boolean formulain variables and suppose that
fis (o, €)-hard for some set of formulas that is closed with respect to restrictions.
Let S be a sequent of the forda — A, I" wherel" contains multiple occurrences
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of f over distinct sets of variablesi,...,z¢ , for 1 < i < k. Suppose all the
side formulas (with respect 1) are inC and that their total size is at mo8t (™).
Suppose that the fractiarof assignments that are critical fc# is at leastd*¢(m).
Then, for any: truth valuesvy, . . . , vk, there is an assignmentto all the variables

% so thatf(xf, ..., z},)|- = v, for 1 < i <k, and S|, has at least a fraction
t/4* of assignments that are critical.

Proof. By induction onk using Lemma 5.3. O

We are now ready to prove our main theorem. For the sake of the inductive
argument, we will prove a more general result.

Theorem 5.5. Let P be either théPK*[r] or PK* proof systemsf(z1, ..., Zm)
be a balanced Boolean formula that(is, €)-hard for some se&f for formulas that
is closed with respect to subformulas and restriction. ket be such that they
satisfy Condition(2) of Theorem 4.3, i.e.,

1
m > 3k + n?, o(m) > n, e(m) < ST

Suppose that— T" has the Statman property of order< n and that the number
j of variables in— TI" is no greater thank. LetT be a sequent of the form
A — A,T(f) whereA andT are inC and the total size oA andI" is at most
2", Suppose that the fraction of all truth assignments to the variablgstbfat are
critical (with respect td’(f)) is at least

1
4k—32(r+1)+(r+2)+--+n

(where the sunfr 4 1) 4 (r +2) 4 - - - +nis0if » = n). Then anyP(C) proof of
T must have size at lea2t.

By lettingr = n andT = S(f), we get our main theorem.

Proof of Theorem 5.5First note that ifl” has no variables, then it is easy to show
thatr must bel. In addition, sincel’ contains at least one nonempty conjunction,
T must have size at least 2. So we now assumejthat .

The proof is by induction on.

Inductive basis r = 1. The sequeri’ cannot be an axiom becausgf) contains
at least one conjunction that does not belong &nd therefore cannot appear on
the left. This implies that the proof contains at least two sequents.

Induction step: r > 2. Suppose that the lower bound holds for 1. We prove it
for r.
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Let = be a proof ofl" and leta be the fraction of assignments that are critical
for T. Consider the subtreg’ of = that is obtained by starting at the root and
following all paths inm until one of the following is reached:

e an axiom,

e a sequent derived by an instance of weakening that introduces thedfirs
currence of one of the formulas Bf f), or

e a sequent derived by an AND-right rule that introduces one of thautas
of I'(f) (but not necessarily the first occurrence of that formula).

In part becauseé is closed with respect to subformulas, it is not hard to see that
all the sequents in’ are of the formA’ — A’,T’(f), where all the formulas in
A" and A’ belong toC and where— I is similar to— I". In addition, all the
partial truth assignments that are critical forare preserved as we go wp (with
respect to the approprial&( f)). In particular, every assignment that is critical for
T is critical for at least one leaf of’.

If 7’ has size at least”, then so does, and we are done. Otherwise, there
mustbe aleal. = (A, — Ay, T'1(f)) of «’ for which a fraction of at least /2"
assignments are critical (with respectitp(f)).

This leaf L cannot be an axiom, for the same reason Thatas not an axiom
in the inductive basis.

So suppose thdt is obtained from some sequelitby a weakening that intro-
duces the first occurrence of one of the formula¥ pff):

LI AL i AL)FIL(f)
L AL — AL,FL(f)

whereI”, is just likeI';, but with one formula missing. The sequent> 'y, has
the Statman property because it is similarte> I. Therefore,— I'; is not a
tautology and there is a truth assignmehthat falsifies this sequent. The total
size of the side formulas i’ (with respect td”, (f)) is at mosg” < 2" < 20(m),
The fraction of assignments that are critical foris at leasta /2" > 47¢(m)
sincee(m) < 1/(2"°4%). We can therefore apply Lemma 5.4: there is a partial
truth assignment’ that is consistent with’ and such that the number of critical
assignments of/|,+ is at leas®/™«a/(2747). This number is at leadtsincem >
3k 4+ n2. The existence of such a critical assignment and the facttifatsifies
— I, (f) implies thatL’ is not a tautology. Thereford, could not have been
derived fromL’ by weakening.
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The only other possibility is that is obtained by an AND-right rule that intro-
duces one of the formulas 0f,(f):

r L Ap — AL, TL(f) AL — AL T7(f)
L AL, — AL TL(f)

where each of”, (f) andI/(f) is just likeI',(f) but with one of the formulas
A(F) replaced by eithed or A(F").

We now show every proof of’ contains at least’~! sequents. Because—
I';, is similar to— T, it has the Statman property of ordeand there is a partial
truth assignmeng’ to the variables of— I';, such that— T} )|, = (— ')
has the Statman property of order- 1. Let ;' < j be the number of variables of
— W/, which means that’ setsj — ;' variables in— I';,. As before, the total
size of the side formulas ifi’ (with respect tdl; (f)) is at most2?(™ and the
fraction of assignments that are critical fbfis at leastt’(m). So we can again
apply Lemma 5.4: there is a partial truth assignmerthat is consistent with’
and such that the fraction of assignments critical for

L/|T’ = (ALl — AL|T"\IJI(f))

is at least
o 1

or4i—3 — Ak—3 gr+(r+1)++n

Since botiC andP(C) are closed with respect to restrictions, the inductive hypoth-
esis implies that every proof of eith&f|,, or L’ contains at least”~! sequents.

The same argument can be used to show every prodf’ailso contains at
least2"~! sequents. This implies thatcontains at least” sequents. O

6 Applications to Propositional Proof Systems

In this section, we apply our main theorem (Theorem 4.3) to obtain a variety of
results concerning propositional proof systems. Most of these resaltsoadi-
tional on the circuit hardness results conjectured in Section 2.4. Firsthtao
lower bounds for constant-depBK*[r] and constant-depK* proofs. Second,

we obtain separation results for constant-dePi*[r]| proofs that use different
modular connectives. Third, we show that constant-d&d[r] proofs cannot
p-simulate cut-fre®K proofs. Finally, we prove a hierarchy theorem for constant-
depthPK*[r] proofs.
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6.1 Lower Bounds ford-PK*[r] and d-PK*

Ouir first application of the main theorem is a conditional exponential lowendbo
for d-PK*[r]. As mentioned earlier, as far as we know, this is the first known
lower bound result for an extension AIC°-Frege under a complexity assumption
seemingly weaker thalN'P not closed under complementation.

Theorem 6.1. Suppose that Conjecture 2.14 is true and febe a balanced
polynomial-size AND-OR formula that is hard to approximate by dep=C|r]
circuits of size2” ", For sufficiently largen and form = (5n2)%*!, any
d-PK*[r] proof of eitherPHP,,(f,,) or STATMAN,(f,,) has size at least

2N1/O(d>, whereN is the size of the tautology.

The proof is essentially just a matter of verifying that the two tautologies satisfy
the conditions of the main theorem.

Proof Sketch.Corollary 2.14 says thaf is (o, €)-hard for ACC°[r] circuits of
depthd, where
1 AT
o(m) = mat, e(m) =1/2

For PHP,, we havek = (n + 1)n, while for STATMAN,,, £ = 2n. Thus it
is straightforward to verify that Condition (2) of Theorem 4.3 is satisfietle-T
orem 6.1 then follows from Theorem 4.3 by using the fact that P, and
STATMAN,, have the Statman property of orderIn particular, the sizéV of
the sequent (i.e., eith@HP,,(f,,) or STATMAN,,(f,,)) is a polynomial inn

andm, son = N'/9(@ and hence the lower bourd = 2"/ 0

Note that in this lower bound result; depends onl. This implies that we
have different tautologies for each depth. We can prove a lower buwithda
single tautology for every depth but the lower bound is slightly weaker.

Theorem 6.2. Let f be as in Theorem 6.1. Let(n) be unbounded and nonde-
creasing. Letn = n®"™. Then, for sufficiently large, any d-PK*[r] proof of
eitherPHP,,(f,,) or STATMAN,, () has size at leastV"/?"™ whereN

is the size of the tautology.

This is no longer an exponential lower bound, but it is still very large and
certainly much larger than quasipolynomial. For example, with) = loglogn,
we get a lower bound afV'/ s

We can also use our main theorem to obtaimaconditionakexponential lower
bound ford-PK*. As mentioned earlier, constant-ded®K* and AC-Frege
are polynomially equivalent with respect to constant-depth tautologies asd it
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already known that constant-depACC-Frege proofs of the Pigeonhole Principle
have exponential size [1, 17, 24]. Therefore, constant-dBYKH proofs of the
Pigeonhole Principle also have exponential size. Our main theorem psoaide
much simpler proof of this lower bound.

First note that for everyp, the MOD, function can be expressed by a
polynomial-size AND-OR formula. LeMODf; be the formula defined recursively
as follows:

MODg(ajl, ceey T)
p—1

= \/ (MOD;(QUI, ey Tmy2) A MODg_a(l'm/2+1, e xm)>
a=0

ThenMOD,, is simpIyMODg. Let MOD,, ,,, denote theMOD,, formula overm
variables.

Theorem 6.3. For sufficiently largen and form = (5n2)%+!, anyd-PK* proof of

eitherPHP,,(MODy ,,) or STATMAN,,(MOD,,,,) has size at leastV"/ 7",
whereN is the size of the tautology.

6.2 Separation Results ford-PK*[r] Proofs with Different Modular
Connectives

The lower bound on the size @fPK*[r] proofs of PHP( f,,,) is interesting in
part because it is a necessary step towards a lower bound on the gzt |r]
proofs of PHP. But by focusing on extensions of the Statman tautology, we can
obtain separation results for tiePK*[r] andd-PK* systems.

Theorem 6.4. Let MOD- be the polynomial-size AND-OR formula described in
the preceding subsection. Consider the tautolS§8ATMAN,,(MOD, ,,,) with
m = (5n?)?+1, Let N denote the size of this sequent. Then the following holds:

1. STATMAN,,(MODg,,) has a3-PK*[2] proof of size polynomial itV .

2. For sufficiently larger, anyd-PK* proof of STATMAN,,(MODy ,,,) has
)

size at leasp™¥"/ .
Proof Sketch.The lower bound is from the previous subsection. A siBdNK*[2]
proof of STATMAN,,(MOD, ,,,) can be constructed in two stages. First, prove
(by a cut-free proof) that the AND-OR formuMOD- is equivalent to a formula
consisting of a singlex) connective. Second, pro&TATMAN,, (®9) by using
the proof of Theorem 2.10, but now the cut formulas have depth 2, sprtué

29



is 2-PK*[2]. Finally, proveSTATMAN,,(MOD3 ,,,) from STATMAN,, (9)
by using the fact thakIOD, is equivalent tab9. We need to cut on the formulas
of STATMAN,,(€9), which are of depth 3. O

We can also prove a conditional separatiod-®K*[p| from d’-PK*[r] when
p is a prime that does not divide for somed’. The separating sequents cannot
mention the connectives,. or @,,. Therefore we need to use the formEOD,,
from the preceding section to express the polynomial-8igaC" [p] function from
Conjecture 2.13 as an AND-OR formula. The next theorem is proved irethe s
way as the previous one.

Theorem 6.5. Suppose thap is a prime number that does not divideand that
Conjecture 2.13 is true. Lef be a polynomial-size AND-OR formula that ex-
presses a balanced depth-polynomial-sizeACC°[p] function that is hard to
approximate by depth-ACC|r] circuits of size2””’ "V Consider the tautology
STATMAN,,(f,) with m = (5n2)4*!. Let N denote the size of this sequent.
Then the following holds:

1. STATMAN,(fn) has a(k + 2)-PK”*[p] proof of size polynomial itV .

2. For sufficiently larger, anyd-PK*[r] proof of STATMAN,,( f,,) has size
at least2V'/'

6.3 Tree-Like Versus Dag-Like Proofs

The lower bounds in the previous subsections are fortréelike proof systems
d-PK*[r] andd-PK*. We would obviously like to extend these lower bounds
to the corresponding dag-like systems. One way would be to show that &ie tre
like proofs can p-simulate the dag-like proofs. Our lower bounds for e tr
like systems would then immediately translate into lower bounds for the dag-like
systems. And this is precisely the case with constant-depth Frege prepf-d
(d+41) tree-like ACCP[r]-Frege proofs can p-simulate deptliag-like ACCC[r]-
Frege proofs, and similarly foA C°-Frege [14].

Unfortunately, we can combine our lower bounds and the cutBdEeproof of
the Statman tautologies (Theorem 2.9) to show thBK*[r] proofs cannot even
p-simulate cut-fre@®K proofs.

Theorem 6.6. There is a tautology of siz& that has polynomial-size cut-fréeK
proofs but requires-PK* proofs of size at least" YOD for sufficiently largeN.
If Conjecture 2.14 is true, then there is a tautology of siz¢hat has polynomial-
size cut-fre@PK proofs but requiresl-PK*[r] proofs of size at least’™ YOO for
sufficiently largelV.
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Proof Sketch.The sequent that separates cut-frd@K and d-PK* is
STATMAN,,(MOD;,,) as in Theorem 6.4. A polynomial-size cut-free
PK proof of this sequent is easily obtained by modifying the proof given in
Theorem 2.9. The lower bound f@afPK* proofs is given in Theorem 6.4.

The second part is proved similarly. O

6.4 Hierarchy Theorems

It is known that theA C°-Frege hierarchy is infinite in the sense te€-Frege
proofs of depthd cannot p-simulateAC'-Frege proofs of deptd + 1 [13]. In
this section, by combining our lower bounds with th®X* proof of the Statman
tautologies (Theorem 2.10), we show that the constant-depth|-| hierarchy is
also infinite, under the assumption that Conjecture 2.13 holds.

First, for everyp, we show that the\IOD,, function has (exponential-size)
constant-depth AND-OR formulas. As explained earlier, this also showes\tbey
ACCP[p] function has a constant-depth AND-OR formula.

Lemma 6.7. For eachd > 2, there is anAND-OR formulaMOD,, 4 ,,, of depthd,
sizemp(@=Dm""“" with anORat the top that comput@dOD, (z1,. . . , Z,).

Proof Sketch Divide the inputi = (z1,...,z,) into k = m!/(@1) blocks

U1, ...,y each containingn/k variables. The?MOD,,(Z) can be computed with

a DNF formula of sizésp*~! from the variousMODg(gjj) withb=0,...,.p—1

andj = 1,...,k. (There ar@"~! terms, each of sizk.) Then repeat recursively

d — 1 times, using either CNF or DNF formulas as appropriate, so that the total
depth ends up beingand not2(d — 1). O

We use the formulalOD,, 244, from the lemma for the next theorem. The

size of this formula is )
mp(2d+3)m2d+3

We choose deptBd + 4 because we must have = O(n?¢*+2). With this set-
ting, the lower bouna@” is still superpolynomial in the size ®iOD,, 244, (and
hence also superpolynomial in the size of the sequent). In the followingeimeo
we assume that Conjecture 2.13 is true. We start with a balanced furfdiia is
computable by a polynomial-size depthA CCP[p] circuit that is hard to approxi-
mate byACCP[r] circuits, as stated by the conjecture. Each gate insGsCO[p]
can be computed by a dept@d + 4) AND-OR formula, as shown by the lemma.
So the whole circuit is computed by a degtt2d + 4) AND-OR formula.

Theorem 6.8. Suppose thap is a prime that does not divideand that Conjec-
ture 2.13 is true. Leff;(2414) be the depthi(2d + 4) AND-OR formula given by
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the lemma that expresses a balanced dépthelynomial-sizeA CC°[p] function

that is hard to approximate by depthA CC][r] circuits of size2""““*". Consider
the tautologySTATMAN,, ( fx(2d44),m) Withm = (5n%)*™1. Let N denote the
size of this sequent. Then the following holds:

1. STATMAN,,( fi(2d+4),m) has aPK*[r] proof of depthk(2d +4) and size
polynomial inV.

2. For sufficiently larger, anyd-PK*[r] proof of STATMAN,, ( fy(2d+4),m)

has size at leagy(clog N)!F1/(4+2)
mial in V.

(for somec > 0), which is superpolyno-

Proof. The lower bound follows from the main theorem (Theorem 4.3) just like
the other lower bounds of this section. The upper bound is obtained byg usin
the 1PK* proof of the Statman tautologies (Theorem 2.10) and the fact that the
cut formulas in that proof are all of the form Vv ¢;. When using this proof for
STATMAN,,(fx(2d+4),m), the depth of these cuts becomg8d +4). (Note that
the sequer8 TATMAN,, ( fy(24+4),m) itself is of depthk(2d + 4) + 2.)

For the lower bound, as noted before the theorem, the %zeof
STATMAN,,(fi(2d+4),m) iS @ polynomial in» and

1
2d+3
mp2d+3)m 2T

2d+2

Thereforelog N = O(n2d+3), son > (clog N)g%3 for somec > 0. O

At the beginning of this subsection, we mentioned that it was knownAligt-
Frege proofs of deptt cannot p-simulateA C°-Frege proofs of deptd + 1. The
sequents that witness the separation are of depth at édno§fhey must be for
the AC"-Frege proofs of depth to have any chance of proving them.) Based on
the ideas in the proof of Theorem 2.4, this implies that these sequents show tha
d-PK™* proofs cannot p-simulatel + 1)-PK”* proofs.

By using our new lower bounds, we can give a simpler proof of the fadt th
the constant-deptRK* hierarchy is infinite. The reason we use depiht 4 here
is the same as for the previous theorem:

Theorem 6.9. Let MOD3 2414 be one of the AND-OR formulas given by the
Lemma 6.7. Consider the tautolo@TATMAN(MOD3 24.44,m) With m =
(5n2)%+1. Let N denote the size of this sequent. Then the following hold:

1. STATMAN(MOD3 24+4,) has aPK* proof of depth2d + 4 and size
polynomial inN.
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2. For sufficiently larger, anyd-PK* proof of STATMAN (MOD2 24+4,m,)

has size at leasz(¢lee M)/ for somee > 0), which is superpolyno-
mial in V.

6.5 Other Propositional Proof Systems

We briefly mention that our main theorem can be used to obtain results similar to
those in this section but for other propositional proof systems. For exatmgle
systemPTK can be defined by adding threshold connectives and corresponding
axioms and rules to thPK system. Constant-deplATK proofs can then be
defined like constant-depIPK proofs or constant-depfRK|r| proofs by limiting

only the depth of the cuts. It is easy to verify that the proof of our main #raor
applies toPTK* proofs and that the various applications of this section also apply
to constant-deptP TK* proofs, assuming a conjecture similar to Conjecture 2.14,
that there is a polynomial-siZ§ C' function that is hard to approximate HC°
circuits.

7 Applications Beyond Propositional Proof Systems

In this section, we apply our general lower bound result and technigabt&in
results that apply to other proof systems. First, we present a new prt non-
finite axiomatizability of the bounded arithmetic thedmxy(R). Then, we prove
a conditional hierarchy theorem for the quantified propositional prysiesnsG.

7.1 Non-Finite Axiomatizability of IAy(R)

We derive from Theorem 6.9 another proof of the fact that the relativtheory
IAy(R) is not finitely axiomatizable (an earlier proof is given in [16]). We will
present our argument for the two-sorted versiobAf(R), i.e., 25 (V?), thexF
consequences . (The full theoryV? is associated witiA C° and serves as the
base theory for the development in [8].)

The high-level idea of the proof is as follows. Suppose for a contradittiat
E{JB(VO) is finitely axiomatizable. Then by compactness it can be axiomatized by
a finite set of induction axioms and probably some other basic axiomsl 6§
be a common bound on the depth of all these axioms. By the Paris-Wilkie propos
tional translation, each theorem B’ (V?) translates into a family of tautologies
with polynomial-sizel-PK* proofs. Now it is easy to see that the uniform version
of the separating propositional sequents in Theorem 6.9 belorg§ (v°), and
this gives a contradiction.
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We refer to [8, Chapter 5] for basic definitions . In short, there are two
sorts of variables: the number variablesgy, z, . . . range over natural numbehg
and the set (or string) variable$, Y, Z, ... are meant to be finite subsets [§f
When presented as input to computing machines, set variables are givérasy
strings while humber variables are given in unary notation (and thus pligy on
auxiliary role). The underlying languag®, is

‘6124 = [07 17+7 K |X|7 szla:%e]

where0, 1, +, -, <, =; are number functions and relation&’| is the length (with
number value) of the string which serves also as an upper bound for the elements
of X, € is the membership relation, are, is equality for sets. We often omit the
subscripts in=1, =2, and also writeX (¢) for ¢ € X (we think of X (7) as thei-th

bit in the string representation of). Note that the only string terms are string
variables.

The bounded quantifiers are of the forths< ¢, Vax < ¢,3X < tandvX <t,
where for the string quantifiers the bounding tetrbsund the lengths of the string
variables. = formulas are formulas with only bounded number quantifiers that
may contain free string variables. The the®yis axiomatized by a s&tBASIC
of defining axioms for’? together with comprehension axioms 88§ formulas,

i.e., axioms of the form

Y <oy < (Y (y) < »(y,Y))

for aX{’ formulay that might contain other free variables. It is known tN&tis a
conservative extension @\ ,. Moreover,VY is 25” -conservative over the theory
VO which is defined in the same way 3% but with the comprehension axioms
replaced by the induction axioms oVE}’ formulas:

[p(0) AVz, p(x) D @(x+1)] D Vzip(z)

(Wherep(z) is ax¥ formula that may contain other free variables). In other words,
V0 can be axiomatized by tHB% consequences af°.

We refer to [8, Chapter 7] for the translation of a first-order formulasarfeom-
ily of propositional formulas. Basically, to translate a first-order formp(a, X)
we give each number variable a valuem € N and each string variabl& a
lengthn, and translate the biX (i) of X into a propositional variable:*, for
0 < i < n—2. (Other bits ofX get constant values{(n—1) = T andX (i) = L
for i > n.) The result is denoted by(, X)|r; 7i].

It is known thatxF theorems ofV? translate into families of tautologies that
have polynomial size constant de@K* proofs [8, Chapter 7]. This is done by
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translating\70 anchored (or free-cut free) proofs by translating their formulas as
described above.

Now we give a uniform (i.e., first-order) version of the propositionajusnts
that separatd-PK* from (2d + 4)-PK* (Theorem 6.9). This is constructed us-
ing the following uniform version of the propositional formWaOD, 4 ,,, from
Lemma 6.7: Under the setting= 2"""" | X| = m + 1, the first-order formula
Parityy(a, X') below translates intd1OD; 4 ,,, (the parametes is only to make
sure that the length oX is not too large).

Lemma 7.1. There is a constaniddy € N so that for everyd > dy,
there is aX¥ formula Parity,(a, X) of depthd (counting both quantifiers
and Boolean connectives) such that for € N, the propositional formula
Parity,(a, X)[2m1/<d71) ;m+ 1] is MOngdvm(pOX,piX, D).

Proof. The formulaParity,(a, X) expresses the fact that there ate such that
(u plays the role ofn, andv plays the role ofn!/(@-1))

(@) u = v anda = 2(4-1)?, and

(b) | X| = w + 1 and the stringX (0), X(1),...,X(u — 1) contains an odd
number of T.

Condition (a) is fulfilled by using the fact that the relatign= 2% can be
expressed by £ formula (and the constant, accounts for the depth of this
formula). Condition (b) can be expressed b¥g formula by the same arguments
as for Lemma 6.7. O

Now we define the first-order version of Statman’s sequentdFerdy, let
Sd: —>S0d(aab7X7Y)7wd(a>baX7Y)

where @q(a,b,X,Y) and t4(a,b,X,Y) are defined (see below) so that
@q(a,b, X,Y) translates into

(1 A=qi) Vi A=p2 A=ga] VooV [n—1 A =P A —gp]) (MOD2 g1,)
andiy(a, b, X,Y) translates into
[(p1Vai) Ao A (PnV gn)](MOD2 g)

The translation ofS; is not exactySTATMAN,(MOD,4,,) because here
we put the firstn formulas in STATMAN, (MOD3 4,,) in a disjunction.

However we will be able to argue that it has the same lower baihdas

STATMAN,,(MODg 4)-
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Now we describe5; in more detail. First, we want,(a, b, X,Y") to translate
into
n . . . . . .
N\ (MODy g (2, 25, ..., @) V MODsg g (45, 05, - - Uhy) (3)

i=1

— —
For eachi we have distinct sets of propositional variablésand y*. So we will
view X andY as arrays of strings by using the pairing functi@ry). Thei-th row
of X is denoted byX !l and can be defined by®% formula. Thus define

Yala, b, X,Y) = Vi < b(Parityy(a, X)) v Parity(a, Y))

It can be verified that the propositional translation

1/(d-1)

a(a,b, X, Y)[2™ ,n; (ny,m + 1), (n,m + 1)]

has the form (3) above.
The formulay, can be defined in the same way and we omit the details here.
The next lemma follows from our discussion so far.

Lemma 7.2. Under the setting. = 2"/ b = n, | X| =Y]| = (n,m+1) the
sequentS, translates intoSSTATMAN, (MODs 4 ,,,), whereSTATMAN], is
the sequent (cf(1)):

— (1A= V[VIATDP2AGIV. V[ 1 ATDa A, [(P1Va)A. - A (P Van)]

Now we argue that the sequeBTTATM AN, (MOD3 24.+4.,) @lso requires
larged-PK* proofs.

Lemma 7.3. For m = (5n2)™!, any d-PK* proof of the sequent
STATMAN! (MOD3 24-4,,) has size at least” /n.

Proof. For readability we argue that any cut-free proofSFATMAN! must
have size at leas?”/n by transforming proof oSTATMAN!, into proof of
STATMAN,, with an increase of at most multiplicative factor in size. The
theorem can be proved by the same argument.

Any proof of STATMAN, can be transformed into a proof of
STATMAN,, as follows. Simply replace every occurrence of

(p1 A=qr) V [yi Apa A=ge] VooV [t A TP A ) (4)

by the list
(1 A—qr), [y A=p2 A2, -y =1 A TPn A g
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Note that these can only appear in the antecedents. Now any contraciiénisn
simulated byn contractions on the formulas in the list. Also we do ignore\the
right rules that introduce disjunctions in (4). The prooB&fFATM AN,, obtained
this way is of size at most times the size of the original proof STATMAN/,
(because of the increase in the number of contractions). SATMAN,,
requires proof of size at leagt’, STATMAN/, requires proof of size at least
2" /n. O

We have used a “lazy” argument for the above lemma, which is sufficient
for our application below. With a careful redefinition of Statman propertyalto
low disjunction) the lower bound proof of the main theorem (Theorem 4.8% go
through. It can then be seen ttBTATMAN/, has this property, and hence re-
quiresd-PK* proof of size2".

Theorem 7.4. VO and =2 (V?) are not finitely axiomatizable.

Proof. It suffices to show thaV? is not finitely axiomatizable, becaudé is
axiomatized by the&sf consequences o¢°. We follow the outline given at the
beginning of this section. N

Suppose for a contradiction thst” is axiomatized by a finite set of formu-
las. Becaus&” can be axiomatized b9-BASIC and the set of all induction
axioms forxF formulas, by compactness we can assume $hednsists only of
2-BASIC and a finite set of induction axioms féi(lf formulas. Letd; be a up-
per bound for the depth (counting both bounded number guantifiers aoleéd
connectives) of the formulas if\. In other words, theorems & haveV°-proofs
where cut formulas have depth at mdst (This follows by considering free-cut
free, or anchored, proofs.) N

It is shown [8, Chapter 7] thaf® proofs translate into polynomial size constant
depthPK* proofs. Under the current hypothesis it can be seen that theorems of
VO translate into families of tautologies with polynomial sitePK* proofs.

By induction onb it can be seen thav® provesS, for anyd. In particular,
V' provesSsy, 4 Whered = max{dy,d;} (dp is the constant from Lemma 7.1).
Thus the translations &f»,.4 have polynomial-size;-PK* proofs, contradicts
Theorem 6.9. O

7.2 Extension to QBF Proof Systems

We now consider the systef@ [15, 7] which is an extension dPK for quan-
tified Boolean formulas. There are quantifiers/ with the following semantic
interpretation.

JeA(z) & A(L)VA(T),  VoA(z) & A(L) A A(T)
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Also, here we restrict the Boolean connectives\ to have arity 2. Thus formulas
are defined inductively as follows:

() atomic formulas are Boolean constadtsand T, and Boolean variables;
andz;;

(i) if AandB are formulas, then so atelV B), (AA B), —A, 3z; A andVz; A.

The structural rules, the cut rule and the introduction rules-fGNEG-left and
NEG-right) are as foPK. The introduction rules fov, A and the quantifiers are
listed below:

A B, I' — A Ir —AA I' — B,A _
AND-left AND-right
(AANB),T — A I — (AAB),A
ATl — A BT — A I' — A BA _
OR-left OR-right
(AvB),I' — A r— (AVB),A
A(B),I' — A I — A, A(p) _
v-left V-right
VzA(z),I' — A I' — A, VzA(z)
Alp), ' — A I — A, A(B) _
I-left 3-right
dzA(z), I — A I' — A, JzA(x)

Restriction: In the rules-right and3-left, p must not occur in the bottom sequent.

Fori > 0, X7 (resp. II}) is the set of formulas that have a prenex form
where there are at mostlternations of quantifiers, with the outermost quantifier
being3 (resp. V). In particular,X{ andII} both denote the set of quantifier-free
propositional formulas. The syste@; is the subsystem o& in which all cut
formulas belong ta&] U IT. G} denotes tree-lik€;.

It is known thatG},, and G; are p-equivalent fo&} U II{ formulas, and
Perron [23] shows tha; p-simulatesGy, ; for all quantified formulas. Here we
will show that under some complexity theoretic assump@jndoes not simulate
cut-freeG. We need to show thak is closed under restrictions (Definition 2.7).
First we extend Definition 2.5 to define restrictions of quantified formulas.

Definition 7.5. (Restriction of a quantified formula)he restrictionf|, of a quan-
tified formulaf is defined as in Definition 2.5 with the following additional case:

6. If f = 3z A and A|, does not contain any free occurrencesgfthenf|, =
A|,. Otherwise f|, = Jz(A|,). Similarly for f = Vz A.

The result of applying restriction to a sequent of QBF is defined as in Pefin
tion 2.6.
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Lemma 7.6. G is closed under restrictions.

Proof. We extend the proof of Lemma 2.8. The additional cases are the introduc-
tion rules for3 andvV. Consider, for example, the case=®fight:

S I — A A(B)

S I — A JzA(x)

First, suppose that all free occurrencesrab deleted from the restrictiod’ of
A(z). ThenB is also deleted fromiA(B))’. By definition(3zA(x))’ = A’. Soin
this caseS’ = S, and no further derivation is required.

Now suppose that some free occurrence mmains i A(z))’. Then(A(B))’
has the formd’(B’), andS’ can be obtained frorfi; by the rule3-right with target
formulaB’. O

The following theorem is proved in the same way as the results in Section 6.
Theorem 7.7.Leti > j > 0.

(a) Suppose that there is a Boolean functjotiat is definable by a family,, of
QBF formulas and that i$o, €)-hard for 2;1. for some functions (m), e(m)
satisfying the following condition: For sufficiently largethere ism that
meets Conditiori2) of Theorem 4.3, and such th2it is superpolynomial in
the size off,,,. ThenG does not simulat&* as well as cut-fre&.

(b) Suppose that there is a functigras in (a) but now the family,,, defining f
belongs taxy. ThenG does not simulaté&:;.

It is known thatG} p-simulatesG for ¢ formulasin prenex forn{18]. It is
still consistent with our knowledge that the hard formula for quantifiez-foemu-
las in the hypothesis of the theorem belongXfo This is because the formulas in
our separating sequent are not in prenex form (although they &té)in

8 Conclusion

In this paper we have presented a general method for taking a family oéiseq
that require large tree-like cut-free proofs, and “lifting” them in ordepktain

a family of sequents that are hard for stronger classes of tree-liké gpystems.

An obvious open problem is to prove similar lower bounds without the tree-like
restriction. While the methods used in this paper cannot be adapted straightfo
wardly, we nevertheless feel that our “lifting” approach should besgdizable to
non-tree-like systems. For non-tree-like proofs, an obvious way tergére our
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argument would be to start with the basic lower bound technique for a dag-like
cut-free system (i.e., resolution), rather than starting with the basic lowerdbo
technique for tree-like cut-free proofs, and prove a similar result tor@in theo-

rem, where the size-width/bottleneck-counting technique used to obtalntieso
lower bounds [10, 4] replaces the Statman lower bound method.

Secondly, we would like to develop a new, general-purpose method for ob
taining AC°-Frege lower bounds for CNF formulas. For example, can we obtain
a top-down strategy for the liar game formulation ACC’-Frege for the PHP?
Toward this end, we would like to know whether inapproximability results are
enough to prove lower bounds for CNF formulas. For example, can dveegthe
ACP-Frege lower bound for some CNF formula to a natural hardness assamptio
aboutAC?, such as the inapproximability of parity i§C° circuits? The only
known proofs require structural information abau€", such as the fact that un-
der a special family of restrictions, aaC? function reduces to a local function (a
small-depth decision tree, or a function depending on only a constant nuhbe
variables).

Thirdly, in our last application we show that th& hierarchy does not collapse
to G unless SAT can be approximated by polynomial-size circuits. In contrast, it
has been known that tf#& hierarchy does not collapse 8 unless the polynomial
hierarchy collapses. We would like to know how these assumptions compare to
one another. In particular, do polynomial-size circuits approximating SAT imply
the collapse of the polynomial-time hierarchy?
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