

Foundations of the C++ Concurrency Memory Model
Hans-J. Boehm, Sarita V. Adve
HP Laboratories
HPL-2008-56
May 21, 2008*

Memory
consistency,
memory
model,
sequential
consistency,
C++, trylock, data
race

Currently multi-threaded C or C++ programs combine a single-threaded
programming language with a separate threads library. This is not entirely
sound [7].
We describe an effort, currently nearing completion, to address these
issues by explicitly providing semantics for threads in the next revision of
the C++ standard. Our approach is similar to that recently followed by
Java [25], in that, at least for a well-defined and interesting subset of the
language, we give sequentially consistent semantics to programs that do
not contain data races. Nonetheless, a number of our decisions are often
surprising even to those familiar with the Java effort:

• We (mostly) insist on sequential consistency for race-free
programs, in spite of implementation issues that came to light
after the Java work.

• We give no semantics to programs with data races. There are no
benign C++ data races.

• We use weaker semantics for trylock than existing languages or
libraries, allowing us to promise sequential consistency with an
intuitive race definition, even for programs with trylock.

This paper describes the simple model we would like to be able to provide
for C++ threads programmers, and explain how this, together with some
practical, but often under-appreciated implementation constraints, drives
us towards the above decisions.

External Accession Date Only Approved for External Publication

To Be presented and published in Programming Language Design and Implementation (PLDI) 2008, Tucson, AZ,
June 2008

© Copyright Programming Language Design and Implementation (PLDI) 2008.

Foundations of the C++ Concurrency Memory Model

Hans-J. Boehm
HP Laboratories

Hans.Boehm@hp.com

Sarita V. Adve
University of Illinois at Urbana-Champaign

sadve@cs.uiuc.edu

Abstract
Currently multi-threaded C or C++ programs combine a single-
threaded programming language with a separate threads library.
This is not entirely sound [7].

We describe an effort, currently nearing completion, to address
these issues by explicitly providing semantics for threads in the
next revision of the C++ standard. Our approach is similar to
that recently followed by Java [25], in that, at least for a well-
defined and interesting subset of the language, we give sequentially
consistent semantics to programs that do not contain data races.
Nonetheless, a number of our decisions are often surprising even to
those familiar with the Java effort:

• We (mostly) insist on sequential consistency for race-free pro-
grams, in spite of implementation issues that came to light after
the Java work.

• We give no semantics to programs with data races. There are no
benign C++ data races.

• We use weaker semantics for trylock than existing languages
or libraries, allowing us to promise sequential consistency with
an intuitive race definition, even for programs with trylock.

This paper describes the simple model we would like to be able
to provide for C++ threads programmers, and explain how this, to-
gether with some practical, but often under-appreciated implemen-
tation constraints, drives us towards the above decisions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent Pro-
gramming Structures; D.1.3 [Programming Techniques]: Concur-
rent Programming—Parallel Programming; B.3.2 [Memory Struc-
tures]: Design Styles—Shared Memory

General Terms languages, standardization, reliability

Keywords Memory consistency, memory model, sequential con-
sistency, C++, trylock, data race

1. Introduction
As technological constraints increasingly limit the performance of
individual processor cores, the computer industry is relying in-
creasingly on larger core counts to provide future performance im-
provements. In many domains, it is expected that any substantial

Copyright ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in the PLDI 2008 Proceedings, June, 2008, and can be found at
http://www.acm.org/dl.
PLDI’08 June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00
Reprinted from PLDI’08, Proceedings , June 7–13, 2008, Tucson, Arizona, USA..

Initially X=Y=0
T1 T2
r1=X r2=Y
if (r1==1) if (r2==1)

Y=1 X=1

Is outcome r1=r2=1 allowed?

Figure 1. Without a precise definition, it is unclear if this example
is data-race-free. The outcome shown can occur in an execution
where threads T1 and T2 speculate that the values of X and Y
respectively are 1, then each thread writes 1, validating the other’s
speculation. Such an execution has a data race on X and Y, but most
programmers would not envisage such executions when assessing
whether the program is data-race-free.

future performance gains will require explicitly parallel applica-
tions.

The most established way to write parallel applications in stan-
dard programming languages is as a collection of threads sharing an
address space. In fact, a large fraction of existing desktop applica-
tions already use threads, though typically more to handle multiple
event streams, than parallel processors. The majority of such appli-
cations are written in either C or C++, using threads provided by
the operating system. We will use Pthreads [21] as the canonical
example. The situation on Microsoft platforms is similar.

Both the C and C++ languages are currently defined as single-
threaded languages, without reference to threads. Correspondingly,
compilers themselves are largely thread-unaware, and generate
code as for a single-threaded application. In the absence of fur-
ther restrictions, this allows compilers to perform transformations,
such as reordering two assignments to independent variables, that
do not preserve the meaning of multithreaded programs [29, 2, 25].

The OS thread libraries attempt to informally address this
problem by prohibiting concurrent accesses to normal variables
or data races. To prevent such concurrent accesses, thread li-
braries provide a collection of synchronization primitives such as
pthread mutex lock(), which can be used to restrict shared vari-
able access to one thread at a time. Implementations are then pro-
hibited from reordering synchronization operations with respect to
ordinary memory operations in a given thread. This is enforced in a
compiler by treating synchronization operations as opaque and po-
tentially modifying any shared location. It is typically assumed that
ordinary memory operations between synchronization operations
may be freely reordered, subject only to single-thread constraints.

Unfortunately, informally describing multithreaded semantics
as part of a threads library in the above way is insufficient for
several reasons, as described in detail by Boehm [7]. Briefly, the
key reasons are as follows.

• The informal specifications provided by current libraries are
ambiguous at best; e.g., what is a data race and what precisely
are the semantics of a program without a data race? Figure 1

1

struct s { char a; char b; } x;

Thread 1: Thread 2:
x.a = 1; x.b = 1;

Thread 1 is not equivalent to:
struct s tmp = x;
tmp.a = 1;
x = tmp;

Figure 2. Compiler transformations must be aware of threads.
Many compilers perform transformations similar to the one above
when a is declared as a bit-field. The transformation may be visible
to client code, since the update to b by thread 2 may be overwritten
by the store to the complete structure x.

shows an example [1] where the answers to these questions are
unclear from the current specification.

• Without precise semantics, it is hard to reason when a com-
piler transformation will violate these semantics. For example,
Boehm [7] shows that reasonable (common) interpretations of
the current specification do not preclude a class of compiler
transformations that effectively introduce new writes to poten-
tially shared variables. Examples include Figure 2 and specula-
tive register promotion. As a result, conventional compilers can,
and do, on rare occasions, introduce data races, producing com-
pletely unexpected (and unintended) results without violating
the letter of the specification.

• There are many situations in which the overhead of preventing
concurrent access to shared data is simply too high. Either ven-
dors, or sometimes applications, generally provide facilities for
atomic (indivisible, safe for unprotected concurrent use) data
access, without the use of locks. For example, gcc provides a
family of sync intrinsics, Microsoft provides Interlocked
operations, and the Linux kernel defines its own atomic opera-
tions (which have been regularly (ab)used in user-level code).
These solutions have not been satisfactory, both because they
are not portable and because their interactions with other shared
memory variables are generally not carefully or clearly speci-
fied.

In order to address the above issues, an effort was begun several
years ago to properly define the semantics of multi-threaded C++
programs, specifically, the memory model, in the next revision of
the C++ language standard. Although this standard is not expected
to be completely approved until 2009 or 2010, the core changes
to support threads and the memory model described here were
recently voted into the C++ working paper, and are now also under
discussion in the C committee. This effort has been proceeding
in parallel, and cooperatively with, a similar effort for Microsoft’s
native compilation platforms [31].

The key result of the above effort is a memory model for mul-
tithreaded C++ programs that supports a simple programming
model. This paper describes that model and several new funda-
mental issues that had to be resolved along the way.

1.1 State-of-the-art for Memory Models
The memory model, or memory consistency model, specifies the
values that a shared variable read in a multithreaded program is al-
lowed to return. The memory model clearly affects programmabil-
ity. It also affects performance and portability by constraining the
transformations that any part of the system may perform. In prac-
tice, any part of the system (hardware or software) that transforms
the program must specify a memory model, and the models at the
different system levels must be compatible. For example, the C++

model constrains the transformations allowed by a C++ compiler.
The memory model for the hardware that will run the produced bi-
nary must not allow results that would be illegal for the C++ model
applied to the original program.

There has been extensive work in memory models over the last
two decades. Sequential consistency, defined by Lamport [24], is
considered to be the most intuitive model. It ensures that memory
operations appear to occur in a single total order (i.e., atomically);
further, within this total order, the memory operations of a given
thread appear in the program order for that thread.

Unfortunately, sequential consistency restricts many common
compiler and hardware optimizations [2]. There has been signifi-
cant academic progress in compiler algorithms to determine when
a transformation is safe for sequential consistency [29, 30, 23] and
in hardware that speculatively performs traditional optimizations
without violating sequential consistency [19, 28, 33, 15]. However,
current commercial compilers and most current commercial hard-
ware do not preserve sequential consistency.

To overcome the performance limitations of sequential consis-
tency, hardware vendors and researchers have proposed several re-
laxed memory models [2]. These models allow various hardware
optimizations, but most are specified at a low level and are gener-
ally difficult to reason with for high level language programmers.
They also limit certain compiler optimizations [25].

An alternative approach, called the data-race-free [3, 1] or prop-
erly labeled [18, 17] models, has been proposed to achieve both the
simple programmability of sequential consistency and the imple-
mentation flexibility of the relaxed models. This approach is based
on the observation that good programming practice dictates pro-
grams be correctly synchronized or data-race-free. These models
formalize correct programs as those that do not contain data races
in any sequentially consistent execution. They guarantee sequential
consistency to such data-race-free programs, and do not provide
any guarantees whatsoever to others. Thus, the approach combines
a simple programming model (sequential consistency) and high
performance (by guaranteeing sequential consistency to only well-
written programs). Different data-race-free models successively re-
fine the notion of a race to provide increasing flexibility, but requir-
ing increasing amounts of information from the programmer. The
data-race-free-0 model uses the simplest definition of a data race;
i.e., two concurrent conflicting accesses (formalized later).

Among high-level programming languages, Ada 83 [32] was
perhaps the first to adopt the approach of requiring synchronized
accesses and leaving semantics undefined otherwise. As mentioned
above, Pthreads follows a similar approach, but neither Ada nor
Pthreads formalized it sufficiently. Recently, the Java memory
model underwent a major revision [25]. For programmers, for all
practical purposes, the new Java model is data-race-free-0. How-
ever, the safety guarantees of Java preclude leaving the semantics
with data races as undefined. Much of the Java effort therefore
focused on defining these semantics in a way that preserves max-
imum implementation flexibility without violating the safety and
security guarantees of Java. Nevertheless, the Java model does
preclude some compiler optimizations and the full model is quite
complex [25]. Since C++ is not type safe, neither the restrictions
nor the complexity of the full Java model appear justified for C++.

1.2 The C++ Model and Contributions of this Paper
The model chosen for C++ is an adaptation of data-race-free-0;
i.e., it guarantees sequential consistency for programs without data
races and has undefined semantics in the presence of a data race.
Given the recent work on the Java model described above, the data-
race-free-0 model may seem an obvious choice. However, when
this process began, there were several factors that prevented using
data-race-free-0, some of which were exposed after conclusion of

2

the Java work and are also relevant to that work. This paper pro-
vides an understanding of those factors, shows how they were re-
solved to make the data-race-free-0 model acceptable to C++ devel-
opers and most hardware vendors, and provides the first published
description of the C++ model in the full context of prior work.1

Specifically, there are three main issues we discuss in this paper:
(1) Sequentially consistent atomics: The data-race-free mod-

els require that all operations that are not ordinary data opera-
tions (e.g., synchronization operations, atomics in C++, volatiles
in Java2) appear sequentially consistent. The recent advent of mul-
ticore systems exposed important hardware optimizations that ap-
pear to conflict with this requirement, initially resulting in most
hardware vendors and many software developers opposing it. We
describe the conflict and show that unfettered exploitation of such
hardware optimizations leads to models that are too hard to formal-
ize and/or use. These arguments were largely responsible in con-
vincing hardware vendors (e.g., AMD and Intel) to develop speci-
fications that are now consistent with the use of sequentially con-
sistent atomics.

(2) Trylock and impact on the definition of a data race:
Synchronization primitives such as trylock can be used in non-
intuitive ways that previously would have required more complex
definition of data races and/or overly strict fences. We show a
simple way to get around this problem.

(3) Semantics for data races: We do not provide any semantics
for programs with data races. This was not uncontroversial; we
explain the arguments for this position in Section 5.

We believe that sequentially consistent atomics provide a pro-
gramming model that is both easier to use and describe than the
alternatives, and is the model we should strive for. However, it be-
came clear during the standardization process that exclusive sup-
port for sequentially consistent atomics was not viable, largely for
two reasons:

• It is sufficiently expensive to implement on some existing
processors that an “experts-only” alternative for performance-
critical code was felt to be necessary. It is unclear to us whether
this need will persist indefinitely.

• Existing code is often written in a way that assumes weak
memory ordering semantics and relies on the programmer to
explicitly provide the required platform-dependent hardware
instructions to enforce the necessary ordering. The Linux kernel
is a good example of this. It is often easier to migrate such
code if we provide primitives closer to the semantics assumed
(currently sometimes incorrectly) by such code.

As a result, the C++ working paper provides for both sequen-
tially consistent atomics, and a mechanism to weaken memory or-
dering with explicit specifications. We refer to the latter as low-level
atomics. This unfortunately requires a significantly more compli-
cated memory model.

Here we first present the simpler model, as we would expect
most programmers to use it. This is sufficient to understand the
core points of this paper. We then return to a presentation closer to
the standards working paper that does support the addition of low-
level atomics, and outline the proofs that the two specifications are
equivalent.

1 Much of the work here, aside from the discussion of architectural issues,
is described less formally in earlier unrefereed standards committee papers,
notably [9, 10, 11, 13, 27] and their predecessors.
2 See [6] for the reasons they are not called volatile in C++.

2. The C++ Model Without Low-Level Atomics
We try to specify memory models in this paper sufficiently pre-
cisely that if we had a completely formal sequential semantics,
this could be translated into a completely formal description of the
multi-threaded semantics. This section assumes only a single flavor
of atomics; i.e., the default, sequentially consistent atomics in the
standard.

Memory operations are viewed as operating on abstract memory
locations. Each scalar value occupies a separate memory location,
except that contiguous sequences of bit-fields inside the same in-
nermost struct or class declaration are viewed as a single loca-
tion.3 Thus the fields in the struct s of Figure 2 are separately
updateable locations unless we change both field declarations to
bit-fields.

The remainder of the C++ standard was modified to define a
sequenced-before relation on memory operations performed by a
single thread [14]. This is analogous to the program order relation
in Java and other work on memory models. Unlike prior work, this
is only a partial order per thread, reflecting undefined argument
evaluation order.

Define a memory action to consist of:

1. The type of action; i.e., lock, unlock, atomic load, atomic store,
atomic read-modify-write, load, or store. All but the last two
are customarily referred to as synchronization operations, since
they are used to communicate between threads. The last two are
referred to as data operations.

2. A label identifying the corresponding program point.

3. The values read and written.

Bit-field updates can be modeled as a load of the sequence of
contiguous bit-fields, followed by a store to the entire sequence.

Define a thread execution to be a set of memory actions, to-
gether with a partial order corresponding to the sequenced-before
ordering.

Define a sequentially consistent execution of a program to be a
set of thread executions, together with a total order <T on all the
memory actions, which satisfies the constraints:

1. Each thread execution is internally consistent, in that it corre-
sponds to a correct sequential execution of that thread, given
the values read from memory, and respects the ordering of op-
erations implied by the sequenced-before relation.

2. T is consistent with the sequenced-before orders; i.e., if a is
sequenced before b then a <T b.

3. Each load, lock, and read-modify-write operation reads the
value from the last preceding write to the same location ac-
cording to <T . The last operation on a given lock preceding an
unlock must be a lock operation performed by the same thread.

Effectively this requires that <T is just an interleaving of the
individual thread actions.

Two memory operations conflict if they access the same mem-
ory location, and at least one of them is a store, atomic store, or
atomic read-modify-write operation. In a sequentially consistent
execution, two memory operations from different threads form a
type 1 data race if they conflict, at least one of them is a data op-
eration, and they are adjacent in <T (i.e., they may be executed
concurrently).

We can now specify the C++ memory model simply as:

• If a program (on a given input) has a sequentially consistent ex-
ecution with a (type 1) data race, then its behavior is undefined.

3 Zero-length bit-fields can be used to break such sequences. This extends
the existing convention for the use of zero-length bit-fields.

3

T1 T2

x = 42; while (trylock(l) == success)
lock(l); unlock(l);

assert(x == 42);

Figure 3. Undesirable use of trylock.

• Otherwise, the program (on the same input) behaves according
to one if its sequentially consistent executions.

2.1 Optimizations Allowed by the Model
Previous work [3, 18, 1, 12] shows that with the above model, hard-
ware and compilers may freely reorder memory operation M1 se-
quenced before memory operation M2 if the reordering is allowed
by intra-thread semantics and: (1) M1 is a data operation and M2
is a read synchronization operation, or (2) M1 is write synchro-
nization and M2 is data, or (3) M1 and M2 are both data with no
synchronization sequence-ordered between them.

Additionally, when locks and unlocks are used in “well-
structured” ways, the following reorderings between M1
sequenced-before M2 are safe (assuming they are allowed by intra-
thread semantics) [1]: M1 is data and M2 is the write of a lock
operation; or M1 is unlock and M2 is either a read or write of a
lock.

Finally, previous work also discusses the hardware optimization
of executing a write non-atomically [2]; i.e., making the value of a
data write visible to a thread before it becomes visible to all threads.
It has been shown that for the model described above, data writes
and writes from well-structured locks and unlocks can be executed
non-atomically [1].

We note an unfortunate overload of the term atomic – (1) the
above usage to describe how a write is executed in hardware and
(2) the C++ qualifier to denote a special class of memory opera-
tions. The default atomic write in C++ (qualified as sequentially
consistent and discussed here) needs to be executed atomically by
hardware, but another class of low-level atomic writes (discussed
later) need not be executed atomically in the above sense, though it
is still atomic in the sense that no other individual thread can see a
partially updated value.

The model imposes significant restrictions for synchronization
operations. For all practical purposes, synchronization operations
must appear sequentially consistent with respect to each other.
This means that atomic operations must execute in sequenced-
before order and atomic writes must execute atomically [2], re-
ferred to henceforth as the sequenced-order and write-atomicity re-
quirements respectively. For locks and unlocks, their special usage
restrictions enable some optimizations as mentioned above, with-
out violating the appearance of sequential consistency.

We make some further observations on allowable optimizations
in [10].

3. Making Trylock Efficient
The preceding gives undesirably strong semantics to programs
using calls that try to acquire a lock without blocking, such as
pthread mutex trylock(), or lock acquisitions with timeouts.
Consider the example in Figure 3, equivalent to one found in [12]:

This program essentially inverts the sense of the lock l by hav-
ing a thread wait for T1 to acquire the lock, instead of waiting for
the lock to be released. This is clearly not a desirable programming
idiom.4

4 One of the reviewers points out that trylock could be, and sometimes
is, used with a lock that is never released to ensure that an action is
performed by only a single thread. This fails in our model, reflecting the fact

Based on a conventional interpretation of trylock(), in a se-
quentially consistent execution, the assertion in T2 cannot be exe-
cuted (i.e., appear in the <T ordering) until after T1 acquires the
lock and until after it assigns x the value of 42. The program is
therefore data-race-free and, by our current semantics, the asser-
tion cannot fail.

The difficulty is that the assertion can fail if either the com-
piler or hardware reorders the two statements executed by T1, by
moving the assignment after the lock. Prohibiting such reordering
on many architectures requires a memory fence before the lock.
As mentioned in Section 2.1, for well-structured uses of locks and
unlocks, such a reordering is safe. Thus, this fence represents un-
necessary overhead, possibly doubling the cost of lock acquisition,
without benefit to reasonably written code. As pointed out in [12],
many lock implementations as a result fail to enforce this require-
ment, even though it appears to already exist in Posix.

There is potentially a similar issue with reordering the final
failing trylock() and assertion in thread T2. Even Posix tries to
allow this reordering.

The fundamental difficulty here is that trylock() reads the
value written by T1’s lock to infer that the lock has been acquired.
This communication from a lock write to a trylock read is used
to synchronize the accesses on x. We wish to prevent such use to
avoid paying the overhead of the additional fence on all locks. Pre-
vious work has achieved this by explicitly distinguishing between
different types of synchronization operations and/or redefining data
operations that are separated only by such synchronization as races.
For example, the data-race-free-1 model distinguishes pairable and
unpairable synchronization [1], allowing only the former to prevent
a data race. The Java memory model requires conflicting ordinary
(data) operations to be explicitly ordered by volatiles and/or pairs
of locks/unlocks to avoid a data race [25]. A happens-before rela-
tion is used to formalize these notions.

Instead of introducing the complexity of different types of syn-
chronization or a happens-before relationship to define a data
race, we propose a simple solution. We change the specification
of trylock(), though preferably not its implementation, to not
guarantee that it will succeed if the lock is available. The C++0x
specification is expected to allow trylock to “spuriously fail” in
this manner. This effectively prevents a failed trylock from reli-
ably revealing anything about the state of the lock (and hence the
write of the lock operation has no means to convey any synchro-
nization information). In particular, it is now clear that the assertion
in the above example may fail. The execution in which the assertion
fails is now sequentially consistent; it simply involved a “spurious”
trylock() failure.

Although simple, to our knowledge, this is the first solution that
eliminates the need to provide a fence before a lock, while still
maintaining a simple definition of a race (i.e., conflicting accesses
adjacent to each other in the total order).

For the remainder of this discussion, the reader may assume that
a trylock() allowing spurious failures is included. A successful
trylock() is treated as lock(). An unsuccessful trylock() is
treated by the memory model as a no-op.

4. The Cost of Sequentially Consistent Atomics
As mentioned in Section 2.1, the model so far requires atomics to
appear sequentially consistent. When this work began, there was
concern from various hardware vendors and software developers

that many current implementations fail to provide sequential consistency
for this use, while we want to insist on it. In our model, the equivalent
can be accomplished with more straightforward semantics with an atomic
test and set.

4

Initially X=Y=0
T1 T2 T3 T4
X=1 Y=1 r1=X r3=Y

fence fence
r2=Y r4=X

r1=1, r2=0, r3=1, r4=0 violates write atomicity

Figure 4. Write-atomicity may be too expensive for Independent-
Reads-Independent-Writes (IRIW).

that this requirement was excessive and unnecessarily restricted
performance.

In principle, the performance impact of these requirements
should be restricted only to synchronization operations. Unfor-
tunately, most current processor instruction sets do not directly
distinguish synchronization operations (Itanium is a notable ex-
ception). The most common way for compilers to convey memory
ordering requirements to hardware is through fence or memory
barrier instructions.

Fences were designed primarily to convey the sequenced-order
(program order) requirement. For example, the strongest fences
ensure that all memory operations sequenced-before the fence will
appear to execute before all memory operations sequenced after the
fence. Other variants impose ordering between different subsets of
memory operations; e.g., a Store|Load fence orders previous stores
before later loads. Some processors ensure certain orderings by
default, removing the need for fences for those cases; e.g., AMD64
and Intel 64 implicitly provide Load|Load and Load|Store fence
semantics after each load and Store|Store fence semantics after
each store.

When this work began, many specifications of fences were am-
biguous about their impact on the hardware write-atomicity re-
quirement as described in Section 2.1 (notable exceptions are Alpha
and Sun). Some processor vendors argued that full write-atomicity
was too expensive and software developers argued that weak ver-
sions of write-atomicity would suffice. Section 4.1 discusses the
cost of enforcing write-atomicity in hardware and why it may be
unnecessary for some programs. Section 4.2 then systematically
shows how meaningful relaxations of write-atomicity result in un-
intended consequences for other programs. As a result, despite
many attempts, it was difficult to formalize semantics for synchro-
nization operations that were meaningfully weaker than sequential
consistency for hardware and provided a simple enough interface
for most programmers.

In this section, all variables in all examples are atomics. (The
syntax does not reflect the current C++ working paper.)

4.1 Cost of Enforcing Write-Atomicity
Consider the example in Figure 4, referred to as the Independent-
Reads-Independent-Writes (IRIW) example. The fences ensure that
the reads will execute in program order, but this does not guarantee
sequential consistency if the writes execute non-atomically. For
example, if the writes to X and Y propagate in different orders to
threads T3 and T4, the outcome in the figure violating sequential
consistency can occur (T3 sees the new value of X and the old
value of Y and vice versa for T4).

Systems with ownership-based invalidation protocols and single-
core/single-threaded processors can avoid the non-sequentially
consistent outcome in a straightforward way. Consider a typical
such system employing a directory-based cache coherence pro-
tocol. If T1 does not already have ownership of X, then it must
request it from the directory. The directory then sends invalidations
for all cached copies of X and either it or T1 collect acknowledge-
ments for these invalidations. To see the new value of X, T3 must

first go to the directory which will forward the request to T1. To
ensure writes appear atomic, the system simply needs to ensure
that all copies of X are invalidated (i.e., all acknowledgements re-
ceived) before T3 gets the updated copy of X, and analogously, all
outstanding copies of Y are invalidated before T4 gets an updated
copy of Y. Now it is no longer possible for both T3 and T4 to read
the old values of Y and X respectively.

The key to ensuring sequential consistency for the above ex-
ample is that a read is not allowed to return a new value for the
accessed location until all older copies of that location are invali-
dated. This requirement can be somewhat relaxed further for pro-
cessors that require explicit fences for ordering reads – the read can
return a new value as long as a subsequent fence waits for all old
copies of that location to be invalidated. Following [2], we refer to
this as the “read-others’-write-early” restriction.

Note that as described above, the read-others’-write-early re-
striction does not require any global serialization point for all oper-
ations to all locations (e.g., a bus). It simply requires a serialization
point for reads and writes to the same location, which is usually
provided by the cache coherence protocol (the need for which is
widely accepted). Further, this per-location serialization is techni-
cally only required for atomic operations. Unfortunately, the use of
fences for memory ordering obfuscates which memory accesses are
the atomic ones; therefore, without a mechanism to distinguish in-
dividual writes as atomic, our system must preserve write atomicity
for all writes.

The advent of multicore and simultaneous multithreading (SMT),
where threads may share a data cache or store queues, has pre-
viously unexplored implications for the read-others’-write-early
restriction. These architectures offer tempting performance opti-
mization opportunities that can violate sequential consistency for
the IRIW example as follows. Suppose T1 and T3 share an L1
writethrough data cache. Suppose T3’s read of X occurs shortly
after T1’s write to X. It is tempting to return the new value of X to
T3, even if T1’s ownership request for X has not yet made its way
through the lower levels of the cache hierarchy. If T2 and T4 share
a cache, an analogous situation can occur for their write and read
of Y – T4 reads the new value of Y even before T2’s ownership
request reaches the rest of the memory system. It is now possible
that both T3 and T4 read the old values of Y and X respectively
(from their caches), violating sequential consistency.

Thus, while previously the read-others’-write-early restriction
appeared to have (acceptable) implications only for the main mem-
ory system and the cache coherence protocol, new SMT and multi-
core architectures move this restriction all the way to the first level
cache and even within the processor core (if there are shared store
queues). At the same time, most programmers agree that the IRIW
code does not represent a useful programming idiom, and imposing
restrictions to provide sequential consistency for it appears exces-
sive and unnecessary.

For this reason, some existing machines do not provide efficient
methods for ensuring sequential consistency for IRIW and there
was initial reluctance to adopting sequentially consistent semantics
for atomics.

4.2 Unintended Consequences of Relaxing Write-Atomicity
We next show examples where relaxing the read-others’-write-
early requirement in ways described for IRIW can give unaccept-
able results.

4.2.1 Write-to-Read Causality (WRC) Must be Upheld
Figure 5 illustrates a simple causal effect. Thread T1 writes a new
value of X, T2 reads it, executes a fence, and writes a new value
of Y. T3 reads the new Y, executes a fence, and then reads X.
Sequential consistency requires that T3 return the new value for

5

Initially X=Y=0
T1 T2 T3
X=1 r1=X r2=Y

fence fence
Y=1 r3=X

r1=1, r2=1, r3=0 violates write atomicity

Figure 5. Write-to-Read Causality (WRC) must be respected

Initially X=Y=0
T1 T2 T3
X=1 r1=X Y=1

fence fence
r2=Y r3=X

r1=1, r2=0, r3=0 violates write atomicity

Figure 6. Should Read-to-Write Causality (RWC) be respected?

X. We call this example Write-to-Read Causality (WRC) because
a write of a new value by a thread followed by a read of the same
value by another thread is used to establish a causal connection
between the threads. Most programmers agree that this causality
should be respected, and the violation of sequential consistency
shown in Figure 5 should not be allowed.

Now consider applying the IRIW optimization to the WRC
example. Suppose T1 and T2 share an L1 writethrough cache and
T3 is on a separate system node. Suppose T2 is allowed to read
T1’s update to X early. Then it may be possible for T3 to receive
the invalidation for Y before that for X, resulting in T3 reading the
new value of Y and the old value of X.

One solution that preserves sequential consistency for WRC
while retaining much of the impact of the IRIW optimization is
to ensure that writes separated by a fence from a given system node
are seen in the same order by all nodes. This solution continues
to allow reads within the node to return a new value early. We
next show that this solution unfortunately does not suffice for other
programs.

4.2.2 Read-to-Write Causality (RWC)
Figure 6 illustrates an example similar to WRC, except that the
causal relationship between T2 and T3 is established by T2’s read
of an old value followed by T3’s write of a new value to Y. The
IRIW optimization can violate sequential consistency for this ex-
ample similar to WRC. Unfortunately, the WRC solution (ordering
writes separated by fences from the same node) does not work in
this case since each node (T1/T2 or T3) contains at most one write.

Unlike the WRC example, some programmers may find this
violation of read-to-write causality acceptable; however, it is no
longer as clear-cut as the IRIW code.

4.2.3 Subtle Interplay Between Coherence and Causality
Our final example illustrates how IRIW style optimizations can
interfere in a non-intuitive way with a subtle interplay between
cache coherence and write-to-read causality, referred to as CC.
Cache coherence is a widely accepted property that guarantees that
writes to the same location are seen in the same order by all threads.
There is wide consensus that this property must be respected (for
synchronization operations) to write meaningful code. There is also
consensus that write-to-read causality must be respected. Figure 7
shows that IRIW style optimizations make it difficult to compose
cache coherence and simple write-to-read causality interactions.

In Figure 7, assume again that T1 and T2 are on the same
node with a shared writethrough L1 cache. Assume T3 and T4

Initially X=Y=0
T1 T2 T3 T4
X=1 r1=X Y=1 r3=X

fence fence fence
r2=Y X=2 r4=X

r1=1, r2=0, r3=2, r4=1 violates write atomicity

Figure 7. CC: Subtle interplay between cache coherence and
write-to-read causality.

are on separate nodes. As with RWC, T2 reads T1’s new value (1)
of X early, executes a fence, and reads an old value for Y. Now
assume T3 writes the new value of Y, executes a fence, and then
also updates X to 2. After all of T3’s operations complete in the
memory system, T4 reads X (returns 2) and executes a fence. At
this point, assume T1’s write permission request for X goes through
the memory hierarchy and all its invalidations are done. Then when
T4 reads X for the second time, it gets 1.

Thus, the IRIW optimization can result in the violation of se-
quential consistency shown in Figure 7. As with RWC, the WRC
solution does not apply because no node has more than one write.
No other simple solutions that would retain the advantage of the
IRIW optimization are apparent.

A memory model that would violate sequential consistency for
the above example seems difficult to formulate and reason with
because such a model would not be able to easily compose cache
coherence and write-to-read causality. Specifically, in the above
example, T4 establishes that X=2 was serialized in the memory
hierarchy before X=1. Cache coherence therefore allows reasoning
that T2’s read of 1 for X must have occurred after T3’s write of 2 for
X. Using a write-to-read causality argument leads to the inference
that T3’s write of Y must have occurred before T2’s read of Y,
which should return 1 and not 0.

Thus, the IRIW optimization and the consequent result in Fig-
ure 7 precludes inferences from a simple and intuitive composition
of cache coherence and write-to-read causality.

4.3 Implications for Current Processors
The above examples show that a departure from sequential con-
sistency for synchronization operations can lead to subtle non-
intuitive behaviors that appear difficult to formalize in an intuitive
fashion. We therefore retained sequential consistency semantics for
default atomics and synchronization operations.

Influenced by our work, the new AMD64 [4] and Intel 64 [22]
memory ordering specifications now provide a clear way to guar-
antee sequentially consistent semantics, although these specifica-
tions require atomic writes to be mapped to atomic xchg instruc-
tions (which are read-modify-write instructions). Hardware now
need only ensure that xchg writes execute atomically. Additionally,
with these specifications, xchg also implicitly ensures semantics of
a Store|Load fence, removing the need for an explicit fence after
an atomic store (such a fence would otherwise be required for the
sequenced-before requirement).

While it may seem cumbersome and inefficient to convert
atomic stores to read-modify-writes, the following observations
make this a reasonable compromise: (1) it is better to pay a penalty
on stores than on loads since the former are less frequent and (2) the
Store|Load fence replaced by the read-modify-write is as expensive
on many processors today.

There are three other approaches that could be used to achieve
sequential consistency for atomics, without requiring converting
all atomic stores to read-modify-writes. First, the processor ISA
could provide a simple mechanism to distinguish atomic stores

6

(e.g., Itanium’s st.rel) instead of having to use read-modify-writes.
Hardware could then ensure that these stores execute atomically.

Second, write-atomicity could simply be provided for all writes,
as with Sun’s total store order (TSO) and the Alpha memory mod-
els. The mechanisms to implement this are similar to those for the
read-modify-write and st.rel type solutions, except that they need
to be invoked for all writes.

Third, many processors today use speculative approaches to
reorder memory operations beyond that allowed by the memory
model; e.g., AMD’s and Intel’s processors speculatively reorder
loads even though the memory model disallows it [19]. A similar
approach could be used to allow a read to return a value early
from a shared cache. So far, the literature on such optimizations has
focused on benefits for speculatively relaxing the sequenced-order
requirement; we are not aware of prior work on understanding the
impact of speculatively relaxing write-atomicity.

To the best of our knowledge, most existing machines today
provide write-atomicity by default. A notable exception is some
PowerPC machines which require a particularly expensive form
of a fence instruction after atomic loads to achieve sequentially
consistent results for the RWC and CC examples.

5. Semantics of Data Races
For languages like Java, it is critical to define the semantics of all
programs, including those with data races. Java must support the
execution of untrusted “sandboxed” code. Clearly such code can
introduce data races, and the language must guarantee that at least
basic security properties are not violated, even in the presence of
such races. Hence the Java memory model [25] is careful to give
reasonable semantics to programs with data races, even at the cost
of significant complexity in the specification.

For C++, there is no such issue. Initially, there was still some
concern that we should limit the allowable behavior for programs
with races. However, in the end, we decided to leave the semantics
of such programs completely undefined. In the current working
paper for the C++ standard, in spite of discussions such as [26],
there are no benign data races.

The basic arguments for undefined data race semantics in C++
are:

1. Although generally under-appreciated, it is effectively the sta-
tus quo. Pthreads states [21] “Applications shall ensure that ac-
cess to any memory location by more than one thread of control
(threads or processes) is restricted such that no thread of con-
trol can read or modify a memory location while another thread
of control may be modifying it.” As we mention in the intro-
duction, Ada earlier took the same approach. The intent behind
win32 threads appears to have been similar.

2. Since the C++ working paper provides low-level atomics with
very weak, and hence cheaply implementable, ordering prop-
erties, there is little to be gained by allowing races, other than
allowing code to be obfuscated. We effectively require only that
such races be annotated by the programmer. Since the result is
usually exceedingly subtle, we believe this should be required
by any reasonable coding standard in any case.

3. Giving Java-like semantics to data races may greatly increase
the cost of some C++ constructs. It would presumably require
that we not expose uninitialized virtual function tables, even
in the event of a race, since those could otherwise result in a
wild branch. This in turn often requires fences on object con-
struction. In Java, this is arguably less major, since object con-
struction is always associated with memory allocation, which
typically already carries some cost. This does not apply to C++.

4. Current compiler optimizations often assume that objects do
not change unless there is an intervening assignment through
a potential alias. Violating such a built-in assumption can cause
very complicated effects that will be very hard to explain to
a programmer, or to delimit in the standard. We believe this
assumption is sufficiently ingrained in current optimizers that it
would be very difficult to effectively remove it.

As an example of the last phenomenon, consider a relatively
simple example, which does not include any synchronization code.
Assume x is a shared global and everything else is local:

unsigned i = x;
if (i < 2) {

foo: ...
switch (i) {

case 0: ...; break;
case 1: ...; break;
default: ...;

}
}

Assume the code at label foo is fairly complex, and forces i to
be spilled and that the switch implementation uses a branch table.
(In reality, the second assumption might require a larger switch
statement.)

The compiler now performs the following reasonable optimiza-
tions:

• It notices that i and x (in its view of the world) contain the same
values. Hence when i is spilled, there is no need to store it; the
value can just be reloaded from x.

• It notices, e.g. by value range analysis as in [20] that the switch
expression is either 0 or 1, and hence eliminates the bounds
check on the branch table access and the branch to the default
case.

Now consider the case in which, unbeknownst to the compiler,
there is actually a race on x, and its value changes to 5 during the
execution of the code labeled by foo. The results are:

1. When i is reloaded for the evaluation of the switch expression,
it gets the value 5 instead of its original value.

2. The branch table is accessed with an out-of-bounds index of 5,
resulting in a garbage branch target.

3. We take a wild branch, to arbitrary code.

The result would only be slightly less surprising if the switch
tested x instead of i. It seems difficult to explain either behavior
in a language standard in any way other than to leave it completely
undefined.5

Finally, even after the large effort to define semantics for data
races in Java, recent work by David Aspinall and Jaroslav Sevcik
has uncovered some bugs in that specification [5].

Thus we decided to leave the semantics of races undefined, in
spite of some potential negative effects on debuggability.

5.1 Compiler-introduced Data Races
Since we expect the next C++ standard to completely prohibit
data races at the source level, it will not be possible to write a

5 It is of course not impossible for compilers to avoid this kind of behavior.
Java compilers must avoid it, and C++ compilers rarely exhibit it in practice.
But our experience has been that compiler writers are disinclined to promise
it will not happen, particularly since current Posix and C or C++ standards
clearly allow the fundamental assumption that ordinary variables do not
change asynchronously.

7

portable C++-to-C++ source translator that introduces data races.
In particular, source-to-source optimizers may never introduce a
data race.

This requirement disallows some important optimizations;
specifically, it prevents such an optimizer from introducing spec-
ulative loads as well as speculative stores. Optimizations such as
Partial Redundancy Elimination commonly introduce speculative
loads. For example, the requirement prevents a potentially shared
but loop invariant variable x from being loaded into a register once
outside the loop, if there is any possibility that it might not actu-
ally be referenced in the loop. The requirement also prevents a load
from being scheduled before it was clear that the value was actually
needed, though a prefetch of such a value would generally still be
correct.

It is important to note that this restriction applies only if the
target language of the optimizer prohibits data races. We are not
aware of any hardware architectures that do so. The above opti-
mizations introduce potentially racing loads of values whose results
are not used. Machine architectures allow those without altering the
meaning of the remaining code. Hence compilers that target a con-
ventional hardware architecture may continue to insert speculative
loads.

Such optimizers may generally still not insert speculative stores,
since those could overwrite a legitimate store in another thread,
thus changing the semantics of the program, even when the original
program contained no race.

If a compiler were to translate to an architecture that gives un-
defined semantics for races at the machine level, then the compiler
would be prohibited from introducing speculative loads as well.
This arises for example, if the target is a virtual machine that itself
detects races as in [16]. And that is as it should be. Any introduced
speculative loads could race with a store in another thread, thus re-
sulting in the diagnosis of a race where the original program had
none.6 By the same reasoning, a C++-to-C++ translator should not
introduce races, since it is not aware of the final target.

6. C++ Model Supporting Low-Level Atomics
As mentioned earlier, enforcing sequential consistency is expensive
on some platforms, and there are some frequently used idioms for
which sequential consistency is not required.

For example, it is common to use counters that are frequently
incremented by multiple threads, but are only read after all threads
complete. Our semantics, since they guarantee sequential consis-
tency, require that all memory updates performed prior to a counter
update become visible after any later counter update in another
thread. This property typically requires the addition of fences,
which in some cases are substantially more expensive than the rest
of the operation.

Similarly, in the absence of context information, sequentially
consistent atomic stores often require two fences, one before and
one after the store. The first ensures that memory operations se-
quenced before the store are visible to any thread that sees the result
of the store. The second, often more expensive, fence ensures that
the store is not reordered with respect to a later atomic load. The
latter property is required when implementing Dekker’s algorithm,
for example, but is often unnecessary.

The actual C++ atomics library specification (see [13] or Chap-
ter 29 of [14]) supports low-level atomic operations that allow the
programmer to explicitly specify memory ordering constraints, al-

6 Arguably, the same holds for a physical machine target if the resulting
execution is analyzed for races, as in [26]. Here the race semantics are well
defined, but compiler-introduced races still result in undesirable output.
Unfortunately [26] does not make as clear a distinction between source-
level and machine-level races.

lowing close to optimal implementations of these idioms by very
careful programmers.

As presented so far, our memory model inherently does not sup-
port non-sequentially-consistent synchronization operations. As-
sume that incr increments a variable without enforcing any sort
of visibility ordering. (Alpha, ARM, and PowerPC, for example,
would allow a significantly cheaper implementation of incr than
its sequentially consistent counterpart.) Now consider the follow-
ing, where x and y are atomic, z is not, and all are initially zero:

Thread 1: Thread 2:
incr(x); incr(y);
r1 = y; r2 = x;
if (r1 == 0) if (r2 == 0)
z = 1; z = 2;

In a sequentially consistent execution, r1 and r2 cannot both
be zero, and hence there is no data race in a sequentially consistent
execution. However, any implementation that takes advantage of
the lack of ordering between the atomic operations will allow
both values to be zero, and hence potentially encounter a data
race. Hence this should be given undefined semantics by all the
arguments in the preceding section. But this requires that we define
a notion of data race in terms of the actual language semantics, not
in terms of a sequentially consistent execution.

Here we give an alternate memory model specification that
allows extension to low-level atomics. This description is a more
mathematical formulation of the C++ working paper (see [27, 8] or
primarily section 1.10 of [14]). For the time being, we continue to
omit low-level atomics. Thus the model presented here is intended
to be equivalent to the earlier one (as demonstrated in the following
sections). The last section of this paper then describes briefly how
low-level atomics are actually incorporated into the C++ working
paper.

This version parallels the simpler parts of the Java memory
model [25] much more closely than our original version, though
there are some differences.

Define a program execution to be

1. A set of thread executions

2. A mapping W from atomic loads and atomic read-modify-
write operations to atomic stores and atomic-read-modify-write
operations to the same location, and from lock acquisitions to
lock releases of the same lock. W is intended to map each
read-like operation to the corresponding write whose value it
observes.

3. An irreflexive total order <S of atomic operations, intended to
reflect the global order in which they are executed. 7

We define an atomic load, atomic read-modify-write, or lock
acquisition to be an acquire operation on the read locations. Con-
versely, an atomic store, atomic-read-modify-write, or lock release
is a release operation on the affected locations. We define a memory
action A to synchronize with a memory action B if B is an acquire
operation on a location, A is a release operation on the same loca-
tion, and W (B) = A.

We define happens-before (<hb) to be the smallest relation on
memory actions such that

• If a is sequenced before b, then a happens before b.
• If a synchronizes with b, then a happens before b.

7 This corresponds roughly to Java’s synchronization order. In the C++
approach, the requirement for this total order is specified as part of the
atomic library, in chapter 29 of [14].

8

• If a happens before b and b happens before c, then a happens
before c.

We define a visible side effect with respect to a load or read-
modify-write operation b to be an update (store or read-modify-
write operation) a to the same location l such that a happens before
b, but there is no intervening update c to l such that a happens
before c and c happens before b. (The intent is that in the absence
of races, ordinary loads see the unique visible side effect.)

We define a program execution to be consistent (a notion that is
not explicit in the C++ working paper) if

1. Each thread execution is internally consistent, given the values
read from memory.

2. The order <S is consistent with happens-before, i.e. if a hap-
pens before b, then a <S b.

3. For each non-atomic load l, W (a) is a visible side effect with
respect to l. (If there are no data races, it is the unique visible
side effect corresponding to l.)

4. For each atomic (i.e. synchronization) load or atomic-read-
modify-write operation a, then W (a) is the last preceding up-
date in <S corresponding to the same location.

5. Lock and unlock operations on each individual lock are totally
ordered by happens-before, and alternate in each such individ-
ual order. Furthermore each lock operation is sequenced before
the next unlock operation in this total order, if there is one, i.e.
locks are released only by the acquiring thread.

A consistent execution contains a type 2 data race if two
data accesses to the same memory location are unordered by
happens-before. We can now specify the C++ memory model sim-
ply as:

• If a program (on a given input) has a consistent execution with
a (type 2) data race, then its behavior is undefined.

• Otherwise, the program (on the same input) behaves according
to one if its consistent executions.

The following two sections show that this characterization is
equivalent to the original one in section 2: First, data-race-free
programs still have sequentially consistent semantics. Second, the
two notions of data race are equivalent. We then conclude with an
outline of the additional changes needed to actually include low-
level atomics.

7. Sequential Consistency for Data-Race-Free
Programs

THEOREM 7.1. The model defined in Section 6 provides sequen-
tial consistency to programs whose consistent executions do not
contain a type 2 data race.

Proof Consider a type 2 data-race-free program and its con-
sistent execution (on the given input). We need to show that this
execution exhibits sequentially consistent behavior.

The corresponding happens-before relation (<hb) and synchro-
nization order <S are irreflexive and consistent, and hence can be
extended to a strict total order <T .

Clearly the actions of each thread appear in <T in sequenced-
before order. Since lock operations are totally ordered by happens-
before, they must occur in the same order in <T .

We can say little about where a failed trylock() operation on
a lock l appears in <T . But, since we assume that trylock() may
fail spuriously, it does not matter. A failure outcome is acceptable
no matter what state the lock was left in by the last preceding

operation (in <T) on l. No matter where the failed trylock()
appears in <T , the operations on l could have been executed in that
order, and produced the original results.

It remains to be shown that each load sees the last preceding
store in <T that stores to the same location.

Clearly this is true for operations on atomic objects, since all
such operations appear in the same order as in <S , and each load
in <S sees the preceding store in <S .

From here on, we consider only ordinary, non-atomic memory
operations.

Consider a store operation Ss seen by a load L.
Ss must be a visible side effect with respect to L, and hence

must happen before L. Hence Ss precedes L in <T .
Assume that another store Sb appears between Ss and L in <T .
We know from the fact that <T is an extension of <hb, that we

cannot have either of L <hb Sb or Sb <hb Ss since that would be
inconsistent with the reverse ordering in <T .

However all three operations conflict and we have no data races.
Hence they must all be ordered by <hb, and Sb must also be
happens-before ordered between the other two. But this contradicts
the fact that Ss must be a visible side effect with respect to L,
concluding the proof. •

Although this is a useful theorem, it does not (yet) ensure that
our refined memory model is equivalent to the original one. We
must also show that a program that is data-race-free by our original
type 1 definition is also data-race-free by our revised (type 2)
definition.

8. Equivalence of Race Definitions
THEOREM 8.1. If a program allows a type 2 data race in a consis-
tent execution, then there exists a sequentially consistent execution,
with two conflicting actions, neither of which happens before the
other.8

In effect, we only need to look at sequentially consistent execu-
tions in order to determine whether there is a data race in a consis-
tent execution. For example, a program such as the one in figure 1
cannot possibly contain a race, since in a sequentially consistent
execution, each variable is accessed by only one thread.

Proof We show that any type 2 data race in a consistent execu-
tion corresponds to a data race (again defined in terms of happens-
before, not simultaneous execution) in a sequentially consistent ex-
ecution.

Consider a consistent execution with a data race. Let <T be the
total extension of the happens-before and synchronization orders,
as constructed above.

Consider the longest prefix P of <T that contains no data race.
Note that each load in P must see a store that precedes it in either
the synchronization or happens-before orders. Hence each load in
P must see a store that is also in P . Similarly each lock operation
must see the state produced by another lock operation also in P , or
it must be a failed trylock() whose outcome could have occurred
if it had seen such a state.

By the arguments of the preceding section, the original execu-
tion restricted to P is equivalent to the prefix of a sequentially con-
sistent execution.

The next element N of <T following P must be an ordinary
memory access that introduces a race. If N is a store operation,
consider the original execution restricted to P ∪ {N}. Otherwise
consider the same execution except that N sees the value written
by the last write to the same variable in P .

8 The latter is essentially the condition used in [25] to define “correctly
synchronized” for Java.

9

In either case, the resulting execution (of P plus the operation
introducing the race) is a prefix of a sequentially consistent execu-
tion; if N was a write, it could not have been seen by any of the
reads in P , since those reads were ordered before N in <T ; if N
was a read, it was modified to ensure that it sees the last applicable
write in P . In either case, we have a sequentially consistent exe-
cution of the program that exhibits the data race (a straightforward
extension of P ∪ {N}). •

THEOREM 8.2. A program allows a type 2 data race on a given
input if and only if there exists a sequentially consistent execution
in which two unordered conflicting actions are adjacent in the
sequential interleaving, i.e. it allows a type 1 data race.

Proof Assume we have a sequentially consistent execution with
total order <T and a type 1 data race. There is a straightforward
mapping of this execution, up to the first such data race, to a
consistent execution as defined in section 6 in which each load sees
the corresponding preceding store in <T , and the synchronization
order is just a restriction of <T . It is easy to see that the type 1 data
race maps to a type 2 data race.

It remains to show the converse: If we have a type 2 data race,
there must be a sequentially consistent execution with conflicting
adjacent operations.

Start with the execution restricted to P ∪ {N}, as above, with
any value read by N adjusted as needed, also as above. We know
that nothing in this partial execution depends on the value read by
N . Let M be the other memory reference involved in the race.

We can further restrict the execution to those operations that
happen before either M or N . This set still consists of prefixes
of the sequences of operations performed by each thread. Since
each load sees a store that happens before it, the omitted operations
cannot impact the remaining execution.

Define a partial order (race-order) on {x | x <hb M} ∪ {x |
x <hb N} ∪ {M} ∪ {N} which orders everything in the first two
sets before the other two, but imposes no other order.

Race-order is consistent with happens-before and synchroniza-
tion order. It imposes no additional order on the initial subset. Nei-
ther M nor N is ordered by the synchronization order, and nei-
ther is race ordered or happens before any of the elements in the
first subset. If we had a cycle A0, A1, ..., An = A0, where each
element of the sequence happens before or is race-ordered or syn-
chronization ordered before the next, neither M nor N could thus
appear in the cycle. This is impossible, since happens-before and
the synchronization order are required to be consistent.

We can thus construct the total order <T as a total extension of
the reflexive transitive closure of the union of happens-before, syn-
chronization order, and race order. By the preceding observation,
this exists.

By the same arguments as in the proof of theorem 7.1, every
memory read must see the preceding write in this sequence, except
possibly N , since it is the only one that may see a value stored
by a racing operation. But we can again simply adjust the value
seen by N to obtain the property we desire, without affecting the
rest of the execution. Thus <T gives us the desired sequentially
consistent execution in which the last two operations, namely M
and N , conflict. •

9. Model Adjustments for Low-Level Atomics
The C++ working paper provides low-level atomic operations that
are explicitly parameterized with respect to a memory ordering
constraint. The value of an atomic variable x can be retrieved,
for example, with x.load(memory order relaxed) , allowing
it to be reordered with other memory operations. In terms of the
memory model, this specifies that the load is never an acquire

operation, and hence does not contribute to the synchronizes-with
ordering. For read-modify-write operations, the programmer can
specify whether the operation acts as an acquire operation, a release
operation, neither (“relaxed”), or both.

In order to include such low-level atomics in our memory
model, as is done in the C++ working paper, we need several re-
finements to the model in section 6:

1. The total order S of synchronization operations contains only
high-level (sequentially consistent) atomic operations. (These
can also be specified with an explicit memory order seq cst
parameter.)

2. We do however still want updates to a single variable to occur
in a total order, dubbed the modification order in the standard.

3. There was a feeling that, for example a weakly ordered atomic
increment performed by another thread between an atomic
store and load should not break the synchronizes-with rela-
tionship between the store and the load. Hence the definition
of synchronizes-with was strengthened to cover this case (see
“release sequence” in the C++ working paper). The precise def-
inition in the working paper is a compromise between ease of
use and implementability on common hardware.

4. Since S no longer includes all synchronization operations, the
value seen by an atomic load is no longer uniquely determined
by S. We define a visible sequence with respect to an atomic
load or read-modify-write operation a of location l, to be the
maximal subsequence V of l’s modification order such that
every element of V either is or occurs after a visible side effect
of a, but no element of V happens after a. V then represents all
possible updates that might be seen by a.

Although we can now accommodate low-level atomics in the
memory model, it is important to remember that these are still very
hard to use correctly, and very much an “experts-only” feature.
Most users will benefit only indirectly from libraries written using
these facilities.

10. Conclusions
We have outlined the foundations of the C++ threads memory
model.

From the user’s perspective, we provide a simple programming
model. In return for avoiding data races or, equivalently, identifying
variables and other objects involved in data races as atomic, most
users can ignore the intricacies of hardware memory models and
compiler optimizations; they are guaranteed sequentially consistent
execution.

All of this can be based on the most intuitive definition of a
data race: simultaneous execution of conflicting operations. The
one place in which modern machine architectures do unavoidably
show through slightly is that updates to adjacent bit-fields conflict;
otherwise, operations conflict only when they touch the same ob-
ject.

For those few users whose performance requirements cannot
be satisfied with either locks or sequentially consistent atomic op-
erations, we provide low-level, explicitly ordered, atomics, which
trade simplicity for cross-platform performance.

From the compiler implementors perspective, we preserve the
guarantee that ordinary variables do not appear to change asyn-
chronously. Hence, standard program analyses remain valid, except
for objects of atomic type, even in the presence of threads. In re-
turn, the implementation must refrain from introducing user visible
data races, for example, as a result of rewriting adjacent structure
fields or register promotion. More complete implementation guide-
lines are given in [10].

10

From the hardware implementors perspective, aside from now
standard features, such as compare-and-swap and similar opera-
tions, we need a modest cost facility that allows us to implement se-
quentially consistent atomics, and particularly write atomicity. We
do not need write atomicity for all store operations; but we do need
it for atomic operations. Ideally, sequentially consistent atomics
should be implementable with very small overhead for load opera-
tions.

Acknowledgments
This effort has benefitted greatly from contributions by many oth-
ers, including especially Herb Sutter, Doug Lea, Paul McKenney,
Bratin Saha, Jeremy Manson, Bill Pugh. We clearly would not have
been successful at generating standards-appropriate text without
the help of Clark Nelson and Lawrence Crowl, our coauthors for
[13] and [27]. Lawrence Crowl is also responsible for most of the
detailed design of the atomics interface. The anonymous reviewers
provided a number of useful suggestions. Mark Hill gave comments
on a previous version of the paper.

This work has made it this far through the standards process
only with the the help of processor vendors including AMD, ARM,
IBM, and Intel, who were helpful both in pointing out potential is-
sues, and cooperating with the standardization process, even when
significant effort was required.

References
[1] S. V. Adve. Designing Memory Consistency Models for Shared-

Memory Multiprocessors. PhD thesis, University of Wisconsin-
Madison, 1993.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29(12):66–76, 1996.

[3] S. V. Adve and M. D. Hill. Weak ordering—A new definition. In
Proc. 17th Intl. Symp. Computer Architecture, pages 2–14, 1990.

[4] AMD Corp. AMD64 Architecture Programmer’s Manual - Volume 2:
System Programming, July 2007.

[5] D. Aspinall and J. Sevcik. Java memory model examples: Good,
bad, and ugly. VAMP07 Proceedings http://www.cs.ru.nl/

~chaack/VAMP07/, 2007.

[6] H. Boehm and N. Maclaren. Should volatile acquire atomicity
and thread visibility semantics? C++ standards committee paper
WG21/N2016 = J16/06-0086, http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2007/n2016.html, April 2006.

[7] H.-J. Boehm. Threads cannot be implemented as a library. In Proc.
Conf. on Programming Language Design and Implementation, 2005.

[8] H.-J. Boehm. A less formal explanation of the proposed c++
concurrency memory model. C++ standards committee paper
WG21/N2480 = J16/07-350, http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2007/n2480.html, December 2007.

[9] H.-J. Boehm. Memory model rationales. C++ standards committee
paper WG21/N2176 = J16/07-0036, http://www.open-std.
org/JTC1/SC22/WG21/docs/papers/2007/n2176.html, March
2007.

[10] H.-J. Boehm. N2338: Concurrency memory model compiler conse-
quences. C++ standards committee paper WG21/N2338=J16/07-198,
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/
2007/n2338.htm, August 2007.

[11] H.-J. Boehm. N2392: A memory model for c++: Sequential
consistency for race-free programs. C++ standards committee paper
WG21/N2392=J16/07-252, http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2007/n2392.htm, September 2007.

[12] H.-J. Boehm. Reordering constraints for pthread-style locks. In Proc.
12th Symp. Principles and Practice of Parallel Programming, pages
173–182, 2007.

[13] H.-J. Boehm and L. Crowl. C++ atomic types and operations.
C++ standards committee paper WG21/N2427=J16/07-0297, http:
//www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/
n2427.htm, October 2007.

[14] C++ Standards Committee, Pete Becker, ed. Working Draft, Standard
for Programming Language C++. C++ standards committee paper
WG21/N2461=J16/07-0331, http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2007/n2461.pdf, October 2007.

[15] L. Ceze et al. BulkSC: Bulk Enforcement of Sequential Consistency.
In Proc. Intl. Symp. on Computer Architecture, 2007.

[16] T. Elmas, S. Qadeer, and S. Tasiran. A race and transaction-aware
java runtime. In Proc. Conf. on Programming Language Design and
Implementation, pages 245–255, 2007.

[17] K. Gharachorloo. Memory Consistency Models for Shared Memory
Multiprocessors. PhD thesis, Stanford University, 1995.

[18] K. Gharachorloo et al. Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors. In Proc. 17th Intl. Symp.
on Computer Architecture, pages 15–26, 1990.

[19] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to
Enhance the Performance of Memory Consistency Models. In Proc.
Intl. Conf. on Parallel Processing, pages I355–I364, 1991.

[20] W. H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Trans. Software Engineering, 3(3), May 1977.

[21] IEEE and The Open Group. IEEE Standard 1003.1-2001. IEEE,
2001.

[22] Intel Corp. Intel 64 Architecture Memory Ordering White Paper,
August 2007. http://www.intel.com/products/processor/
manuals/318147.pdf.

[23] A. Kamil, J. Su, and K. Yelick. Making sequential consistency
practical in titanium. In Proceedings of the 2005 ACM/IEEE SC—05
Conference (SC’05), page November, 2005.

[24] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
C-28(9):690–691, 1979.

[25] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proc.
Symp. on Principles of Programming Languages, 2005.

[26] S. Narayanasamy et al. Automatically classifying benign and harmful
data races using replay analysis. In Proc. Conf. on Programming
Language Design and Implementation, pages 22–31, 2007.

[27] C. Nelson and H.-J. Boehm. Concurrency memory model (final
revision). C++ standards committee paper WG21/N2429=J16/07-
0299, http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/2007/n2429.htm, October 2007.

[28] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Re-
tirement and Larger Instruction Windows to Narrow the Performance
Gap between Memory Consistency Models. In Proc. Symposium on
Parallel Algorithms and Architectures, 1997.

[29] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Transactions on Programming
Languages and Systems, 10(2):282–312, April 1988.

[30] Z. Sura et al. Compiler Techniques for High Performance Sequen-
tially Consistent Java Programs. In Symp. Principles and Practice of
Parallel Programming, 2005.

[31] H. Sutter. Prism: A principle-based sequential memory model for
microsoft native code platforms. C++ standards committee paper
WG21/N2197 = J16/07-0057, http://www.open-std.org/JTC1/
SC22/WG21/docs/papers/2007/n2197.pdf, March 2007.

[32] United States Department of Defense. Reference Manual for the
Ada Programming Language: ANSI/MIL-STD-1815A-1983 Standard
1003.1-2001, 1983. Springer.

[33] T. Wenisch et al. Mechanisms for Store-wait-free Multiprocessors. In
Proc. Intl. Symp. on Computer Architecture, 2007.

11

