
Assignment 2 Dataflow Analysis
Due Date: Mar. 7th, Total Marks: 100 pts

CSCD70 Compiler Optimizations
Department of Computer Science

University of Toronto

ABSTRACT
In class, we discussed interesting dataflow analyses such as
Reaching Definitions, Liveness, and Available Expressions.
Although these analyses are different in certain ways, for ex-
ample they compute different program properties and analyze
the program in different directions (forwards, backwards),
they share some common properties such as iterative algo-
rithms, transfer functions, and meet operators. These com-
monalities make it worthwhile to write a generic framework
that can be parameterized appropriately for solving a specific
dataflow analysis. In this assignment, you will implement
such an iterative dataflow analysis framework in LLVM, and
use it to implement a forward dataflow analysis (Available
Expressions) and a backward dataflow analysis (Liveness).
Although Liveness and Available Expressions implementa-
tions are available in some form in LLVM, they are not of
the iterative flavor, and the objective of this assignment is
to create a generic framework for solving iterative bitvector
dataflow analysis problems, and use it to implement Liveness
and Available Expressions analysis.

1 POLICY
1.1 Collaboration
You will work in groups of two for the assignments in this
course. Please turn in a single writeup per group, indicating
the names and UTORid of both group members.

1.2 Submission
Please include all your files in an archive labeled with the
UTORid of both group members, and email the resulting file
to bojian@cs.toronto.edu. Make sure that when this archive
is extracted, the files appear as follows:

./a2-utorid1-utorid2/writeup.pdf

./a2-utorid1-utorid2/Dataflow/include/
dfa/framework.h

./a2-utorid1-utorid2/Dataflow/src/
liveness.cpp

./a2-utorid1-utorid2/Dataflow/src/
avail_expr.cpp

./a2-utorid1-utorid2/Dataflow/Makefile

./a2-utorid1-utorid2/Dataflow/tests/

• A report named writeup.pdf that briefly describes the
implementation of both passes, shows the output results on
the two microbenchmarks provided, and has answers to the
theoretical questions in this assignment.

• Well-commented source code for your iterative frame-
work and passes (Liveness and Available Expressions), and
associated Makefile (please write your Makefile in such a
way that all passes can be built, integrated, and run using the
command make all).
• A subfolder named tests that contains all the microbench-

marks used for verification of your code. Note that for this
assignment, you do NOT need to come up with new test cases.

2 PROBLEM STATEMENT
2.1 Iterative Framework [40 pts]
A well written iterative dataflow analysis framework signif-
icantly reduces the burden of implementing new dataflow
passes, the developer only writes pass specific details such
as the meet operator, transfer function, analysis direction etc.
In particular, the framework should solve any unidirectional
dataflow analysis as long the analysis supplies the following:

(1) Domain
(2) Direction (Forward/Backward)
(3) Transfer Function
(4) Meet Operation
(5) Initial Condition
(6) Boundary Condition

To simplify the design process, the domain of values have
been represented as bitvectors so that it is easy to carry out
set operations (union, intersection).

2.2 Dataflow Analysis [40 pts]
2.2.1 Liveness [20 pts]. Upon convergence, your Liveness
pass should report all variables that are live at each program
point. For this assignment, we will only track the liveness of
instruction-defined values and function arguments. That is,
when determining which values are used by an instruction,
you will use code like this:

Instruction * inst = ...
1

mailto:bojian@cs.toronto.edu

CSCD70 Compiler Optimizations

for (auto iter = inst->op_begin();

iter != inst->op_end(); ++iter)

{

Value * val = *iter;

if (isa < Instruction > (val) ||

isa < Argument > (val))

{

...

}

}

The fact that there are ϕ instructions has ramifications on
how your passes are implemented. Think carefully about what
this means to your implementation and briefly explain this in
your assignment report.

2.2.2 Available Expressions [20 pts]. Upon convergence,
your Available Expressions pass should report all the binary
expressions that are available at each program point. For this
assignment, we are only concerned with expressions repre-
sented by an instance of BinaryOperator. Analyzing com-
parison instructions and unary instructions such as negation
is not required.

We will consider two expressions equal if the instructions
that calculate these expressions share the same opcode, left-
hand-side and right-hand-side operand. In addition to this,
the expression x ⊕ y is equal to expression y ⊕ x under the
condition that the operator ⊕ is commutative.

3 THEORETICAL QUESTIONS
3.1 Loop Invariant Code Motion [10 pts]
Suppose that you are optimizing the code in Fig. 1.

(1) List the loop invariant instructions.
(2) Indicate if each loop invariant instruction can be moved

to the loop preheader, and give a brief justification.

3.2 Lazy Code Motion [10 pts]
Suppose that you are optimizing the code in Listing 1.

void foo(a, b, c)

{

if (a > 5)

{

g = b + c;

}

else

{

while (b < 5)

{

Figure 1: CFG for Analysis

b = b + 1;

d = b + c;

}

}

e = b + c;

return e;

}

Listing 1: Source Code for Analysis

(1) Summarize, in one sentence, what is Lazy Code Motion?
(2) Build the CFG for this code, indicating which instruc-

tions from the original C code will be in each basic block.
Using the algorithm described in class, provide anticipated
expressions for each basic block.

(3) Provide will-be-available expressions for each basic
block, and indicate the earliest placement for each expression,
if applicable.

(4) Provide postponable expressions and used expressions
for each basic block, and indicate the latest placement for
each expression, if applicable.

(5) Complete the final pass of lazy code motion by inserting
and replacing expressions. Provide the finalized CFG, and
label each basic block with its instruction(s). Answer why it
should have better performance compared with the raw CFG.

2

Assignment 2 Dataflow Analysis

4 FAQ
Given below is the questions asked during previous offering of
the class. If you do not think they fully answer your question,
please open a new thread on Piazza.

Q: In class, we always dealt with the DFA by basic
blocks (i.e., the transfer function operates on an entire
basic block). But it seems from the starter code that we
are doing transfer function on each instruction. How does
this work? A: Remember that we mentioned from class that
the transfer function of the entire basic blocks is just the com-
posite of the transfer function of all the instructions within
that basic block, i.e.,

fbb = fin ◦ fin−1 ◦ . . . fi1
1, i1...,n−1,n ∈ bb

You can prove that the above equation is mathematically
correct, but hopefully it makes sense by intuition.

Q: How does the domain work? What is the relation-
ship between domain and the instruction-bitvector map-
ping? Specifically, suppose that we have N expressions in
our program text, then for available expressions we just
have a bitvector of length N? If that is the case, then how
do we know which bit in the bit vector is associated with a
particular expression? A: Your understanding is right. Sup-
pose that you have N domain elements, then your bitvector
length should be N as well. The reason is because there shall
be a one-to-one correspondence between the domain elements
and the bitvector indices.

As an example, let us suppose that we have three expres-
sions in our program text, namely {a + b,a − b,a × b}. When
we say that the output of instruction i is {001}, that ‘1’ can be
a + b, a − b, or a × b. What really matters is that the mapping
between bitvector indices and domain elements must be con-
sistent throughout the entire analysis, and that is the reason
why we have domain, which plays the role of the metadata
that describes the bitvectors.

1The order of composition depends on the direction of DFA.
3

www.piazza.com

	Abstract
	1 Policy
	1.1 Collaboration
	1.2 Submission

	2 Problem Statement
	2.1 Iterative Framework [40 pts]
	2.2 Dataflow Analysis [40 pts]

	3 Theoretical Questions
	3.1 Loop Invariant Code Motion [10 pts]
	3.2 Lazy Code Motion [10 pts]

	4 FAQ

