IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

779

How to Make a Correct Multiprocess Program
Execute Correctly on a Multiprocessor

Leslie Lamport

Abstract —A multiprocess program executing on a modern multiprocessor must issue explicit commands to synchronize memory
accesses. A method is proposed for deriving the necessary commands from a correctness proof of the underlying algorithm in a
formalism based on temporal relations among operation executions.

Index Terms —Concurrency, memory consistency, multiprocessor, synchronization, verification.

1 THE PROBLEM

CCESSING a single memory location in a multiprocessor
A is traditionally assumed to be atomic. Such atomicity
is a fiction; a memory access consists of a number of hard-
ware actions, and different accesses may be executed con-
currently. Early multiprocessors maintained this fiction, but
more modern ones usually do not. Instead, they provide
special commands with which processes themselves can
synchronize memory accesses. The programmer must de-
termine, for each particular computer, what synchroniza-
tion commands are needed to make his program correct.

One proposed method for achieving the necessary syn-
chronization is with a constrained style of programming
specific to a particular type of multiprocessor architecture
[7], [8]. Another method is to reason about the program in a
mathematical abstraction of the architecture [5]. We take a
different approach and derive the synchronization com-
mands from a proof of correctness of the algorithm.

The commonly used formalisms for describing multi-
process programs assume atomicity of memory accesses.
When an assumption is built into a formalism, it is difficult
to discover from a proof where the assumption is actually
needed. Proofs based on these formalisms, including in-
variance proofs [4], [16] and temporal-logic proofs [17],
therefore seem incapable of yielding the necessary syn-
chronization requirements. We derive these requirements
from proofs based on a little-used formalism that makes no
atomicity assumptions [11], [12], [14]. This proof method is
quite general and has been applied to a number of algo-
rithms. The method of extracting synchronization com-
mands from a proof is described by an example—a simple
mutual exclusion algorithm. It can be applied to the proof
of any algorithm.

Most programs are written in higher-level languages
that provide abstractions, such as locks for shared data, that
free the programmer from concerns about the memory ar-

» The author is with Digital Equipment Corporation, Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301.
E-mail: lamport@pa.dec.com

Manuscript received 24 Jan. 1995; revised 11 Nov. 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number 104121.0.

O

chitecture. The compiler generates synchronization com-
mands to implement the abstractions. However, some algo-
rithms—especially within the operating system—require
more efficient implementations than can be achieved with
high-level language abstractions. It is to these algorithms,
as well as to algorithms for implementing the higher-level
abstractions, that our method is directed.

2 THE FORMALISM

An execution of a program is represented by a collection of
operation executions with the two relations — (read precedes)
and --» (read can affect). An operation execution can be in-
terpreted as a nonempty set of events, where the relations
— and --» have the following meanings.

A — B: every event in A precedes every event in B.
A --»> B: some event in A precedes some event in B.

However, this interpretation serves only to aid our under-
standing. Formally, we just assume that the following axi-
oms hold for any operation executions A, B, C, and D.

Al. — is transitive (A - B — C implies A — C) and irre-
flexive (A -A A).

A2.A > BimpliessA -->Band B-4 A.

A3. A —> B--> Cor A--> B— Cimplies A --> C.

A4. A - B--> C— Dimplies A — D.

Ab5. For any A there are only a finite number of B such
that A — B.

The last axiom essentially asserts that all operation execu-
tions terminate; nonterminating operations satisfy a differ-
ent axiom that is not relevant here. Axiom A5 is useful only
for proving liveness properties; safety properties are
proved with Axioms A1-A4. properties. Anger [3] and
Abraham et al. [1] introduced the additional axiom

AB.A -->B — C --> D implies A --»> D.

and showed that A1-A6 form a complete axiom system for
the interpretation based on operation executions as sets of
events.

Axioms Al-A6 are independent of what the operation
executions do. Reasoning about a multiprocess program
requires additional axioms to capture the semantics of its

0018-9340/97/$10.00 © 1997 IEEE

780

operations. The appropriate axioms for read and write op-
erations will depend on the nature of the memory system.

The only assumptions we make about operation execu-
tions are axioms A1-A5 and axioms about read and write
operations. We do not assume that — and --» are the rela-
tions obtained by interpreting an operation execution as the
set of all its events. For example, sequential consistency [10]
is equivalent to the condition that — is a total ordering on
the set of operation executions—a condition that can be
satisfied even though the events comprising different op-
eration executions are actually concurrent.

This formalism was developed in an attempt to provide
elegant proofs of concurrent algorithms—proofs that re-
place conventional behavioral arguments with axiomatic
reasoning in terms of the two relations — and -->. Al-
though the simplicity of such proofs has been questioned
[6], they do tend to capture the essence of why an algorithm
works.

3 AN EXAMPLE

3.1 An Algorithm and Its Proof

Fig. 1 shows process i of a simple N-process mutual exclu-
sion algorithm [13]. We prove that the algorithm guarantees
mutual exclusion (two processes are never concurrently in
their critical sections). The algorithm is also deadlock-free
(some critical section is eventually executed unless all proc-
esses halt in their noncritical sections), but we do not con-
sider this liveness property. Starvation of individual proc-
esses is possible.

repeat forever
noncritical section;
I x; = true;
forj:=1luntili-1
do if X; then x; := false;
while x; do od;
goto ¢ fi od;
forj:=i+ luntil Ndo while x;dood od;
critical section;
x; = false
end repeat

Fig. 1. Process i of an N-process mutual-exclusion algorithm.

The algorithm uses a standard protocol to achieve mu-
tual exclusion. Before entering its critical section, each proc-
ess i must first set x; true and then find Xj false, for all other
processes j. Mutual exclusion is guaranteed because, when
process i finds x; false, process j cannot enter its critical sec-
tion until it sets x; true and finds x; false, which is impossi-
ble until i has exited the critical section and reset x;. The
proof of correctness formalizes this argument.

To prove mutual exclusion, we first name the following
operation executions that occur during the nth iteration of
process i’s repeat loop.

Lri‘ The last execution of statement | prior to entering the
critical section. This operation execution sets x; to true.

Rfj The last read of x; before entering the critical section.
This read obtains the value false.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

CS!" The execution of the critical section.
Xin The write to x; after exiting the critical section. It
writes the value false.
Mutual exclusion asserts that CS/' and CS]" are not concur-
rent, for all m and n, if i ¢j.1 Two operations are nonconcur-

rent if one precedes (—) the other. Thus, mutual exclusion
is implied by the assertion that, for all m and n, either
Cs' - csj!“ or CSJ.rn — CSifi#].

The proof of mutual exclusion, using axioms A1-A4 and
assumptions B1-B4 below, appears in Fig. 2. It is essentially
the same proof as in [13], except that the properties re-
quired of the memory system have been isolated and
named B1-B4. (In [13], these properties are deduced from
other assumptions.)

THEOREM. For all m, n, i, and j such that i # j, either CS;' — CS}n
or CS;" — CS/'.
Case A Rj --» L.
L4 —>R{
Proof: B, case assumption, B1 (applied to L] and R{"}),
and A4.
2R -4 L
Proof: 1 and A2.
3. X >Ry
Proof: 2 and B4 (applied to R,
4 CS - Cs"
Proof: B3, 3, B2 (applied to R}, and CS}"), and A4.

L, and X/).

CaseB: R}, -4].
L X" -5 R,
Proof: Case assumption and B4.
2. CS}" — CS/".
Proof: B3 (applied to CS]" and X"), 1, B2, and A4.

Fig. 2. Proof of mutual exclusion for the algorithm of Fig. 1.

B1-B4 are as follows, where universal quantification
over n, m, i, and j is assumed. B4 is discussed below.

BL L} - R/,

B2. R, — CS/

B3.CS' — X/

B4.If R, -4 L] then X{" existsand X[" --> R};.

Although B4 cannot be proved without additional assump-
tions, it merits an informal justification. The hypothesis,

1. Except where indicated otherwise, all assertions have as an unstated
hypothesis the assumption that the operation executions they mention
actually occur. For example, the theorem in Fig. 2 has the hypothesis that

CSin and CSJ.m occur.

LAMPORT: HOW TO MAKE A CORRECT MULTIPROCESS PROGRAM EXECUTE CORRECTLY ON A MULTIPROCESSOR 781

Rf'j -# L], asserts that process i's read Rj; of x; occurred
too late for any of its events to have preceded any of the
events in process j’s write Lrjn of x;. It is reasonable to infer

that the value obtained by the read was written by LT ora
later write to x;. Since L] writes true and R is a read of
false, Rfj must read the value written by a later write. The

issued after LT is X[

first write of X i i

ij --> Ri’fj to hold.

SO we expect

3.2 The Implementation

Implementing the algorithm for a particular memory ar-
chitecture may require synchronization commands to as-
sure B1-B4. Most proposed memory systems satisfy the
following property.

C1. All write operations to a single memory cell by any
one process are observed by other processes in the
order in which they were issued.

They also provide some form of synchronization command,
synch, (for example, a “cache flush” operation) satisfying

C2. A synch command causes the issuing process to wait
until all previously issued memory accesses have
completed.

Properties C1 and C2 are rather informal. We restate them
more precisely as follows.

C1’. If the value obtained by a read A issued by process i
is the one written by process j, then that value is the
one written by the last-issued write B in process j such
that B --> A.

C2’. If operation executions A, B, and C are issued in that
order by a single process, and B is a synch, then A — C.

Property C2’ implies that B1-B3 are guaranteed if synch
operations are inserted in process i’s code immediately after
statement | (for B1), immediately before the critical section
(for B2), and immediately after the critical section (for B3).
Assumption B4 follows from C1".

Now let us consider a more specialized memory archi-
tecture in which each process has its own cache, and a write
operation (asynchronously) updates every copy of the
memory cell that resides in the caches. In such an architec-
ture, the following additional condition is likely to hold:

C3. A read of a memory cell that resides in the process’s
cache precedes (—) every operation execution issued
subsequently by the same process.

If the memory system provides some way of ensuring that
a memory cell is permanently resident in a process’s cache,
then B2 can be satisfied by keeping all the variables x; in
process i’s cache. In this case, the synch immediately pre-
ceding the critical section is not needed.

3.3 Observations

One might think that the purpose of memory synchroniza-
tion commands is to enforce orderings between commands
issued by different processes. However, B1-B3 are prece-
dence relations between operations issued by the same proc-

ess. In general, one process cannot directly observe all the
events in the execution of an operation by another process.
Hence, when viewing a particular execution of an algo-
rithm, the results of executing two operation executions A
and D in different processes can permit the deduction only
of a causality (--») relation between A and D. Only if A and
D occur in the same process can A — D be deduced by di-
rect observation. Otherwise, deducing A — D requires the
existence of an operation B in the same process as A and an
operation C in the same process as D such that A —-B --> C
— D. Synchronization commands can guarantee the rela-
tionsA—Band C — D.

The example of the mutual exclusion algorithm illus-
trates how a set of properties sufficient to guarantee cor-
rectness can be extracted directly from a correctness proof.
Implementations of the algorithm on different memory ar-
chitectures can be derived from the assumptions, with no
further reasoning about the algorithm. An implementation
will be efficient only if the architecture provides synchroni-
zation primitives that efficiently implement the assumed
properties.

4 FURTHER REMARKS

The atomicity condition traditionally assumed for multi-
process programs is sequential consistency, meaning that
the program behaves as if the memory accesses of all proc-
esses were interleaved and then executed sequentially [10].
It has been proposed that, when sequential consistency is
not provided by the memory system, it can be achieved by
a constrained style of programming. Synchronization
commands are added either explicitly by the programmer,
or automatically from hints he provides. The method of [7],
[8] can be applied to our simple example, if the x; are identi-
fied by the programmer as synchronization variables.
However, in general, deducing what synchronization
commands are necessary requires analyzing all possible
executions of the program, which is seldom feasible. Such
an analysis is needed to find the precedence relations that,
in the approach described here, are derived from the proof.

Deriving synchronization commands from a correctness
proof guarantees correctness of the implementation. How-
ever, the set of synchronization commands will be minimal
only if the proof is based on a minimal set of synchroniza-
tion assumptions. The set of assumptions is minimal if a
counterexample to the theorem can be found when any
assumption is eliminated. In practice, unnecessary as-
sumptions are often uncovered simply because they are not
used in the proof.

Although it replaces traditional informal reasoning with a
more rigorous, axiomatic style, the proof method we have
used is essentially behavioral—one reasons directly about the
set of operation executions. Behavioral methods do not seem
to scale well, and our approach is unlikely to be practical for
large, complicated algorithms. Most multiprocess programs
for modern multiprocessors are best written in terms of
higher-level abstractions. The method presented here can be
applied to the algorithms that implement these abstractions
and to those algorithms, usually in the depths of the operat-
ing system, where efficiency and correctness are crucial.

782

Assertional proofs are practical for more complicated al-
gorithms. The obvious way to reason assertionally about
algorithms with nonatomic memory operations is to repre-
sent a memory access by a sequence of atomic operations
[2], [9]. With this approach, the memory architecture and
synchronization operations are encoded in the algorithm.
Therefore, a new proof is needed for each architecture, and
the proofs are unlikely to help discover what synchroniza-
tion operations are needed. A less obvious approach uses
the predicate transformers win (weakest invariant) and sin
(strongest invariant) to write assertional proofs for algo-
rithms in which no atomic operations are assumed, re-
quirements on the memory architecture being described by
axioms [15]. Such a proof would establish the correctness of
an algorithm for a large class of memory architectures.
However, in this approach, all intraprocess — relations are
encoded in the algorithm, so the proofs are unlikely to help
discover the very precedence relations that lead to the in-
troduction of synchronization operations.

ACKNOWLEDGMENTS

I wish to thank Allan Heydon, Michael Merritt, David
Probst, Garrett Swart, Fred Schneider, and Chuck Thacker
for their comments on earlier versions.

REFERENCES

[1] U. Abraham, S. Ben-David, and M. Magidor, “On Global-Time
and Inter-Process Communication,” Semantics for Concurrency, M.Z.
Kwiatkowska, M. W. Shields, and R.M. Thomas, eds., pp. 311-323.
Leicester: Springer-Verlag, 1990.

[2] JH. Anderson and M.G. Gouda, “Atomic Semantics of Nona-
tomic Programs,” Information Processing Letters, vol. 28, pp. 99-103,
June 1988.

[3] F.D. Anger, “On Lamport’s Interprocessor Communication Model,”
ACM Trans. Programming Languages and Systems, vol. 11, no. 3,
pp. 404-417, July 1989.

[4] E.A. Ashcroft, “Proving Assertions about Parallel Programs,” J.
Computer and System Sciences, vol. 10, pp. 110-135, Feb. 1975.

[5] H. Attiya and R. Friedman, “A Correctness Condition for High-
Performance Multiprocessors,” Proc. 24th Ann. ACM Symp. Theory
of Computing, pp. 679-690, 1992.

[6] S. Ben-David, “The Global Time Assumption and Semantics for
Concurrent Systems,” Proc. Seventh Ann. ACM Symp. Principles of
Distributed Computing, pp. 223-232. ACM Press, 1988.

[71 K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy, “Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors,” Proc. Int’l Conf. Com-
puter Architecture, 1990.

[8] P.B. Gibbons, M. Merritt, and K. Gharachorloo, “Proving Sequen-
tial Consistency of High-Performance Shared Memories,” Proc.
Symp. Parallel Algorithms and Architectures, July 1991. A full ver-
sion available as an AT&T Bell Laboratories technical report, May
1991.

[9] L. Lamport, “Proving the Correctness of Multiprocess Programs,”

IEEE Trans. Software Eng., vol. 3, no. 2, pp. 125-143, Mar. 1977.

L. Lamport, “How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs,” IEEE Trans. Comput-

ers, vol. 28, no. 9, pp. 690-691, Sept. 1979.

L. Lamport, “A New Approach to Proving the Correctness of

Multiprocess Programs,” ACM Trans. Programming Languages and

Systems, vol. 1, no. 1, pp. 84-97, July 1979.

L. Lamport, “The Mutual Exclusion Problem—~Part I: A Theory of

Interprocess Communication,” J. ACM, vol. 33, no. 2, pp. 313-326,

Jan. 1985.

L. Lamport, “The Mutual Exclusion Problem—~Part II: Statement

and Solutions,” J. ACM, vol. 32, no. 1, pp. 327-348, Jan. 1985.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

L. Lamport, “On Interprocess Communication—Part |: Basic
Formalism,” Distributed Computing, vol. 1, pp. 77-85, 1986.

L. Lamport, “win and sin: Predicate Transformers for Concur-
rency,” ACM Trans. Programming Languages and Systems, vol. 12,
no. 3, pp. 396-428, July 1990.

S. Owicki and D. Gries, “Verifying Properties of Parallel Programs:
An Axiomatic Approach,” Comm. ACM, vol. 19, no. 5, pp. 279-284,
May 1976.

A. Pnueli, “The Temporal Logic of Programs,” Proc. 18th Ann.
Symp. Foundations of Computer Science, pp. 46-57. IEEE, Nov. 1977.

Leslie Lamport has thought about making a
multiprocessor computer for the past two dec-
ades, but has yet to do so. In 1985, he joined
Digital Equipment Corporation’s Systems Re-
search Center, where the five-processor Firefly
computer was being built. He remains there
today, although the Fireflies left years ago.

