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Abstract

It is known that constant-depth Frege proofs of some tautologies require
exponential size. No such lower bound result is known for more general
proof systems. We consider tree-like Sequent Calculus proofs in which for-
mulas can contain modular connectives and only the cut formulas are re-
stricted to be of constant depth. Under a plausible hardnessassumption con-
cerning small-depth Boolean circuits, we prove exponential lower bounds for
such proofs. We prove these lower bounds directly from the computational
hardness assumption. We start with a lower bound for cut-free proofs and
“lift” it so it applies to proofs with constant-depth cuts. By using the same
approach, we obtain the following additional results. We provide a much sim-
pler proof of a known unconditional lower bound in the case where modular
connectives are not used. We establish a conditional exponential separation
between the power of constant-depth proofs that use different modular con-
nectives. We show that these tree-like proofs with constant-depth cuts cannot
polynomially simulate similar dag-like proofs, even when the dag-like proofs
are cut-free. We present a new proof of the non-finite axiomatizability of the
theory of bounded arithmeticI∆0(R). Finally, under a plausible hardness
assumption concerning the polynomial-time hierarchy, we show that the hi-
erarchyG∗

i
of quantified propositional proof systems does not collapse.
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1 Introduction

Restricted proof systems have attracted a lot of attention, in large part due to
their role in automated theorem provers. For example, Haken [10] showedthat
the Pigeonhole Principle, a simple, natural and ubiquitous tautology, requires
exponential-size Resolution proofs. This means that any theorem proverthat works
by constructing a Resolution proof — and that is virtually all propositional theo-
rem provers — will require exponential time to prove the Pigeonhole Principle, no
matter how efficient it is at finding a proof.

Various extensions of Resolution have also been investigated and shown tobe
limited in a similar way. For example, constant-depth Frege proofs, which we
call AC

0-Frege proofs because of their relation to the circuit classAC
0, are also

unable to prove the Pigeonhole Principle in subexponential size [1, 17, 24]. And
Cutting Planes have no subexponential-size proof of a certain basic principle con-
cerning colorings of undirected graphs [12, 25].

To this day, however, no lower bound result is known for any proof system
more general thanAC

0-Frege. For example, a natural extension ofAC
0-Frege is

to permit the use of modulor connectives in the proofs, for some constantr. We
call this proof systemACC

0[r]-Frege, once again because of its relation to the
circuit classACC

0[r]. No lower bound is known forACC
0[r]-Frege.

The Pigeonhole Principle lower bound forAC
0-Frege was obtained by an in-

genious new model theoretic technique, together with an adaptation of the com-
binatorial argument used to prove thatAC

0 circuits require exponential size to
compute the parity function [9, 11, 30]. It is also known that whenp andq are dis-
tinct primes,ACC

0[q] circuits require exponential size to compute the modulop
function [27]. Therefore, it is natural to hope that the technique behindthat circuit
lower bound might be useful in proving a lower bound forACC

0[q]-Frege proofs.
Unfortunately, attempts to prove the corresponding proof complexity lower bound
have been unsuccessful, despite considerable effort.

On the other hand, the lower bounds for the Cutting Planes proof system were
obtained by using circuit lower bounds directly, not the underlying techniques.
This approach relies on the fact that the Cutting Planes proof system has the inter-
polation property: small Cutting Planes proofs of tautologies of a certain typeyield
small circuits computing a function related to the tautology. A lower bound on the
size of these circuits then implies a lower bound on the size of the proofs. Unfortu-
nately,AC

0-Frege and all of its extensions, includingACC
0[q]-Frege, probably

do not have the interpolation property, as this would imply that Blum integers can
be factored in time2n

ε
for arbitrary smallε [3].

The initial goal of this research was to discover another way of obtaining proof
complexity lower bounds by using circuit lower bounds directly. The hope was
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that this would result in new lower bounds for classes such asACC
0[q]-Frege.

Our work lead us to consider a related proof system. LetPK
⋆[r] denote tree-

like Sequent Calculus proofs in which formulas contain conjunctions, disjunctions,
negations and modulor connectives of unbounded arity. Then restrict the cut for-
mulas to be of constant depth. We call this system constant-depthPK

⋆[r]. This is
a natural proof system that has at least one advantage over the usualdefinition of
constant-depth Frege systems: it is complete for all tautologies, not just constant-
depth formulas.

Note that the power of constant-depthPK
⋆[r] is closely related to the power

of ACC
0[r]-Frege: over constant-depth tautologies, the two systems are polyno-

mially equivalent. This means that for any constant-depth tautology, there is a
polynomial relation between the size of the smallest constant-depthPK

⋆[r] proof
and the size of the smallestACC

0[r]-Frege proof.
The main result of this paper is a lower bound for constant-depthPK

⋆[r].
The lower bound is conditional on a plausible hardness conjecture concerning
ACC

0[r] circuits, and uses the conjectured hardness result (directly) as a black
box.

To prove the lower bound, we start with a lower bound for cut-freePK
⋆[r]

and “lift” it to get a lower bound for constant-depthPK
⋆[r], as follows. LetS

be a tautology that requires exponential-size cut-freePK
⋆[r] proofs. Two com-

mon examples are the propositional Pigeonhole Principle [10] and the Statman
tautologies [29]. Extend the tautology by replacing each of the variables inS by
an AND-OR formula expressing anNC

1 functionf that is hard to approximate by
ACC

0[r] circuits. Each of these formulas is over a separate subset of the original
propositional variables. We call this tautologyS(f). We then essentially show that
the cut formulas, which areACC

0[r] formulas, are unable to help the proof figure
out the value of thef formulas contained in theS(f) tautology. In a sense, the
proof then reduces to a cut-free proof ofS, which we know requires exponential
size.

Our lower bound result applies to any tautologyS that satisfies certain natural
conditions. We observe that these conditions guarantee an exponential lower bound
for cut-freePK

⋆[r] and then prove that these conditions imply a lower bound
for constant-depthPK

⋆[r]. The Pigeonhole Principle and the Statman tautologies
satisfy these conditions.

As far as we know, this is the first known lower bound result for an exten-
sion ofAC

0-Frege under a complexity assumption seemingly weaker thanNP

not closed under complementation. In addition, note that size-s constant-depth
PK

⋆[r] proofs ofPHP(f) imply size-s ACC
0[r]-Frege proofs of the Pigeon-

hole Principle. Therefore, our new lower bound is a necessary condition for a
lower bound on the size ofACC

0[r]-Frege proofs of the Pigeonhole Principle.
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As mentioned above, our lower bound is conditional on a plausible hardness
conjecture concerningACC

0[r] circuits. This conjecture is similar to a known
hardness result forAC

0 circuits: there is a polynomial-sizeNC
1 function that

AC
0 circuits of depthd and subexponential size cannot compute correctly on

more than a1/2 + 1/2n
1/(d+1)

fraction of the inputs [11]. In constrast, in the
case ofACC

0[r] circuits, the strongest hardness result known is much weaker: if
r is a prime power, then there is a polynomial-sizeNC

1 function thatACC
0[r]

circuits of depthd and subexponential size cannot compute correctly on more than
a1/2 + o(1) fraction of the inputs [27, 28]. It is natural to conjecture that a strong
hardness result also holds forACC

0[r] circuits, with no restriction onr: there is a
polynomial-sizeNC

1 function thatACC
0[r] circuits of depthd and subexponen-

tial size cannot compute correctly on more than a1/2+ 1/2n
1/(d+1)

fraction of the
inputs. Our lower bound result for constant-depthPK

⋆[r] is conditional on this
conjecture.

In addition to our main lower bound result, we obtain several additional results.
First, our lower bound technique can be applied to other proof systems. For exam-
ple, letPK

⋆ denote the restriction ofPK
⋆[r] where modular connectives are not

allowed. Because constant-depthPK
⋆ andAC

0-Frege are polynomially equiva-
lent over constant-depth tautologies, it is known that constant-depthPK

⋆ proofs
of the Pigeonhole Principle have exponential size. By our technique, we obtain a
much simpler proof of the fact that constant-depthPK

⋆ proofs ofPHP(MOD2)
must have exponential size.

Second, we establish a conditional exponential separation between the power
of constant-depth proofs that use different modular connectives. Inparticular, we
show that ifp is a prime that does not divider, then, under the assumption that some
function in ACC

0[p] is hard to approximate byACC
0[r] circuits, there exists

a tautology that has polynomial-size constant-depthPK
⋆[p] proofs but requires

exponential-size constant-depthPK
⋆[r] proofs.

Third, it is known that depth-(d+1) tree-likeACC
0[r]-Frege proofs can poly-

nomially simulate depth-d (dag-like)ACC
0[r]-Frege proofs [14]. By applying our

lower bound result to the Statman tautologies, and by using the fact that thesetau-
tologies have polynomial-size cut-freePK proofs, we show that such a simulation
is not possible in the case of constant-depthPK[r] proofs: constant-depthPK

⋆[r]
proofs cannot even polynomially simulate cut-freePK proofs. In particular, this
implies that lower bounds for constant-depthPK[r] do not follow automatically
from lower bounds for constant-depthPK

⋆[r].
Finally, we apply our approach to Sequent Calculus style proofs systems

for quantified Boolean formulas. The systemG introduced by Kraj́ıček and
Pudĺak [15] and given in its present form by Cook and Morioka [7], is a proof
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system for reasoning about quantified Boolean formulas. The systemG∗
i is the

tree-like subsystem ofG obtained by restricting the cut rule to formulas with at
most i alternations of quantifiers. For eachi, theG∗

i proof system is essentially
a nonuniform version of Buss’s well-studied bounded arithmetic systemSi

2. We
show that theG∗

i hierarchy does not collapse, under a hardness assumption about
the polynomial-time hierarchy.

The rest of the article is organized as follows. In Section 2, we provide defini-
tions and background, including a precise definition of the proof systems and of the
Pigeonhole Principle and Statman tautologies. In Section 3, we define a class of
tautologies and show that these tautologies require exponential-size cut-free tree-
like proofs. In Section 4, we state our main result, the conditional lower bound
for proof systems such as constant-depthPK

⋆[r]. We also provide an overview of
the lower bound proof. In Section 5, we prove the lower bound. In Sections 6 and
7, we present applications of our main result. In addition to the results mentioned
earlier, we prove a hierarchy theorem for constant-depthPK

⋆[r] proofs and we
give a new proof of the non-finite axiomatizability ofI∆0(R). We conclude, in
Section 8, with open problems.

This paper extends and generalizes results that appeared in earlier papers by
the authors [19, 21].

2 Definitions and Background

In this section, we define several propositional proof systems based onthe Sequent
Calculus, as well as the Pigeonhole Principle and Statman tautologies, and estab-
lish some basic results concerning these proof systems and these tautologies. We
also define related circuit classes and state known and conjectured hardness results
for these classes.

2.1 The Propositional Sequent Calculus

The propositional proof systems we consider in this paper are all variantsof the
Sequent Calculus for AND, OR, NOT and modular connectives. (In Section 7.2
we will consider the Sequent Calculus for quantified propositional logic.) Formu-
las are defined as usual by using Boolean variables and the connectives¬,∨,∧ and
⊕b

r. We allow∨,∧ and⊕b
r to have unbounded arity. For example,∨(A1, . . . , An)

denotes the logical OR of the multiset consisting ofA1, . . . , An. Similarly for the
AND and modular connectives. Thus commutativity of the connectives is implicit.
The formulas∧() and∨() will be used as True and False values and often repre-
sented by⊤ and⊥.
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The fact that connectives have unbounded arity does not rule out thepossibility
that some occurrences of connectives may have arity two or that formulasmay
contain adjacent layers of identical connectives, as in∨(∨(A1, A2),∨(A3, A4)).
Binary connectives will often be written in the usual infix notation as inA ∨ B.
In addition, we will use square brackets, as in[A1 ∨ . . . ∨ An], to emphasize the
fact thatA1 ∨ . . . ∨ An denotes a formula consisting ofn− 1 binary connectives,
not the formula consisting of a single connective∨(A1, . . . , An). As usual, binary
OR’s and AND’s are left associative so that, for example,[A1 ∧ A2 ∧ A3 ∧ A4]
represents the formula(((A1 ∧A2) ∧A3) ∧A4).

The modular connective⊕b
r, for 0 ≤ b < r, is interpreted to be true if the sum

of its arguments is congruent tob modulor. In what follows, we will omit ther
subscript and simply write⊕b when there is no confusion possible.

The proof systems operate onsequents, which are multisets of formulas of the
formA1, . . . , Ar −→ B1, . . . , Bt. The intended meaning of the sequentΓ −→ ∆
is that the conjunction of the formulas inΓ implies the disjunction of the formulas
in ∆. Note that the empty sequent(−→) is invalid.

Two sequentsΓ −→ ∆ andΓ′ −→ ∆′ areequal if Γ = Γ′ and∆ = ∆′ (as
multisets). In other words, if each formula that appears on one side of a sequent
also appears on the same side of the other sequent, and with the same frequency. In
contrast,Γ −→ ∆ andΓ′ −→ ∆′ are said to besimilar if Γ = Γ′ and∆ = ∆′ as
sets. That is, if each formula that appears on one side of one sequent also appears
on the same side of the other sequent but perhaps with a different frequency. For
example,A,A −→ B andA −→ B,B are similar but not equal.

A proof of a sequentS is a tree of sequents such that the root of the tree is
S, the leaves of the tree are initial sequents and every non-leaf sequent inthe tree
follows from its children by one of the inference rules. A sequent calculus proof
can also be a directed acyclic graph (dag) with similar properties.

The initial sequents(or axioms) are of the following form:

A −→ A −→ ∧() ∨ () −→ −→ ⊕0
r() ⊕b

r () −→

whereA is a formula, and1 ≤ b < r.
The rules of inference are as follows. First we have simple structural rules such

as weakening (formulas can always be added to the left or to the right of asequent)
and contraction (two copies of the same formula on the same side of a sequentcan
be replaced by one).

An instance of weakening in which the formula introduced was already present
in the sequent (as inΓ −→ A,∆ derivesΓ −→ A,A,∆) will be called anexpan-
sion. We will later use the following fact: two sequents are similar if and only if
they can be derived from each other using only contractions and expansions.
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Γ −→ A,∆
NEG-left

¬A,Γ −→ ∆

A,Γ −→ ∆
NEG-right

Γ −→ ¬A,∆

A,∧(F ),Γ −→ ∆
AND-left

∧(A,F ),Γ −→ ∆

Γ −→ A,∆ Γ −→ ∧(F ),∆
AND-right

Γ −→ ∧(A,F ),∆

A,Γ −→ ∆ ∨ (F ),Γ −→ ∆
OR-left

∨(A,F ),Γ −→ ∆

Γ −→ A,∨(F ),∆
OR-right

Γ −→ ∨(A,F ),∆

A,⊕b−1
r (F ),Γ −→ ∆ ⊕b

r (F ),Γ −→ A,∆
MOD-left

⊕b
r(A,F ),Γ −→ ∆

A,Γ −→ ⊕b−1
r (F ),∆ Γ −→ A,⊕b

r(F ),∆
MOD-right

Γ −→ ⊕b
r(A,F ),∆

Γ −→ ⊕a
r(F ),∆ Γ −→ ⊕b

r(G),∆
MOD-add

Γ −→ ⊕a+b
r (F,G),∆

Γ −→ ⊕a
r(F,G),∆ Γ −→ ⊕b

r(G),∆
MOD-substract

Γ −→ ⊕a−b
r (F ),∆

Figure 1: Logical rules

After the structural rules, we have the cut rule:

Γ, A −→ ∆ Γ −→ A,∆
cut

Γ −→ ∆

The formulaA is called thecut formula.
The remaining rules are the logical rules, which are shown in Figure 1. These

rules allow us to introduce each connective on either side of sequents. Inthese
rules,A is an individual formula,F,G stand for a multisets of formulas and(A,F )
is short for{A} ∪ F . Note that even though the connectives∧, ∨ and⊕b

r have un-
bounded arity, their introduction rules are binary rules. The rules for themodular
connectives are adapted from [2]. Here we need the rules MOD-add and MOD-
substract to have short derivations of the equivalences between the AND-OR for-
mulas that compute theMODp function, and the formulas using the modular con-
nectives. These equivalences are required for the proof of Theorems 6.4 and 6.5.

In this article, we will often need to perform derivations that introduce binary
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A,B,Γ −→ ∆
AND-left2

(A ∧B),Γ −→ ∆

Γ −→ A,∆ Γ −→ B,∆
AND-right2

Γ −→ (A ∧B),∆

A,Γ −→ ∆ B,Γ −→ ∆
OR-left2

(A ∨B),Γ −→ ∆

Γ −→ A,B,∆
OR-right2

Γ −→ (A ∨B),∆

Figure 2: Additional rules for binary connectives

connectives. For example,
A,B,Γ −→ ∆

(A ∧B),Γ −→ ∆

Strictly speaking, the AND-left rule does not allows us to perform this derivation
in one step. To simplify both our upper and lower bound arguments, we add to our
proof systems logical rules that allow the direct introduction of binary AND’s and
OR’s. These rules are shown in Figure 2.

Definition 2.1. LetF = {(Γn −→ ∆n) : n ∈ N} be a family of sequents. Then
P = {Pn : n ∈ N} is a family ofPK

⋆[r] proofs forF if, for everyn, Pn is a
valid (tree-like) proof of(Γn −→ ∆n). If modular connectives are not used inP ,
then we say thatP is a family ofPK

⋆ proofs forF . If the proofs are permitted
to be dag-like instead of just tree-like, then we say thatP is a family ofPK[r] or
PK proofs, respectively.

As usual, a formula can be represented as a tree whose leaves are theliterals
of the formula (variables and negated variables) and whose inner nodesare the
connectives. Thedepthof a formula is then the maximum number of blocks of
connectives of the same type along any path from the root to a leaf.

The depth of a proof is sometimes defined as the maximum depth of any
formula that occurs in it. For example, anACC

0[r]-Frege proof is simply a
PK[r] proof in which every formula has constant-depth. Similarly forAC

0-Frege
andPK.

In this article, however, we are mainly interested in proofs in which only the
depth of the cut formulas is limited.

Definition 2.2. A depth-d PK
⋆[r] proof is one in which all the cut formulas have

depth at mostd. We call thesed-PK
⋆[r] proofs. Aconstant-depthPK

⋆[r] proof is
a d-PK

⋆[r] proof, for some constantd. Similarly, forPK
⋆, PK[r] andPK.

We will only consider tautologies consisting of AND-OR formulas. These tau-
tologies will contain connectives of unbounded arity. Two tautologies we willcon-
sider are the Pigeonhole Principle and Statman tautologies. These will be defined
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later in this section. Because the Sequent Calculus is cut-free complete, the proof
systemsd-PK

⋆[r] andd-PK
⋆ are complete for all tautologies whileACC

0[r]-
Frege andAC

0-Frege are complete only for constant-depth tautologies.
Thesizeof a formula is the number of literals and connectives it contains. The

sizeof a sequent is the total size of its formulas. Thesizeof a proof is the total size
of all the sequents it contains and that size is normally expressed in terms of the
size of the conclusion. For example, ifF is a family of sequents of sizetn, then a
polynomial-sizePK

⋆[r] proof ofF would have sizetO(1)
n .

Definition 2.3. LetP1 andP2 be two propositional proof systems. ThenP1 sim-
ulatesP2 if whenever a tautology has aP2 proof of sizes, then the tautology also
has aP1 proof of size at mostsO(1). In addition,P1 p-simulatesP2 if there is a
polynomial-time functionF that given aP2 proof outputs aP1 proof of the same
tautology.

The power of constant-depthPK
⋆[r] is closely related to the power of

ACC
0[r]-Frege when we consider only tautologies of constant depth:

Theorem 2.4. Consider the following proof systems: constant-depthPK
⋆[r],

constant-depthPK[r] andACC
0[r]-Frege. If a constant-depth tautology has a

proof of sizes in any of these proof systems, then it has a proof of size at mostsO(1)

in the other two. In other words, constant-depthPK
⋆[r], PK[r] andACC

0[r]-
Frege p-simulate one another with respect to constant-depth tautologies. Similarly
for constant-depthPK

⋆, constant-depthPK andAC
0-Frege.

Proof. First, a constant-depthPK
⋆[r] proof is simply a special case of a constant-

depthPK[r] proof.
Second, all the formulas in a constant-depthPK[r] proof must be either sub-

formulas of the conclusion or formulas that will be the target of a cut. Therefore,
in a constant-depthPK[r] proof of a constant-depth tautology, all the formulas
must have constant depth, which implies that such a constant-depthPK[r] proof
is actually anACC

0[r]-Frege proof.
Finally, anyACC

0[r]-Frege proof of sizes and depthd can be transformed
into a tree-likeACC

0[r]-Frege proof of sizesO(1) and depthd + 1 [13]. Such a
proof is a special case of a constant-depthPK

⋆[r] proof.

In this article, we are mainly interested in thed-PK
⋆[r] and d-PK

⋆ proof
systems, but our main theorem will be more general: it will apply to any version
of PK

⋆[r] or PK
⋆ in which the cuts are limited to a setC. We denote these proof

systems byPK
⋆[r](C) andPK

⋆(C). For example,d-PK
⋆ = PK

⋆(C) whenC is
the set of depth-d AND-OR formulas.
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One final note: the addition of the rules for binary connectives (Figure 2) does
not significantly alter the power of the proof systems we consider in this paper. The
reason is simple: each of these rules can be easily simulated in three steps by using
the original rules. In addition, lower bounds for proof systems that include these
extra rules obviously imply lower bounds for systems that include only the original
rules.

2.2 Closure under Restrictions

Throughout this paper, we will apply partial truth assignments (also called restric-
tions) to sequents and proofs. In this section, we show that ifS is a sequent that
has a small proof and we apply a partial truth assignment toS and then simplify
S, then the resulting sequent also has a small proof. In fact, we will show how that
proof can be obtained by adapting the original proof ofS.

First, we define precisely what we mean by applying a partial truth assignment
to a sequent and then simplifying it.

Definition 2.5. (Restriction of a formula)Letf be a formula andρ a partial truth
assignment to the variables off . Thenf |ρ, the restriction off by ρ, is defined
inductively as follows.

1. If f is a variable, thenf |ρ is either the value assigned to that variable or the
variable itself, in case the variable is given no value byρ.

2. If f = ¬A, then consider¬(A|ρ), the result of replacingA byA|ρ in f . If
A|ρ = ⊤, thenf |ρ = ⊥. If A|ρ = ⊥, thenf |ρ = ⊤. Otherwise,f |ρ =
¬(A|ρ).

3. If f = ∨(F ), whereF is a multiset of formulas, then consider∨(F ′), the re-
sult of replacing each argumentB in F by its restrictionB|ρ. If F ′ contains
⊤, thenf |ρ = ⊤. Remove every⊥ fromF ′. If F ′ is empty, thenf |ρ = ⊥. If
exactly oneB|ρ is left inF ′, thenf |ρ = B|ρ. Otherwise,f |ρ = ∨(F ′).

4. If f = ∧(F ), thenf |ρ is defined in a similar way but with⊥ and⊤ inter-
changed.

5. If f = ⊕b
r(F ), then consider⊕b

r(F
′) with F ′ defined as before. Remove

every⊥ from F ′. If anyB|ρ = ⊤, remove it fromF ′ and subtract 1 from
b (modulor). If F ′ is empty andb = 0, thenf |ρ = ⊤. If F ′ is empty and
b 6= 0, thenf |ρ = ⊥. Otherwise,f |ρ = ⊕b

r(F
′).

We then extend this definition to sequents as follows.
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Definition 2.6. (Restriction of a sequent)LetS = Γ −→ ∆ be a sequent andρ a
partial truth assignment. ThenS|ρ, the restriction ofS by ρ, is defined as follows.
ConsiderΓ′ −→ ∆′, the result of replacing every formulaA in S by its restriction
A|ρ. If Γ′ contains⊥ or ∆′ contains⊤, thenS|ρ is the axiom−→ ⊤. Otherwise,
remove every⊤ fromΓ′ and every⊥ from∆′. ThenS|ρ is Γ′ −→ ∆′.

We now show that if a sequent has a small proof, then all of its restrictions also
have small proofs. The proof of this result uses the fact that we do notremove
duplicate formulas in defining the restriction of a sequent. (Later we will showthat
the same result holds for the quantified proof systemG.)

Definition 2.7. (Closure under restrictions)A proof systemP is closed under re-
strictionsif for any tautologyS and any partial truth assignmentρ, if S has aP
proof of sizet, thenS|ρ has aP proof of size at mostt.

Lemma 2.8. All of the proof systems defined above are closed under restrictions.

Proof. Suppose thatP is one of these proof systems. To prove the lemma, we will
show that ifρ is any restriction, then anyP proofP can be transformed into aP
proofP ′ whose sequents are the restrictions of the sequents of the original proof.

LetP ′ be the result of replacing every sequentS in P by its restrictionS|ρ. We
must show thatP ′ is a valid proof.

If S is an initial sequent, then it is easy to verify thatS|ρ is also an initial
sequent. For example, suppose thatS is x −→ x and thatρ setsx to ⊥. ThenS|ρ
is−→ ⊤.

Now suppose thatS is the result of an inference inP . The argument splits into
cases depending on the rule used to inferS.

Suppose thatS is inferred by an application of the OR-left rule fromS1 and
S2:

S1 S2

S
=

A,Γ −→ ∆ ∨ (F ),Γ −→ ∆

∨(A,F ),Γ −→ ∆

whereA is a formula andF is a multiset of formulas. We will show thatS|ρ can
be inferred fromS1|ρ andS2|ρ, which we know have replacedS1 andS2 in P ′.

Consider how the restriction acts on these sequents. IfA|ρ = ⊤, thenA|ρ is
removed fromS1|ρ and∨(A,F )|ρ is removed fromS|ρ. In that case, we have that
S|ρ = S1|ρ and those two sequents can be collapsed inP ′. If A|ρ = ⊥, thenA|ρ
is removed from∨(A,F )|ρ, which implies thatS|ρ = S2|ρ and those two sequents
can be collapsed inP ′.

Now, let F ′ be the result of replacing eachB in F by its restrictionB|ρ. If
F ′ contains⊤, then∨(F )|ρ is removed fromS2|ρ and∨(A,F )|ρ is removed from
S|ρ, which implies thatS|ρ = S2|ρ and those two sequents can be collapsed in
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P ′. Remove every⊥ from F ′. If F ′ is empty, then∨(A,F )|ρ = A|ρ, which
implies thatS1|ρ = S|ρ. If F ′ contains a singleB|ρ, then∨(F )|ρ = B|ρ and
∨(A,F )|ρ = ∨(A|ρ, B|ρ), which implies thatS|ρ can be inferred fromS1|ρ and
S2|ρ by using the OR-left2 rule. If|F ′| ≥ 2, thenS|ρ can be inferred fromS1|ρ
andS2|ρ by an application of the OR-left rule.

The cases whereS is inferred inP by using other rules can be handled in a
similar way. The details are left to the reader.

Note thatP ′ does not contain any connectives that were not already present
in P , and thus the size ofP ′ is no greater than the size ofP . In addition, ifP is
tree-like, then so isP ′. The depth of any formula inP ′, including the cut formulas,
is no greater than the depth of the corresponding formula inP . Therefore, since
P is one of the proofs systems defined earlier, the fact thatP is aP proof implies
thatP ′ is also aP proof. This proves the lemma.

2.3 Hard Propositional Formulas

As mentioned in the introduction, the main result of this paper is a lower bound
that applies to every tautology that satisfies certain conditions. The Pigeonhole
Principle and Statman tautologies, which we define in this subsection, are good
examples of such tautologies.

The (injective) Pigeonhole Principle withm pigeons andn holes, form >
n, intuitively states that ifm pigeons are placed inton holes, then (at least) one
hole must receive more than one pigeon. This tautology can be expressedas the
following sequent, which we denote byPHP

m
n :

−→
n∧

j=1

¬p1j , . . . ,
n∧

j=1

¬pmj , p11 ∧ p21, p11 ∧ p31, . . . , p(m−1)n ∧ pmn

Whenm is much larger thann, typically whenm ≥ 2n, we refer to this tautology
as the Weak Pigeonhole Principle. The casem = n + 1 is usually what is meant
simply by the Pigeonhole Principle. We will usePHPn to denote the correspond-
ing tautologyPHP

n+1
n .

Exponential lower bounds have been proved on the size ofAC
0-Frege proofs

of the Pigeonhole Principle (form = n + 1) [1, 17, 24]. By Theorem 2.4, this
also implies an exponential lower bound on the size of constant-depthPK and
constant-depthPK

⋆ proofs of the Pigeonhole Principle.
Statman’s tautologies express a form of strong induction. The tautology for

strong induction up ton has variablespi, qi, i ≤ n, and is given by the following
sequent, which we denoteSTATMANn:

−→ (¬p1 ∧ ¬q1), [γ1 ∧ ¬p2 ∧ ¬q2], . . . , [γn−1 ∧ ¬pn ∧ ¬qn], γn (1)
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where
γi = [(p1 ∨ q1) ∧ . . . ∧ (pi ∨ qi)]

For example,STATMAN2 is the sequent

−→ (¬p1 ∧ ¬q1), [(p1 ∨ q1) ∧ ¬p2 ∧ ¬q2], [(p1 ∨ q1) ∧ (p2 ∨ q2)]

It is easy to see that the Statman sequents are tautologies. LetAi = pi ∨ qi.
ThenSTATMANn essentially states that if it is not the case thatAi is true for
all i, then there isj such thatAk is true for allk < j butAj is false. This is clearly
a tautology: simply letj be the smallesti for whichAi is false.

The Statman sequents are known to require exponential-size cut-freePK
⋆

proofs [29, 5, 6]. This lower bound will be proved in Section 3. It is the basic
lower bound that we will “lift” in order to obtain the main result of this paper.

In contrast, it is also known that the Statman sequents have polynomial-size
cut-freePK proofs. We prove this result here for completeness.

Theorem 2.9. ([29, 5, 6])The sequentSTATMANn has a cut-freePK proof of
size polynomial inn.

Proof. We construct a cut-freePK proof inductively. It will be clear from our
construction that the proof has size polynomial inn. For n = 1 we have the
following proof ofSTATMAN1:

p1 −→ p1
weakening

p1 −→ p1, q1
NEG-right

−→ ¬p1, p1, q1

q1 −→ q1
weakening

q1 −→ p1, q1
NEG-right

−→ ¬q1, p1, q1
AND-right

−→ (¬p1 ∧ ¬q1), p1, q1
OR-right

−→ (¬p1 ∧ ¬q1), (p1 ∨ q1)

For the inductive step, suppose that we have a proof ofSTATMANn−1:

−→ (¬p1 ∧ ¬q1), . . . , [γn−2 ∧ ¬pn−1 ∧ ¬qn−1], γn−1

The following is a proof ofSTATMANn:

1. Apply NEG-right topn −→ pn:

−→ ¬pn, pn

2. Apply weakening to (1) and AND-right2 withSTATMANn−1:

−→ (¬p1 ∧ ¬q1), . . . , [γn−2 ∧ ¬pn−1 ∧ ¬qn−1], [γn−1 ∧ ¬pn], pn
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3. Apply NEG-right toqn −→ qn:

−→ ¬qn, qn

4. Apply weakening to (3) and AND-right2 with (2):

−→ (¬p1∧¬q1), . . . , [γn−2∧¬pn−1∧¬qn−1], [γn−1∧¬pn∧¬qn], pn, qn

5. Apply OR-right to (4):

−→ (¬p1∧¬q1), . . . , [γn−2∧¬pn−1∧¬qn−1], [γn−1∧¬pn∧¬qn], (pn∨qn)

6. Apply weakening toSTATMANn−1 and AND-right2 with (5):

−→ (¬p1 ∧ ¬q1), . . . , [γn−1 ∧ ¬pn ∧ ¬qn], [γn−1 ∧ (pn ∨ qn)]

This last sequent isSTATMANn as desired.

Even though the Statman sequents require exponential-size cut-freePK
⋆

proofs, it can be shown that they have smallPK
⋆ proofs if cut-formulas of depth

1 are allowed.

Theorem 2.10.The sequentSTATMANn has a polynomial-size1-PK
⋆ proof.

Proof. Start by derivingΓi −→ γi, for 1 ≤ i ≤ n, where

Γi = {(p1 ∨ q1), . . . , (pi ∨ qi)}

Then, consider the following sequents:

−→ (¬p1 ∧ ¬q1), (p1 ∨ q1)

Γi−1 −→ [γi−1 ∧ ¬pi ∧ ¬pi], (pi ∨ qi) (2 ≤ i ≤ n)

Γn −→ γn

The first two groups can be derived in a way similar to some of the sequents in
the proof of Theorem 2.9. The sequentSTATMANn can then be obtained from
these sequents by repeated cuts on the formulas(pi ∨ qi), starting withi = n.
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2.4 Constant-Depth Boolean Circuits

In this article, we will consider the standard Boolean circuit classesAC
0,

ACC
0[r], for constantr, andNC

1. AC
0 andACC

0[r] circuits are of constant
depth and consist of gates of unbounded fan-in.AC

0 circuits allow only AND, OR
and NOT gates.ACC

0[r] also permitMODr gates. These gates output 1 when
the sum of their inputs is divisible byr. NC

1 circuits are of logarithmic depth but
allow only NOT and binary AND and OR gates.

It is known thatAC
0 andACC

0[qk] circuits of subexponential size cannot
compute theMODp function if p andq are distinct primes [11, 27]. In addition,
these circuits cannot approximateMODp very well:

Theorem 2.11. (Håstad [11]) If C is a depth-d AC
0 circuit of size2n

1/(d+1)
,

then, for sufficiently largen, C cannot computeMODp correctly on more than a

(p− 1)/p+ 1/2n
1/(d+1)

fraction of the inputs.

Theorem 2.12. (Smolensky [27, 28])Suppose thatp andq are distinct primes. If
C is a depth-d ACC

0[qk] circuit of size2o(n
1/2d), then, for sufficiently largen, C

cannot computeMODp correctly on more than a(p− 1)/p+ o(1) fraction of the
inputs.

Note how theAC
0 hardness result is stronger than the one forACC

0[qk]. It
is natural to conjecture that a stronger hardness result also holds forACC

0[qk],
whenq is prime, and even forACC

0[r], with no restriction onr.
More precisely, some of the results in this paper are conditional on the follow-

ing two conjectures. We say that a Boolean function isbalancedif evaluates to 0
and 1 on the same number of inputs.

Conjecture 2.13. Let p be a prime number that does not divider. There exists a
balanced polynomial-sizeACC

0[p] functionf such that ifC is a depth-dACC[r]

circuit of size2n
1/(d+1)

, then, for sufficiently largen,C cannot computef correctly
on more than a1/2 + 1/2n

1/(d+1)
fraction of the inputs.

Conjecture 2.14. There exists a balanced polynomial-sizeNC
1 functionf such

that ifC is a depth-d ACC
0[r] circuit of size2n

1/(d+1)
, then, for sufficiently large

n,C cannot computef correctly on more than an1/2+1/2n
1/(d+1)

fraction of the
inputs.

The first conjecture implies the separation of theACC
0[r] circuit classes for

variousr. Whenp = 2, MOD2 is a reasonable candidate for a hard function.
The second conjecture is weaker since the hard functionf is only required to

be inNC
1. A balanced version of the majority function is a reasonable candidate

for a hard function.
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It is well known that a function has a polynomial-sizeNC
1 circuit if and only

if it has a polynomial-size AND-OR formula. Therefore, the second conjecture
states that there is a balanced polynomial-size AND-OR formula that is hard to
approximate byACC

0[r] circuits.

3 Basic Lower Bound for Statman’s Sequents

In the previous section, we saw that the Statman sequents have polynomial-sizecut-
freePK proofs. Those proofs were clearly not tree-like because in the induction
step, the sequentSTATMANn−1 was used more than once.

In this section, we will show that this is necessary: any cut-freePK
⋆ proof of

the Statman sequents must be of exponential size [29, 5, 6]. We then definea class
of tautologies and point out that this lower bound applies to all of these tautologies.
The proof of this lower bound will provide the backbone for the proof ofthe main
result of this paper.

Theorem 3.1. (Statman lower bound)Any cut-freePK
⋆ proof of the sequent

STATMANn has size at least2n.

We will use the following lemma in the proof of the theorem.

Lemma 3.2. Consider the sequentSTATMANn, which is of the form

−→ (A1 ∧B1), (A2 ∧B2), . . . , (At ∧Bt)

Suppose thatT is similar toSTATMANn and thatT ′ is the result of modifyingT
by replacing one of the formulasA∧B by eitherA, ∧(A),B or ∧(B). Then there
exists a partial truth assignmentρ such thatT ′|ρ is similar toSTATMANn−1,
modulo a possible renaming of the variables.

Proof of Theorem 3.1.It will be easier to prove the lower bound for all sequents
that are similar toSTATMANn. We will prove a lower bound on the number of
sequents in the proof, which, of course, is a lower bound on the size of the proof.
The proof is by induction onn.

The base case, forn = 1, is obvious since any sequent similar to
STATMAN1 cannot be an axiom.

For the induction step, suppose that the lower bound holds for all sequents
similar toSTATMANn−1. Consider a cut-freePK

⋆ proof of a sequentS similar
to STATMANn. Once again,S cannot be an axiom. SoS must be derived by
either a contraction, weakening or an AND-right rule. In addition, moving up the
proof from the rootS, we must eventually reach a sequentT derived by either
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an AND-right rule or by an instance of weakening that is not just an expansion.
(Recall that an expansion is an instance of weakening that introduces another copy
of a formula that is already present in the sequent.)

Consider the weakening case and suppose thatT is derived fromT ′. The se-
quentT must be similar toSTATMANn. This implies thatT ′ is similar to
STATMANn except for the fact that one of theA ∧ B formulas is missing. It
is not hard to see that such a sequent cannot be a tautology, which implies that the
weakening case cannot occur.

Therefore,T is derived from two sequentsT ′ andT ′′ by an AND-right rule.
But then, by the lemma, there are partial truth assignmentsρ′ andρ′′ such thatT ′|ρ′

andT ′′|ρ′′ are both similar toSTATMANn−1. By induction, these restrictions
require proofs of size at least2n−1. Therefore, by Lemma 2.8,T ′ andT ′′ each
require a proof of that size, which implies that the total size of the proof ofS is at
least2n, as desired.

We now prove the lemma.

Proof of Lemma 3.2.Recall thatSTATMANn is the sequent

−→ (¬p1 ∧ ¬q1), [γ1 ∧ ¬p2 ∧ ¬q2], . . . , [γn−1 ∧ ¬pn ∧ ¬qn], γn

where
γn = [(p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn)]

Suppose thatT is similar toSTATMANn. There are two cases to consider de-
pending on which formula is broken up.

The first case is when an occurrence of[γi−1∧¬pi∧¬qi] is broken up, for some
i ≤ n. This means thatT ′ is an expansion ofSTATMANn with one occurrence
of [γi−1 ∧ ¬pi ∧ ¬qi] replaced by one of the following:¬qi, ∧(¬qi), (γi−1 ∧ ¬pi)
or∧(γi−1 ∧ ¬pi). In all cases, letρ set bothpi andqi to⊤.

In T ′|ρ, if j < i, then every occurrence of[γj−1 ∧ ¬pj ∧ ¬qj ] is unchanged.
If j > i, then(pi ∨ qi) is deleted from every occurrence of[γj−1 ∧ ¬pj ∧ ¬qj ].
The formula(pi ∨ qi) is also deleted from every occurrence ofγn. In addition, any
remaining occurrence of[γi−1∧¬pi∧¬qi] is deleted fromT ′|ρ. Forj > i, rename
everypj andqj aspj−1 andqj−1, respectively. The sequentT ′|ρ is now similar
to STATMANn−1.

The second case is when an occurrence ofγn is broken up. ThenT ′ is similar
toSTATMANn but with one occurrence ofγn replaced by one of the following:
(pn ∨ qn), ∧(pn ∨ qn), γn−1 or∧(γn−1). In the first two subcases, letρ set bothpn
andqn to⊥. ThenT ′|ρ is similar toSTATMANn−1.
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In the remaining two subcases, letρ set bothpn andqn to ⊤. Then the every
occurrence of[γn−1 ∧ ¬pn ∧ ¬qn] is deleted fromT ′|ρ and that sequent is similar
to STATMANn−1.

The lower bound of Theorem 3.1 can be generalized to apply to all tautologies
that satisfy the following set of conditions:

Definition 3.3. (Statman property)We say that a sequentS has theStatman prop-
erty of ordern if it satisfies the following conditions:

1. S is of the form−→ Γ whereΓ is not empty and consists of nonempty con-
junctions.

2. Removing fromS every occurrence of any of these conjunctions results in an
invalid sequent.

3. If n ≥ 2, then for all sequentsT similar toS the following condition holds.
For any formula∧(F ) ofT (for a multiset of formulasF ) and for anyA ∈ F ,
let T ′ be obtained fromT by replacing simultaneously all occurrences of
∧(F ) by eitherA or ∧(F ′), whereF ′ is F with one occurrence ofA re-
moved. Then there is a partial truth assignmentρ such thatT ′|ρ has the
Statman property of ordern − 1, modulo a possible renaming of the vari-
ables.

We say that a family of sequents{Sn} has theStatman propertyif, for everyn, Sn
has the Statman property of ordern.

This definition is for sequents that have all their formulas on the right. All
of our tautologies will have that form but this is only done for convenience. The
Statman property, as well as all the results presented later in this paper, canbe gen-
eralized to sequents that have formulas on both sides. In that case, the∨ connective
would play on the left the role that the∧ connective plays on the right.

The following lemma will be useful and follows directly from the definition.

Lemma 3.4. If S has the Statman property of ordern, then every sequent similar
to S also has the Statman property of ordern.

It is easy to verify that the Statman sequents have the Statman property. This
can be proved by induction onn with the third condition following from Lem-
mas 3.2 and 3.4.

It is also easy to see that our proof of Theorem 3.1 applies not just to the
Statman sequents but to all sequents that have the Statman property.
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Theorem 3.5. If S has the Statman property of ordern, then any cut-freePK
⋆

proof ofS requires size2n.

As mentioned earlier, the proof of this lower bound will provide the backbone
for the proof of the main result of this paper. In a sense, the lower boundfor cut-
free proof systems will be lifted to apply to proof systems with limited cuts. The
lower bound will apply to certain extensions of any tautology that has the Statman
property. We therefore end this section by noting that the Pigeonhole Principle also
has the Statman property. (Note that the lower bound of Theorem 3.5 was already
known to apply to the Pigeonhole Principle.)

Lemma 3.6. The Pigeonhole Principle has the Statman property.

Proof. Recall thatPHPn is the sequent

−→
n∧

k=1

¬p1k, . . . ,
n∧

k=1

¬p(n+1)k, p11 ∧ p21, p11 ∧ p31, . . . , pnn ∧ p(n+1)n

The proof of the lemma is by induction onn. For everyn ≥ 1, it is clear
thatPHPn is of the form specified in Definition 3.3. It is also easy to see that
if any of the conjunctions ofPHPn is removed, then we can find an assignment
that falsifies all of the remaining conjunctions. In particular, this establishesthat
PHP1 has the Statman property of order 1.

Now suppose thatn ≥ 2. All that remains to show is that Part 3 of the definition
holds forPHPn. Suppose thatT is similar toPHPn. We will consider two cases,
depending on which formula is broken up.

First, suppose that this formula is a conjunction associated with a pigeoni,
saying that pigeoni is not mapped to any hole. In this case, inT ′, that formula will
be replaced by either¬pir or

∧
k 6=r ¬pik, for some holer. Suppose it is¬pir. Letρ

setpir to true, all otherpik to false, and all otherpjr to false. In other words,ρmaps
pigeoni to holer, and nowhere else, and no other pigeon goes to holer. ThenT ′|ρ
becomes similar to the pigeonhole principle with one less pigeon (pigeoni) and
one less hole (holer). The inductive hypothesis and Lemma 3.4 imply thatT ′|ρ
has the Statman property of ordern − 1. The partial truth assignment that works
for the case of

∧
k 6=r ¬pik is similar: it sends pigeoni to some hole other thanr.

Second, suppose that the formula that is broken up is of the form(pir ∧ pjr),
saying that two pigeonsi andj are both mapped to the same holer. In this case, in
T ′, (pir ∧ pjr) will be replaced by eitherpir, ∧(pir), pjr or ∧(pjr). Suppose it is
pir. Letρ be the restriction that maps pigeonj to r and nowhere else, and no other
pigeon goes to holer. ThenT ′|ρ once again becomes similar to the pigeonhole
principle with one less pigeon and one less hole. The other cases are handled
similarly.
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4 Main Lower Bound Result and Overview of Proof

The Statman lower bound of the previous section is for cut-freePK
⋆. We now

want to “lift” this lower bound so that it holds for stronger proof systems. Let C
be a set of formulas. Our main theorem is a lower bound for systems of the form
PK

⋆[r](C) andPK
⋆(C). Recall that these are versions ofPK

⋆[r] andPK
⋆ in

which the cuts are limited toC. For example,d-PK
⋆ = PK

⋆(C) whereC is the
set of depth-d AND-OR formulas.

Theorem 3.5 essentially says that a sequentS with the Statman property is hard
for cut-free proofs. We will obtain sequents that are hard for proofswith C cuts by
replacing each variable inS by a formula that is hard forC. For technical reasons,
we restrict ourselves to functions that are balanced.

Definition 4.1. Letf(x1, . . . , xm) be a balanced Boolean function onm variables.
Let C be a set of circuits. Thenf is (σ, ǫ)-hard with respect toC if the following
holds. Suppose thatB(x1, . . . , xm, y1, . . . , yk) is any conjunction of circuits that
are either inC or are negations of circuits inC, with k ≥ 0. If the total size of
B is at most2σ(m), then whenf is viewed as a function ofx1, . . . , xm, y1, . . . , yk,
neitherB nor ¬B computef correctly on more than a1/2 + ǫ(m) fraction of the
inputs.

For example, letC be the set of depth-d AND-OR formulas. By Theorem 2.11,
the parity function is(σ, ǫ)-hard with respect toC whereσ(m) = m1/(d+1) and
ǫ(m) = 1/2m

1/(d+1)
.

As another example, letq be prime and letC be the set of depth-d formulas with
AND, OR, NOT andMODqk connectives. By Theorem 2.12, the parity function is
(σ, ǫ)-hard forC whereσ = m1/(d+1) andǫ = o(1). In addition, Conjecture 2.14
asserts there is a balanced polynomial-sizeNC

1 function that is(σ, ǫ)-hard forC
where nowσ = m1/(d+1) andǫ = 1/2m

1/(d+1)
.

Definition 4.2. LetS be a sequent with variablesp1, . . . , pn andf a formula on
m variables. ThenS(f) denotes the sequent obtained fromS by replacing each
variablepi byf(xi1, x

i
2, . . . , x

i
m) for a new set of variablesxi1, x

i
2, . . . , x

i
m.

We are now ready to state our main theorem. LetP be either thePK
⋆[r] or

PK
⋆ proof systems and letC be a set of formulas. Suppose thatS has the Statman

property of ordern and thatf is (σ, ǫ)-hard forC. We will prove a lower bound of
2n on the size of anyP(C) proof ofS(f).

In applications, this lower bound is useful only if2n is at least superpolynomial
in the size ofS(f). Therefore, informally, the functionsσ andǫ must satisfy the
following requirement: for sufficiently largen, there existsm such that
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1. m is not too large, so that2n is superpolynomial in the size ofS(f), and

2. m is not too small, so that Condition (2) below holds.

Theorem 4.3. (Main theorem) Let S be a sequent with the Statman property of
ordern and letk denote the number of variables inS. LetP be either thePK

⋆[r]
or PK

⋆ proof systems. Letf be a Boolean formula inm variables and suppose
that, as a Boolean function,f is balanced and(σ, ǫ)-hard for some setC of formu-
las that is closed with respect to subformulas and restrictions. Suppose that m is
such that

m > 3k + n2, σ(m) ≥ n, ǫ(m) <
1

2n24k
(2)

Then, the sequentS(f) requiresP(C) proofs of size2n.

The hypothesis of the main theorem is satisfied, for example, whenS is
STATMANn, P is PK

⋆, C is the set of depth-d AND-OR formulas (so that
P(C) is d-PK

⋆) andf is a polynomial-size AND-OR parity formula. In this case,
k = 2n, σ(m) = m1/(d+1), ǫ(m) = 1/2m

1/(d+1)
, so Condition (2) is satisfied for

any sufficiently largen by lettingm = 2n2(d+1). Then the sizeN of S(f) isnO(d)

and2n ≥ 2N
1/O(d)

, which is not only superpolynomial but exponential inN .
We end this section with an overview of the proof of the main theorem. The

complete proof will be given in the next section.
Suppose thatS has the Statman property of ordern and letP, C, f andm

satisfy the conditions of the theorem. In particular,f is hard with respect toC.
Recall thatS must have the form−→ Γ where each formula inΓ is a nonempty
conjunction. To keep things simple, suppose that all the formulas ofS(f) are
distinct and that the contraction rule is not used. Now suppose, by contradiction,
thatπ is a smallP(C) proof ofS(f).

First, note thatS(f) is not an axiom. SoS(f) must be derived by either weak-
ening, an AND-right rule or a cut on aC formula. The first two cases can be
handled in essentially the same way as in the Statman lower bound (Theorem 3.1).
So we will focus on the third case in this overview.

Suppose thatS(f) is derived fromg −→ Γ(f) and−→ g,Γ(f) by a cut on
g ∈ C. In this context, we callg a side formula. It could be that one of those
two sequents is easy to prove. A trivial example is wheng = ∨(). In that case,
g −→ Γ(f) can be derived from the axiom∨() −→ by weakening. But then the
validity of −→ g,Γ(f) would essentially depend onΓ(f) sinceg = ∨() is false
for every possible truth assignment. So−→ g,Γ(f) should be just as hard to prove
as the original sequent−→ Γ(f).

In general, with respect toΓ(f), we say that an assignment iscritical for g −→
Γ(f) if it satisfiesg and critical for−→ g,Γ(f) if it falsifies g. Clearly, at least
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half the assignments will be critical for one of those two sequents. Supposeit is
−→ g,Γ(f). Then the fact thatg does not approximatef very well will allow us
to show that every truth assignment to the variables ofΓ can be achieved by a large
number of critical truth assignments to the variables of−→ g,Γ(f).

For example, consider any variablep of Γ. In Γ(f), p is replaced byf . Since
f is hard forg, at least 1/4 of the assignments that falsifyg satisfyf and at least
1/4 of the assignments that falsifyg falsify f . We will later see how to extend this
to all the variables ofΓ.

Intuitively, what all this seems to indicate is that cuts onC formulas don’t help
in a proof ofS(f). This intuition will be formalized as follows. From the root of
π, follow all paths until one of the following is reached: an axiom, a sequent where
the first occurrence of one of the formulas ofS(f) is introduced by weakening,
or a sequent where one of the formulas ofS(f) is introduced by an AND-right
rule (but not necessarily the first occurrence). This defines a subtreeπ′ of π in
which all sequents are of the formΛ −→ ∆,Γ(f) with all the formulas inΛ and
∆ belonging toC.

Generalizing the earlier definitions, we say that the formulas inΛ and∆ are
side formulas(with respect toΓ(f)) and that an assignment iscritical for a sequent
of this form if is satisfies all side formulas on the left and falsifies all side formulas
on the right.

All assignments are critical for the root sequentS(f). In addition, critical
assignments are preserved as we go upπ′ from the root: ifT is derived fromT ′

andT ′′, then every assignment critical forT is also critical for at least one ofT ′

andT ′′. This is essentially because of the soundness of the inference rules.
Now, if π′ has at least2n leaves, then we are done: we have shown thatπ is

large. Otherwise, a1/2n fraction of all assignments is critical for some leafL of
π′. Note that this is a large number of assignments since, by Condition (2), the
total number of assignments is at least2kn

2
.

We can now use onL essentially the same argument that was used in the proof
of the Statman lower bound. For example, suppose thatL is derived fromL′ and
L′′ by an application of one of the AND-right rules that introduces a formula of
Γ(f). The fact thatL is of the formΛ −→ ∆,Γ(f) implies thatL′ must be of the
form Λ −→ ∆,Γ′(f) whereΓ′ contains all the formulas ofΓ but with some∧(F )
replaced by eitherA or∧(F ′), and similarly forL′′:

L′ L′′

L
=

Λ −→ ∆,Γ′(f) Λ −→ ∆,Γ′′(f)

Λ −→ ∆,Γ(f)

In addition, all the partial truth assignments that are critical forL (with respect to
Γ(f)) are also critical forL′ andL′′ (with respect toΓ′(f) andΓ′′(f), respectively).
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Because−→ Γ has the Statman property of ordern, there is a partial truth
assignmentρ′ to the variables of−→ Γ such that(−→ Γ′)|ρ′ = (−→ Ψ′) has
the Statman property of ordern − 1. As explained earlier, the fact thatf is hard
with respect to the side formulas allows us to achieveρ′ with a large number of
critical truth assignments to the variables ofL′. In particular, as we will show later,
there is a partial truth assignmentτ ′ to the variables ofL′ that is consistent withρ′

and such thatL′|τ ′ = (Λ|τ ′ −→ ∆|τ ′ ,Ψ
′(f)) still has a large number of critical

assignments (with respect toΨ′(f)).
The same holds forL′′: there is a partial truth assignmentτ ′′ to the variables

of L′′ such thatL′′|τ ′′ = (Λ|τ ′′ −→ ∆|τ ′′ ,Ψ
′′(f)), where−→ Ψ′′ has the Statman

property of ordern− 1, and such thatL′′|τ ′′ has a large number of critical assign-
ments (with respect toΨ′′(f)). The large number of critical assignments of both
L′|τ ′ andL′′|τ ′′ allows us to repeat the argument on these sequents and inductively
show that each of these sequents requires a proof of size2n−1. Therefore, as in the
Statman lower bound,π must be of size2n.

As we said earlier, in the next section, we will turn this overview into a com-
plete proof of the main theorem. This will require careful calculations of numbers
of critical assignments. We will also address the possibility that contractions may
be used in the proof.

5 Proof of Main Theorem

First, we precisely define the concepts of side formula and critical assignment.

Definition 5.1. LetL be a sequent of the formΛ −→ ∆,Γ. With respect toΓ, the
formulas ofΛ and∆ are calledside formulasand we say that a truth assignment
is critical for L (still with respect toΓ) if it satisfies all the side formulas inΛ and
falsifies all the side formulas in∆.

In order to prove Theorem 4.3, we will need a few lemmas. Here it is crucial
thatf be balanced.

Lemma 5.2. Let f(x1, . . . , xm) be a balanced Boolean formula inm variables
and suppose thatf is (σ, ǫ)-hard for some setC of formulas that is closed with
respect to restrictions. LetB(x1, . . . , xm) be a conjunction of formulas that are
either in C or are negations of formulas inC. Suppose that the size ofB is no
greater than2σ(m) and that a fraction of at least2ǫ(m) truth assignments satisfy
B. Then, among all the assignments that satisfyB, at least1/4 satisfyf and at
least1/4 falsifyf .
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Proof. Let r be the fraction of truth assignments that satisfyB. Thenr ≥ 2ǫ(m).
Suppose that among the truth assignments that satisfyB, there is a fractions that
satisfyf . We will show thats ≥ 1/4. Becausef is balanced, a similar proof shows
that a1/4 fraction of all assignments satisfyingB falsify f .

The assignments on which¬B computesf correctly are those that satisfy ei-
ther¬B ∧ f or B ∧ ¬f . Those assignments represent a(1/2 − rs) + r(1 − s)
fraction of all assignments. Sincef is (σ, ǫ)-hard with respect toC, ¬B computes
f correctly on no more than a1/2 + ǫ(m) fraction of all assignments. Therefore,

1

2
− rs+ r(1− s) ≤

1

2
+ ǫ(m)

Sinceǫ(m) ≤ r/2, it follows thats ≥ 1/4.

Lemma 5.3. Let f be a balanced Boolean formula inm variables and suppose
that f is (σ, ǫ)-hard for some setC of formulas that is closed with respect to re-
strictions. LetS be a sequent of the formΛ −→ ∆,Γ whereΓ contains at least one
occurrence off . Suppose all the side formulas (with respect toΓ) are inC and that
their total size is at most2σ(m). Suppose that the fractiont of assignments that are
critical for S is at least4ǫ(m). Then, for each truth valuev, there is an assignment
τ to the variables off such thatf(τ) = v andS|τ has at least a fractiont/4 of
assignments that are critical.

Proof. LetW be the assignments to the variables ofS other thanx1, . . . , xm, the
variables off . Each assignment inW has2m extensions to all the variables inS.
Let W1 be those assignments inW that have a fraction of at leastt/2 extensions
that are critical forS. Together, all the assignmentsW − W1 can be extended
to at most1/2 of all critical assignments. Therefore, at least1/2 of all critical
assignments are extensions of assignments inW1.

Consider an arbitraryσ ∈W1. Sincet/2 ≥ 2ǫ(m) and sinceC is closed under
restrictions, we can apply Lemma 5.2 toS|σ to get that at least1/4 of the critical
extensions ofσ give f valuev. Therefore, at least1/8 of all critical assignments
givef valuev. In other words, at leastt/8 of all assignments to the variables ofS
are critical and givef valuev.

On the other hand, among all the assignments to the variables off , at most1/2
give f the valuev. As a result, there is an assignmentτ to the variables off that
setsf to v and has a fraction of at leastt/4 extensions that are critical. This implies
that at leastt/4 of the assignments ofS|τ are critical.

Lemma 5.4. Letf be a balanced Boolean formula inm variables and suppose that
f is (σ, ǫ)-hard for some setC of formulas that is closed with respect to restrictions.
LetS be a sequent of the formΛ −→ ∆,Γ whereΓ contains multiple occurrences
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of f over distinct sets of variablesxi1, . . . , x
i
m, for 1 ≤ i ≤ k. Suppose all the

side formulas (with respect toΓ) are inC and that their total size is at most2σ(m).
Suppose that the fractiont of assignments that are critical forS is at least4kǫ(m).
Then, for anyk truth valuesv1, . . . , vk, there is an assignmentτ to all the variables
xij so thatf(xi1, . . . , x

i
m)|τ = vi, for 1 ≤ i ≤ k, andS|τ has at least a fraction

t/4k of assignments that are critical.

Proof. By induction onk using Lemma 5.3.

We are now ready to prove our main theorem. For the sake of the inductive
argument, we will prove a more general result.

Theorem 5.5. LetP be either thePK
⋆[r] or PK

⋆ proof systems,f(x1, . . . , xm)
be a balanced Boolean formula that is(σ, ǫ)-hard for some setC for formulas that
is closed with respect to subformulas and restriction. Letk, n be such that they
satisfy Condition(2) of Theorem 4.3, i.e.,

m > 3k + n2, σ(m) ≥ n, ǫ(m) <
1

2n24k

Suppose that−→ Γ has the Statman property of orderr ≤ n and that the number
j of variables in−→ Γ is no greater thank. Let T be a sequent of the form
Λ −→ ∆,Γ(f) whereΛ andΓ are in C and the total size ofΛ andΓ is at most
2r. Suppose that the fraction of all truth assignments to the variables ofT that are
critical (with respect toΓ(f)) is at least

1

4k−j2(r+1)+(r+2)+···+n

(where the sum(r+ 1) + (r+ 2) + · · ·+ n is 0 if r = n). Then anyP(C) proof of
T must have size at least2r.

By letting r = n andT = S(f), we get our main theorem.

Proof of Theorem 5.5.First note that ifT has no variables, then it is easy to show
thatr must be1. In addition, sinceT contains at least one nonempty conjunction,
T must have size at least 2. So we now assume thatj ≥ 1.

The proof is by induction onr.

Inductive basis: r = 1. The sequentT cannot be an axiom becauseΓ(f) contains
at least one conjunction that does not belong toC and therefore cannot appear on
the left. This implies that the proof contains at least two sequents.

Induction step: r ≥ 2. Suppose that the lower bound holds forr − 1. We prove it
for r.
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Let π be a proof ofT and letα be the fraction of assignments that are critical
for T . Consider the subtreeπ′ of π that is obtained by starting at the root and
following all paths inπ until one of the following is reached:

• an axiom,

• a sequent derived by an instance of weakening that introduces the first oc-
currence of one of the formulas ofΓ(f), or

• a sequent derived by an AND-right rule that introduces one of the formulas
of Γ(f) (but not necessarily the first occurrence of that formula).

In part becauseC is closed with respect to subformulas, it is not hard to see that
all the sequents inπ′ are of the formΛ′ −→ ∆′,Γ′(f), where all the formulas in
Λ′ and∆′ belong toC and where−→ Γ′ is similar to−→ Γ. In addition, all the
partial truth assignments that are critical forT are preserved as we go upπ′ (with
respect to the appropriateΓ′(f)). In particular, every assignment that is critical for
T is critical for at least one leaf ofπ′.

If π′ has size at least2r, then so doesπ, and we are done. Otherwise, there
must be a leafL = (ΛL −→ ∆L,ΓL(f)) of π′ for which a fraction of at leastα/2r

assignments are critical (with respect toΓL(f)).
This leafL cannot be an axiom, for the same reason thatT was not an axiom

in the inductive basis.
So suppose thatL is obtained from some sequentL′ by a weakening that intro-

duces the first occurrence of one of the formulas ofΓL(f):

L′

L
=

ΛL −→ ∆L,Γ
′
L(f)

ΛL −→ ∆L,ΓL(f)

whereΓ′
L is just likeΓL but with one formula missing. The sequent−→ ΓL has

the Statman property because it is similar to−→ Γ. Therefore,−→ Γ′
L is not a

tautology and there is a truth assignmentρ′ that falsifies this sequent. The total
size of the side formulas inL′ (with respect toΓ′

L(f)) is at most2r ≤ 2n ≤ 2σ(m).
The fraction of assignments that are critical forL′ is at leastα/2r > 4jǫ(m)
sinceǫ(m) < 1/(2n

2
4k). We can therefore apply Lemma 5.4: there is a partial

truth assignmentτ ′ that is consistent withρ′ and such that the number of critical
assignments ofL′|τ ′ is at least2jmα/(2r4j). This number is at least1 sincem >
3k + n2. The existence of such a critical assignment and the fact thatτ ′ falsifies
−→ Γ′

L(f) implies thatL′ is not a tautology. Therefore,L could not have been
derived fromL′ by weakening.
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The only other possibility is thatL is obtained by an AND-right rule that intro-
duces one of the formulas ofΓL(f):

L′ L′′

L
=

ΛL −→ ∆L,Γ
′
L(f) ΛL −→ ∆L,Γ

′′
L(f)

ΛL −→ ∆L,ΓL(f)

where each ofΓ′
L(f) andΓ′′

L(f) is just likeΓL(f) but with one of the formulas
∧(F ) replaced by eitherA or∧(F ′).

We now show every proof ofL′ contains at least2r−1 sequents. Because−→
ΓL is similar to−→ Γ, it has the Statman property of orderr and there is a partial
truth assignmentρ′ to the variables of−→ ΓL such that(−→ Γ′

L)|ρ′ = (−→ Ψ′)
has the Statman property of orderr − 1. Let j′ ≤ j be the number of variables of
−→ Ψ′, which means thatρ′ setsj − j′ variables in−→ ΓL. As before, the total
size of the side formulas inL′ (with respect toΓ′

L(f)) is at most2σ(m) and the
fraction of assignments that are critical forL′ is at least4jǫ(m). So we can again
apply Lemma 5.4: there is a partial truth assignmentτ ′ that is consistent withρ′

and such that the fraction of assignments critical for

L′|τ ′ = (ΛL|τ ′ −→ ∆L|τ ′ ,Ψ
′(f))

is at least
α

2r4j−j′
=

1

4k−j′2r+(r+1)+···+n

Since bothC andP(C) are closed with respect to restrictions, the inductive hypoth-
esis implies that every proof of eitherL′|τ ′ orL′ contains at least2r−1 sequents.

The same argument can be used to show every proof ofL′′ also contains at
least2r−1 sequents. This implies thatπ contains at least2r sequents.

6 Applications to Propositional Proof Systems

In this section, we apply our main theorem (Theorem 4.3) to obtain a variety of
results concerning propositional proof systems. Most of these results are condi-
tional on the circuit hardness results conjectured in Section 2.4. First, we obtain
lower bounds for constant-depthPK

⋆[r] and constant-depthPK
⋆ proofs. Second,

we obtain separation results for constant-depthPK
⋆[r] proofs that use different

modular connectives. Third, we show that constant-depthPK
⋆[r] proofs cannot

p-simulate cut-freePK proofs. Finally, we prove a hierarchy theorem for constant-
depthPK

⋆[r] proofs.
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6.1 Lower Bounds ford-PK
⋆[r] and d-PK

⋆

Our first application of the main theorem is a conditional exponential lower bound
for d-PK

⋆[r]. As mentioned earlier, as far as we know, this is the first known
lower bound result for an extension ofAC

0-Frege under a complexity assumption
seemingly weaker thanNP not closed under complementation.

Theorem 6.1. Suppose that Conjecture 2.14 is true and letf be a balanced
polynomial-size AND-OR formula that is hard to approximate by depth-dACC[r]

circuits of size2n
1/(d+1)

. For sufficiently largen and form = (5n2)d+1, any
d-PK

⋆[r] proof of eitherPHPn(fm) or STATMANn(fm) has size at least
2N

1/O(d)
, whereN is the size of the tautology.

The proof is essentially just a matter of verifying that the two tautologies satisfy
the conditions of the main theorem.

Proof Sketch.Corollary 2.14 says thatf is (σ, ǫ)-hard forACC
0[r] circuits of

depthd, where

σ(m) = m
1

d+1 , ǫ(m) = 1/2m
1

d+1

For PHPn we havek = (n + 1)n, while for STATMANn, k = 2n. Thus it
is straightforward to verify that Condition (2) of Theorem 4.3 is satisfied. The-
orem 6.1 then follows from Theorem 4.3 by using the fact that bothPHPn and
STATMANn have the Statman property of ordern. In particular, the sizeN of
the sequent (i.e., eitherPHPn(fm) or STATMANn(fm)) is a polynomial inn
andm, son = N1/O(d), and hence the lower bound2n = 2N

1/O(d)
.

Note that in this lower bound result,m depends ond. This implies that we
have different tautologies for each depth. We can prove a lower boundwith a
single tautology for every depth but the lower bound is slightly weaker.

Theorem 6.2. Let f be as in Theorem 6.1. Letα(n) be unbounded and nonde-
creasing. Letm = nα(n). Then, for sufficiently largen, anyd-PK

⋆[r] proof of
eitherPHPn(fm) or STATMANn(fm) has size at least2N

1/O(α(N))
, whereN

is the size of the tautology.

This is no longer an exponential lower bound, but it is still very large and
certainly much larger than quasipolynomial. For example, withα(n) = log log n,
we get a lower bound of2N

1/O(log logN)
.

We can also use our main theorem to obtain anunconditionalexponential lower
bound ford-PK

⋆. As mentioned earlier, constant-depthPK
⋆ andAC

0-Frege
are polynomially equivalent with respect to constant-depth tautologies and itis
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already known that constant-depthAC
0-Frege proofs of the Pigeonhole Principle

have exponential size [1, 17, 24]. Therefore, constant-depthPK
⋆ proofs of the

Pigeonhole Principle also have exponential size. Our main theorem provides a
much simpler proof of this lower bound.

First note that for everyp, the MODp function can be expressed by a
polynomial-size AND-OR formula. LetMODb

p be the formula defined recursively
as follows:

MODb
p(x1, . . . , xm)

=

p−1∨

a=0

(
MODa

p(x1, . . . , xm/2) ∧MODb−a
p (xm/2+1, . . . , xm)

)

ThenMODp is simplyMOD0
p. Let MODp,m denote theMODp formula overm

variables.

Theorem 6.3. For sufficiently largen and form = (5n2)d+1, anyd-PK
⋆ proof of

eitherPHPn(MOD2,m) or STATMANn(MOD2,m) has size at least2N
1/O(d)

,
whereN is the size of the tautology.

6.2 Separation Results ford-PK
⋆[r] Proofs with Different Modular

Connectives

The lower bound on the size ofd-PK
⋆[r] proofs ofPHP(fm) is interesting in

part because it is a necessary step towards a lower bound on the size ofd-PK
⋆[r]

proofs ofPHP. But by focusing on extensions of the Statman tautology, we can
obtain separation results for thed-PK

⋆[r] andd-PK
⋆ systems.

Theorem 6.4. Let MOD2 be the polynomial-size AND-OR formula described in
the preceding subsection. Consider the tautologySTATMANn(MOD2,m) with
m = (5n2)d+1. LetN denote the size of this sequent. Then the following holds:

1. STATMANn(MOD2,m) has a3-PK
⋆[2] proof of size polynomial inN .

2. For sufficiently largen, anyd-PK
⋆ proof of STATMANn(MOD2,m) has

size at least2N
1/O(d)

.

Proof Sketch.The lower bound is from the previous subsection. A small3-PK
⋆[2]

proof ofSTATMANn(MOD2,m) can be constructed in two stages. First, prove
(by a cut-free proof) that the AND-OR formulaMOD2 is equivalent to a formula
consisting of a single⊕0

2 connective. Second, proveSTATMANn(⊕
0
2) by using

the proof of Theorem 2.10, but now the cut formulas have depth 2, so theproof
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is 2-PK
⋆[2]. Finally, proveSTATMANn(MOD2,m) from STATMANn(⊕

0
2)

by using the fact thatMOD2 is equivalent to⊕0
2. We need to cut on the formulas

of STATMANn(⊕
0
2), which are of depth 3.

We can also prove a conditional separation ofd-PK
⋆[p] from d′-PK

⋆[r] when
p is a prime that does not divider, for somed′. The separating sequents cannot
mention the connectives⊕r or ⊕p. Therefore we need to use the formulaMODp

from the preceding section to express the polynomial-sizeACC
0[p] function from

Conjecture 2.13 as an AND-OR formula. The next theorem is proved in the same
way as the previous one.

Theorem 6.5. Suppose thatp is a prime number that does not divider and that
Conjecture 2.13 is true. Letf be a polynomial-size AND-OR formula that ex-
presses a balanced depth-k, polynomial-sizeACC

0[p] function that is hard to
approximate by depth-d ACC[r] circuits of size2n

1/(d+1)
. Consider the tautology

STATMANn(fm) with m = (5n2)d+1. LetN denote the size of this sequent.
Then the following holds:

1. STATMANn(fm) has a(k + 2)-PK
⋆[p] proof of size polynomial inN .

2. For sufficiently largen, anyd-PK
⋆[r] proof ofSTATMANn(fm) has size

at least2N
1/O(d)

.

6.3 Tree-Like Versus Dag-Like Proofs

The lower bounds in the previous subsections are for thetree-likeproof systems
d-PK

⋆[r] andd-PK
⋆. We would obviously like to extend these lower bounds

to the corresponding dag-like systems. One way would be to show that the tree-
like proofs can p-simulate the dag-like proofs. Our lower bounds for the tree-
like systems would then immediately translate into lower bounds for the dag-like
systems. And this is precisely the case with constant-depth Frege proofs: depth-
(d+1) tree-likeACC

0[r]-Frege proofs can p-simulate depth-d dag-likeACC
0[r]-

Frege proofs, and similarly forAC
0-Frege [14].

Unfortunately, we can combine our lower bounds and the cut-freePK proof of
the Statman tautologies (Theorem 2.9) to show thatd-PK

⋆[r] proofs cannot even
p-simulate cut-freePK proofs.

Theorem 6.6.There is a tautology of sizeN that has polynomial-size cut-freePK

proofs but requiresd-PK
⋆ proofs of size at least2N

1/O(d)
, for sufficiently largeN .

If Conjecture 2.14 is true, then there is a tautology of sizeN that has polynomial-
size cut-freePK proofs but requiresd-PK

⋆[r] proofs of size at least2N
1/O(d)

, for
sufficiently largeN .
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Proof Sketch.The sequent that separates cut-freePK and d-PK
⋆ is

STATMANn(MOD2,m) as in Theorem 6.4. A polynomial-size cut-free
PK proof of this sequent is easily obtained by modifying the proof given in
Theorem 2.9. The lower bound ford-PK

⋆ proofs is given in Theorem 6.4.
The second part is proved similarly.

6.4 Hierarchy Theorems

It is known that theAC
0-Frege hierarchy is infinite in the sense thatAC

0-Frege
proofs of depthd cannot p-simulateAC

0-Frege proofs of depthd + 1 [13]. In
this section, by combining our lower bounds with the 1-PK

⋆ proof of the Statman
tautologies (Theorem 2.10), we show that the constant-depthPK

⋆[r] hierarchy is
also infinite, under the assumption that Conjecture 2.13 holds.

First, for everyp, we show that theMODp function has (exponential-size)
constant-depth AND-OR formulas. As explained earlier, this also shows that every
ACC

0[p] function has a constant-depth AND-OR formula.

Lemma 6.7. For eachd ≥ 2, there is anAND-OR formulaMODp,d,m of depthd,

sizemp(d−1)m1/(d−1)
with anORat the top that computesMODp(x1, . . . , xm).

Proof Sketch.Divide the input~x = (x1, . . . , xm) into k = m1/(d−1) blocks
~y1, . . . , ~yk each containingm/k variables. ThenMODp(~x) can be computed with
a DNF formula of sizekpk−1 from the variousMODb

p(~yj) with b = 0, . . . , p − 1

andj = 1, . . . , k. (There arepk−1 terms, each of sizek.) Then repeat recursively
d − 1 times, using either CNF or DNF formulas as appropriate, so that the total
depth ends up beingd and not2(d− 1).

We use the formulaMODp,2d+4,m from the lemma for the next theorem. The
size of this formula is

mp(2d+3)m
1

2d+3

We choose depth2d + 4 because we must havem = O(n2d+2). With this set-
ting, the lower bound2n is still superpolynomial in the size ofMODp,2d+4,m (and
hence also superpolynomial in the size of the sequent). In the following theorem
we assume that Conjecture 2.13 is true. We start with a balanced functionf that is
computable by a polynomial-size depth-k ACC

0[p] circuit that is hard to approxi-
mate byACC

0[r] circuits, as stated by the conjecture. Each gate in theACC
0[p]

can be computed by a depth-(2d+ 4) AND-OR formula, as shown by the lemma.
So the whole circuit is computed by a depth-k(2d+ 4) AND-OR formula.

Theorem 6.8. Suppose thatp is a prime that does not divider and that Conjec-
ture 2.13 is true. Letfk(2d+4) be the depth-k(2d + 4) AND-OR formula given by
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the lemma that expresses a balanced depth-k, polynomial-sizeACC
0[p] function

that is hard to approximate by depth-dACC[r] circuits of size2n
1/(d+1)

. Consider
the tautologySTATMANn(fk(2d+4),m) withm = (5n2)d+1. LetN denote the
size of this sequent. Then the following holds:

1. STATMANn(fk(2d+4),m) has aPK
⋆[r] proof of depthk(2d+4) and size

polynomial inN .

2. For sufficiently largen, anyd-PK
⋆[r] proof of STATMANn(fk(2d+4),m)

has size at least2(c logN)1+1/(2d+2)
(for somec > 0), which is superpolyno-

mial inN .

Proof. The lower bound follows from the main theorem (Theorem 4.3) just like
the other lower bounds of this section. The upper bound is obtained by using
the 1-PK

⋆ proof of the Statman tautologies (Theorem 2.10) and the fact that the
cut formulas in that proof are all of the formpi ∨ qi. When using this proof for
STATMANn(fk(2d+4),m), the depth of these cuts becomesk(2d+4). (Note that
the sequentSTATMANn(fk(2d+4),m) itself is of depthk(2d+ 4) + 2.)

For the lower bound, as noted before the theorem, the sizeN of
STATMANn(fk(2d+4),m) is a polynomial inn and

mp(2d+3)m
1

2d+3

ThereforelogN = O(n
2d+2
2d+3 ), son > (c logN)

2d+3
2d+2 for somec > 0.

At the beginning of this subsection, we mentioned that it was known thatAC
0-

Frege proofs of depthd cannot p-simulateAC
0-Frege proofs of depthd+ 1. The

sequents that witness the separation are of depth at mostd. (They must be for
theAC

0-Frege proofs of depthd to have any chance of proving them.) Based on
the ideas in the proof of Theorem 2.4, this implies that these sequents show that
d-PK

⋆ proofs cannot p-simulate(d+ 1)-PK
⋆ proofs.

By using our new lower bounds, we can give a simpler proof of the fact that
the constant-depthPK

⋆ hierarchy is infinite. The reason we use depth2d+4 here
is the same as for the previous theorem:

Theorem 6.9. Let MOD2,2d+4 be one of the AND-OR formulas given by the
Lemma 6.7. Consider the tautologySTATMAN(MOD2,2d+4,m) with m =
(5n2)d+1. LetN denote the size of this sequent. Then the following hold:

1. STATMAN(MOD2,2d+4,m) has aPK
⋆ proof of depth2d + 4 and size

polynomial inN .
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2. For sufficiently largen, anyd-PK
⋆ proof of STATMAN(MOD2,2d+4,m)

has size at least2(c logN)1+1/(2d+2)
(for somec > 0), which is superpolyno-

mial inN .

6.5 Other Propositional Proof Systems

We briefly mention that our main theorem can be used to obtain results similar to
those in this section but for other propositional proof systems. For example, the
systemPTK can be defined by adding threshold connectives and corresponding
axioms and rules to thePK system. Constant-depthPTK proofs can then be
defined like constant-depthPK proofs or constant-depthPK[r] proofs by limiting
only the depth of the cuts. It is easy to verify that the proof of our main theorem
applies toPTK

⋆ proofs and that the various applications of this section also apply
to constant-depthPTK

⋆ proofs, assuming a conjecture similar to Conjecture 2.14,
that there is a polynomial-sizeNC

1 function that is hard to approximate byTC
0

circuits.

7 Applications Beyond Propositional Proof Systems

In this section, we apply our general lower bound result and technique toobtain
results that apply to other proof systems. First, we present a new proof of the non-
finite axiomatizability of the bounded arithmetic theoryI∆0(R). Then, we prove
a conditional hierarchy theorem for the quantified propositional proof systemsG⋆

i .

7.1 Non-Finite Axiomatizability of I∆0(R)

We derive from Theorem 6.9 another proof of the fact that the relativized theory
I∆0(R) is not finitely axiomatizable (an earlier proof is given in [16]). We will
present our argument for the two-sorted version ofI∆0(R), i.e.,ΣB

0 (V
0), theΣB

0

consequences ofV0. (The full theoryV0 is associated withAC
0 and serves as the

base theory for the development in [8].)
The high-level idea of the proof is as follows. Suppose for a contradiction that

Σ
B
0 (V

0) is finitely axiomatizable. Then by compactness it can be axiomatized by
a finite set of induction axioms and probably some other basic axioms. Letd ∈ N

be a common bound on the depth of all these axioms. By the Paris-Wilkie proposi-
tional translation, each theorem ofΣ

B
0 (V

0) translates into a family of tautologies
with polynomial-sized-PK

⋆ proofs. Now it is easy to see that the uniform version
of the separating propositional sequents in Theorem 6.9 belongs toΣ

B
0 (V

0), and
this gives a contradiction.

33



We refer to [8, Chapter 5] for basic definitions ofV
0. In short, there are two

sorts of variables: the number variablesx, y, z, . . . range over natural numbersN,
and the set (or string) variablesX,Y, Z, . . . are meant to be finite subsets ofN.
When presented as input to computing machines, set variables are given as binary
strings while number variables are given in unary notation (and thus play only
auxiliary role). The underlying languageL2

A is

L2
A = [0, 1,+, ·, |X|; ≤,=1,=2,∈]

where0, 1,+, ·,≤,=1 are number functions and relations,|X| is the length (with
number value) of the stringX which serves also as an upper bound for the elements
of X, ∈ is the membership relation, and=2 is equality for sets. We often omit the
subscripts in=1,=2, and also writeX(t) for t ∈ X (we think ofX(i) as thei-th
bit in the string representation ofX). Note that the only string terms are string
variables.

The bounded quantifiers are of the forms∃x ≤ t, ∀x ≤ t, ∃X ≤ t and∀X ≤ t,
where for the string quantifiers the bounding termst bound the lengths of the string
variables.ΣB

0 formulas are formulas with only bounded number quantifiers that
may contain free string variables. The theoryV

0 is axiomatized by a set2-BASIC

of defining axioms forL2
A together with comprehension axioms forΣ

B
0 formulas,

i.e., axioms of the form

∃Y ≤ b∀y < t(Y (y) ↔ ϕ(y, Y ))

for aΣB
0 formulaϕ that might contain other free variables. It is known thatV

0 is a
conservative extension ofI∆0. Moreover,V0 is Σ

B
0 -conservative over the theory

Ṽ
0 which is defined in the same way asV0 but with the comprehension axioms

replaced by the induction axioms overΣ
B
0 formulas:

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(z)

(whereϕ(z) is aΣB
0 formula that may contain other free variables). In other words,

Ṽ
0 can be axiomatized by theΣB

0 consequences ofV0.
We refer to [8, Chapter 7] for the translation of a first-order formulas intoa fam-

ily of propositional formulas. Basically, to translate a first-order formulaϕ(~x, ~X)
we give each number variablex a valuem ∈ N and each string variableX a
lengthn, and translate the bitX(i) of X into a propositional variablepXi , for
0 ≤ i ≤ n−2. (Other bits ofX get constant values:X(n−1) = ⊤ andX(i) = ⊥
for i ≥ n.) The result is denoted byϕ(~x, ~X)[~m;~n].

It is known thatΣB
0 theorems of̃V0 translate into families of tautologies that

have polynomial size constant depthPK
⋆ proofs [8, Chapter 7]. This is done by
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translatingṼ0 anchored (or free-cut free) proofs by translating their formulas as
described above.

Now we give a uniform (i.e., first-order) version of the propositional sequents
that separated-PK

⋆ from (2d + 4)-PK
⋆ (Theorem 6.9). This is constructed us-

ing the following uniform version of the propositional formulaMOD2,d,m from

Lemma 6.7: Under the settinga = 2m
1/(d−1)

, |X| = m+1, the first-order formula
Parityd(a,X) below translates intoMOD2,d,m (the parametera is only to make
sure that the length ofX is not too large).

Lemma 7.1. There is a constantd0 ∈ N so that for everyd ≥ d0,
there is aΣ

B
0 formula Parityd(a,X) of depth d (counting both quantifiers

and Boolean connectives) such that form ∈ N, the propositional formula
Parityd(a,X)[2m

1/(d−1)
;m+ 1] isMOD2,d,m(pX0 , p

X
1 , . . . , p

X
m−1).

Proof. The formulaParityd(a,X) expresses the fact that there areu, v such that
(u plays the role ofm, andv plays the role ofm1/(d−1))

(a) u = v(d−1) anda = 2(d−1)v, and

(b) |X| = u + 1 and the stringX(0), X(1), . . . , X(u − 1) contains an odd
number of⊤.

Condition (a) is fulfilled by using the fact that the relationy = 2x can be
expressed by aΣB

0 formula (and the constantd0 accounts for the depth of this
formula). Condition (b) can be expressed by aΣ

B
0 formula by the same arguments

as for Lemma 6.7.

Now we define the first-order version of Statman’s sequent. Ford ≥ d0, let

Sd = −→ ϕd(a, b,X, Y ), ψd(a, b,X, Y )

where ϕd(a, b,X, Y ) and ψd(a, b,X, Y ) are defined (see below) so that
ϕd(a, b,X, Y ) translates into
(
(¬p1 ∧ ¬q1) ∨ [γ1 ∧ ¬p2 ∧ ¬q2] ∨ . . . ∨ [γn−1 ∧ ¬pn ∧ ¬qn]

)
(MOD2,d,m)

andψd(a, b,X, Y ) translates into

[(p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn)](MOD2,d,m)

The translation ofSd is not exactlySTATMANn(MOD2,d,m) because here
we put the firstn formulas in STATMANn(MOD2,d,m) in a disjunction.
However we will be able to argue that it has the same lower bound2n as
STATMANn(MOD2,d,m).
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Now we describeSd in more detail. First, we wantψd(a, b,X, Y ) to translate
into

n∧

i=1

(MOD2,d,m(xi1, x
i
2, . . . , x

i
m) ∨MOD2,d,m(yi1, y

i
2, . . . , y

i
m)) (3)

For eachi we have distinct sets of propositional variables
−→
xi and

−→
yi . So we will

viewX andY as arrays of strings by using the pairing function〈i, j〉. Thei-th row
of X is denoted byX [i] and can be defined by aΣB

0 formula. Thus define

ψd(a, b,X, Y ) ≡ ∀i ≤ b(Parityd(a,X
[i]) ∨ Parityd(a, Y

[i]))

It can be verified that the propositional translation

ψd(a, b,X, Y )[2m
1/(d−1)

, n; 〈n,m+ 1〉, 〈n,m+ 1〉]

has the form (3) above.
The formulaϕd can be defined in the same way and we omit the details here.

The next lemma follows from our discussion so far.

Lemma 7.2. Under the settinga = 2m
1/(d−1)

, b = n, |X| = |Y | = 〈n,m+ 1〉 the
sequentSd translates intoSTATMAN

′
n(MOD2,d,m), whereSTATMAN

′
n is

the sequent (cf.(1)):

−→ (¬p1∧¬q1)∨[γ1∧¬p2∧¬q2]∨. . . ∨[γn−1∧¬pn∧¬qn], [(p1∨q1)∧. . .∧(pn∨qn)]

Now we argue that the sequentSTATMAN
′
n(MOD2,2d+4,m) also requires

larged-PK
⋆ proofs.

Lemma 7.3. For m = (5n2)d+1, any d-PK
⋆ proof of the sequent

STATMAN
′
n(MOD2,2d+4,m) has size at least2n/n.

Proof. For readability we argue that any cut-free proof ofSTATMAN
′
n must

have size at least2n/n by transforming proof ofSTATMAN
′
n into proof of

STATMANn with an increase of at mostn multiplicative factor in size. The
theorem can be proved by the same argument.

Any proof of STATMAN
′
n can be transformed into a proof of

STATMANn as follows. Simply replace every occurrence of

(¬p1 ∧ ¬q1) ∨ [γ1 ∧ ¬p2 ∧ ¬q2] ∨ . . . ∨ [γn−1 ∧ ¬pn ∧ ¬qn] (4)

by the list

(¬p1 ∧ ¬q1), [γ1 ∧ ¬p2 ∧ ¬q2], . . . , [γn−1 ∧ ¬pn ∧ ¬qn]
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Note that these can only appear in the antecedents. Now any contraction on(4) is
simulated byn contractions on the formulas in the list. Also we do ignore the∨-
right rules that introduce disjunctions in (4). The proof ofSTATMANn obtained
this way is of size at mostn times the size of the original proof ofSTATMAN

′
n

(because of the increase in the number of contractions). SinceSTATMANn

requires proof of size at least2n, STATMAN
′
n requires proof of size at least

2n/n.

We have used a “lazy” argument for the above lemma, which is sufficient
for our application below. With a careful redefinition of Statman property (toal-
low disjunction) the lower bound proof of the main theorem (Theorem 4.3) goes
through. It can then be seen thatSTATMAN

′
n has this property, and hence re-

quiresd-PK
⋆ proof of size2n.

Theorem 7.4. Ṽ0 andΣB
0 (V

0) are not finitely axiomatizable.

Proof. It suffices to show that̃V0 is not finitely axiomatizable, becausẽV0 is
axiomatized by theΣB

0 consequences ofV0. We follow the outline given at the
beginning of this section.

Suppose for a contradiction thatṼ0 is axiomatized by a finite setS of formu-
las. BecausẽV0 can be axiomatized by2-BASIC and the set of all induction
axioms forΣB

0 formulas, by compactness we can assume thatS consists only of
2-BASIC and a finite set of induction axioms forΣB

0 formulas. Letd1 be a up-
per bound for the depth (counting both bounded number quantifiers and Boolean
connectives) of the formulas inS. In other words, theorems of̃V0 haveṼ0-proofs
where cut formulas have depth at mostd1. (This follows by considering free-cut
free, or anchored, proofs.)

It is shown [8, Chapter 7] that̃V0 proofs translate into polynomial size constant
depthPK

⋆ proofs. Under the current hypothesis it can be seen that theorems of
Ṽ

0 translate into families of tautologies with polynomial sized1-PK
⋆ proofs.

By induction onb it can be seen thatV0 provesSd for any d. In particular,
V

0 provesS2d+4 whered = max{d0, d1} (d0 is the constant from Lemma 7.1).
Thus the translations ofS2d+4 have polynomial-sized1-PK

⋆ proofs, contradicts
Theorem 6.9.

7.2 Extension to QBF Proof Systems

We now consider the systemG [15, 7] which is an extension ofPK for quan-
tified Boolean formulas. There are quantifiers∃, ∀ with the following semantic
interpretation.

∃xA(x) ⇔ A(⊥) ∨A(⊤), ∀xA(x) ⇔ A(⊥) ∧A(⊤)
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Also, here we restrict the Boolean connectives∨, ∧ to have arity 2. Thus formulas
are defined inductively as follows:

(i) atomic formulas are Boolean constants⊥ and⊤, and Boolean variablespi
andxi;

(ii) if A andB are formulas, then so are(A∨B), (A∧B), ¬A, ∃xiA and∀xiA.

The structural rules, the cut rule and the introduction rules for¬ (NEG-left and
NEG-right) are as forPK. The introduction rules for∨, ∧ and the quantifiers are
listed below:

A,B,Γ −→ ∆
AND-left

(A ∧B),Γ −→ ∆

Γ −→ A,∆ Γ −→ B,∆
AND-right

Γ −→ (A ∧B),∆

A,Γ −→ ∆ B,Γ −→ ∆
OR-left

(A ∨B),Γ −→ ∆

Γ −→ A,B,∆
OR-right

Γ −→ (A ∨B),∆

A(B),Γ −→ ∆
∀-left

∀xA(x),Γ −→ ∆

Γ −→ ∆, A(p)
∀-right

Γ −→ ∆, ∀xA(x)

A(p),Γ −→ ∆
∃-left

∃xA(x),Γ −→ ∆

Γ −→ ∆, A(B)
∃-right

Γ −→ ∆, ∃xA(x)

Restriction: In the rules∀-right and∃-left, p must not occur in the bottom sequent.
For i ≥ 0, Σq

i (resp. Π
q
i ) is the set of formulas that have a prenex form

where there are at mosti alternations of quantifiers, with the outermost quantifier
being∃ (resp.∀). In particular,Σq

0 andΠq
0 both denote the set of quantifier-free

propositional formulas. The systemGi is the subsystem ofG in which all cut
formulas belong toΣq

i ∪Π
q
i . G

⋆
i denotes tree-likeGi.

It is known thatG⋆
i+1 andGi are p-equivalent forΣq

i ∪ Π
q
i formulas, and

Perron [23] shows thatGi p-simulatesG⋆
i+1 for all quantified formulas. Here we

will show that under some complexity theoretic assumptionG
⋆
i does not simulate

cut-freeG. We need to show thatG is closed under restrictions (Definition 2.7).
First we extend Definition 2.5 to define restrictions of quantified formulas.

Definition 7.5. (Restriction of a quantified formula)The restrictionf |ρ of a quan-
tified formulaf is defined as in Definition 2.5 with the following additional case:

6. If f = ∃xA andA|ρ does not contain any free occurrence ofx, thenf |ρ =
A|ρ. Otherwise,f |ρ = ∃x(A|ρ). Similarly forf = ∀xA.

The result of applying restriction to a sequent of QBF is defined as in Defini-
tion 2.6.
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Lemma 7.6. G is closed under restrictions.

Proof. We extend the proof of Lemma 2.8. The additional cases are the introduc-
tion rules for∃ and∨. Consider, for example, the case of∃-right:

S1

S
=

Γ −→ ∆, A(B)

Γ −→ ∆, ∃xA(x)

First, suppose that all free occurrences ofx is deleted from the restrictionA′ of
A(x). ThenB is also deleted from(A(B))′. By definition(∃xA(x))′ = A′. So in
this caseS′ = S′

1, and no further derivation is required.
Now suppose that some free occurrence ofx remains in(A(x))′. Then(A(B))′

has the formA′(B′), andS′ can be obtained fromS′
1 by the rule∃-right with target

formulaB′.

The following theorem is proved in the same way as the results in Section 6.

Theorem 7.7. Let i > j ≥ 0.

(a) Suppose that there is a Boolean functionf that is definable by a familyfm of
QBF formulas and that is(σ, ǫ)-hard forΣq

j for some functionsσ(m), ǫ(m)
satisfying the following condition: For sufficiently largen there ism that
meets Condition(2) of Theorem 4.3, and such that2n is superpolynomial in
the size offm. ThenG⋆

j does not simulateG⋆ as well as cut-freeG.

(b) Suppose that there is a functionf as in (a) but now the familyfm definingf
belongs toΣq

i . ThenG⋆
j does not simulateG⋆

i .

It is known thatG⋆
0 p-simulatesG0 for Σq

1 formulasin prenex form[18]. It is
still consistent with our knowledge that the hard formula for quantifier-free formu-
las in the hypothesis of the theorem belongs toΣ

q
1. This is because the formulas in

our separating sequent are not in prenex form (although they are inΣ
q
1).

8 Conclusion

In this paper we have presented a general method for taking a family of sequents
that require large tree-like cut-free proofs, and “lifting” them in order toobtain
a family of sequents that are hard for stronger classes of tree-like proof systems.
An obvious open problem is to prove similar lower bounds without the tree-like
restriction. While the methods used in this paper cannot be adapted straightfor-
wardly, we nevertheless feel that our “lifting” approach should be generalizable to
non-tree-like systems. For non-tree-like proofs, an obvious way to generalize our
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argument would be to start with the basic lower bound technique for a dag-like
cut-free system (i.e., resolution), rather than starting with the basic lower bound
technique for tree-like cut-free proofs, and prove a similar result to ourmain theo-
rem, where the size-width/bottleneck-counting technique used to obtain resolution
lower bounds [10, 4] replaces the Statman lower bound method.

Secondly, we would like to develop a new, general-purpose method for ob-
tainingAC

0-Frege lower bounds for CNF formulas. For example, can we obtain
a top-down strategy for the liar game formulation ofAC

0-Frege for the PHP?
Toward this end, we would like to know whether inapproximability results are
enough to prove lower bounds for CNF formulas. For example, can we reduce the
AC

0-Frege lower bound for some CNF formula to a natural hardness assumption
aboutAC

0, such as the inapproximability of parity byAC
0 circuits? The only

known proofs require structural information aboutAC
0, such as the fact that un-

der a special family of restrictions, anAC
0 function reduces to a local function (a

small-depth decision tree, or a function depending on only a constant number of
variables).

Thirdly, in our last application we show that theG∗
i hierarchy does not collapse

toG∗
1 unless SAT can be approximated by polynomial-size circuits. In contrast, it

has been known that theSi
2 hierarchy does not collapse toS1

2 unless the polynomial
hierarchy collapses. We would like to know how these assumptions compare to
one another. In particular, do polynomial-size circuits approximating SAT imply
the collapse of the polynomial-time hierarchy?
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