Practical Data Compression
for Modern Memory Hierarchies

Gennady G. Pekhimenko

CMU-CS-16-116
July 2016

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Todd C. Mowry, Co-Chair
Onur Mutlu, Co-Chair
Kayvon Fatahalian
David A. Wood, University of Wisconsin-Madison
Douglas C. Burger, Microsoft
Michael A. Kozuch, Intel

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2016 Gennady G. Pekhimenko

This research was sponsored by the National Science Foundation under grant numbers CNS-0720790, CCF-

0953246, CCF-1116898, CNS-1423172, CCF-1212962, CNS-1320531, CCF-1147397, and CNS- 1409723,
the Defense Advanced Research Projects Agency, the Semiconductor Research Corporation, the Gigascale
Systems Research Center, Intel URO Memory Hierarchy Program, Intel ISTC-CC, and gifts from AMD,
Google, IBM, Intel, Nvidia, Oracle, Qualcomm, Samsung, and VMware. We also acknowledge the support
through PhD fellowships from Nvidia, Microsoft, Qualcomm, and NSERC.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Data Compression, Memory Hierarchy, Cache Compression, Memory
Compression, Bandwidth Compression, DRAM, Main Memory, Memory Subsystem

Abstract

Although compression has been widely used for decades to reduce file sizes (thereby con-
serving storage capacity and network bandwidth when transferring files), there has been
limited use of hardware-based compression within modern memory hierarchies of com-
modity systems. Why not? Especially as programs become increasingly data-intensive,
the capacity and bandwidth within the memory hierarchy (including caches, main mem-
ory, and their associated interconnects) have already become increasingly important bot-
tlenecks. If hardware-based data compression could be applied successfully to the memory
hierarchy, it could potentially relieve pressure on these bottlenecks by increasing effective
capacity, increasing effective bandwidth, and even reducing energy consumption.

In this thesis, we describe a new, practical approach to integrating hardware-based data
compression within the memory hierarchy, including on-chip caches, main memory, and
both on-chip and off-chip interconnects. This new approach is fast, simple, and effective
in saving storage space. A key insight in our approach is that access time (including de-
compression latency) is critical in modern memory hierarchies. By combining inexpensive
hardware support with modest OS support, our holistic approach to compression achieves
substantial improvements in performance and energy efficiency across the memory hierar-
chy. Using this new approach, we make several major contributions in this thesis.

First, we propose a new compression algorithm, Base-Delta-Immediate Compression
(BAI), that achieves high compression ratio with very low compression/decompression
latency. BAI exploits the existing low dynamic range of values present in many cache
lines to compress them to smaller sizes using Base+Delta encoding.

Second, we observe that the compressed size of a cache block can be indicative of its
reuse. We use this observation to develop a new cache insertion policy for compressed
caches, the Size-based Insertion Policy (SIP), which uses the size of a compressed block
as one of the metrics to predict its potential future reuse.

Third, we propose a new main memory compression framework, Linearly Compressed
Pages (LCP), that significanly reduces the complexity and power cost of supporting main

1l

memory compression. We demonstrate that any compression algorithm can be adapted to
fit the requirements of LCP, and that LCP can be efficiently integrated with the existing
cache compression designs, avoiding extra compression/decompression.

Finally, in addition to exploring compression-related issues and enabling practical so-
lutions in modern CPU systems, we discover new problems in realizing hardware-based
compression for GPU-based systems and develop new solutions to solve these problems.

v

Acknowledgments

First of all, I would like to thank my advisers, Todd Mowry and Onur Mutlu, for always
trusting me in my research experiments, giving me enough resources and opportunities to
improve my work, as well as my presentation and writing skills.

I am grateful to Michael Kozuch and Phillip Gibbons for being both my mentors and
collaborators. 1 am grateful to the members of my PhD committee: Kayvon Fatahalian,
David Wood, and Doug Burger for their valuable feedback and for making the final steps
towards my PhD very smooth. I am grateful to Deb Cavlovich who allowed me to focus
on my research by magically solving all other problems.

I am grateful to SAFARI group members that were more than just lab mates. Vivek
Seshadri was always supportive for my crazy ideas and was willing to dedicate his time and
energy to help me in my work. Chris Fallin was a rare example of pure smartness mixed
with great work ethic, but still always had time for an interesting discussion. From Yoongu
Kim I learned a lot about the importance of details, and hopefully I learned something
from his aesthetic sense as well. Lavanya Subramanian was my fellow cubic mate who
showed me an example on how to successfully mix work with personal life and how to
be supportive for others. Justin Meza helped me to improve my presentation and writing
skills in a very friendly manner (as everything else he does). Donghyuk Lee taught me
everything I know about DRAM and was always an example of work dedication for me.
Nandita Vijaykumar was my mentee, collaborator, and mentor all at the same time, but,
most importantly, a friend that was always willing to help. Rachata Ausavarungnirun was
our food guru and one of the most reliable and friendly people in the group. Hongyi Xin
reminded me about everything I almost forgot from biology and history classes, and also
taught me everything I know now in the amazing field of bioinformatics. Kevin Chang and
Kevin Hsieh were always helpful and supportive when it matters most. Samira Khan was
always available for a friendly chat when I really need it. Saugata Ghose was my rescue
guy during our amazing trip to Prague. I also thank other members of the SAFARI group
for their assistance and support: HanBin Yoon, Jamie Liu, Ben Jaiyen, Yixin Luo, Yang

Li, and Amirali Boroumand.

Michelle Goodstein, Olatunji Ruwase and Evangelos Vlachos, senior PhD students,
shared their experience and provided a lot of feedback early in my career. I am grateful
to Tyler Huberty and Rui Cai for contributing a lot to my research and for being excellent
undergraduate/masters researchers who selected me as a mentor from all the other options
they had.

During my time at Carnegie Mellon, I met a lot of wonderful people: Michael Pa-
pamichael, Gabe Weisz, Alexey Tumanov, Danai Koutra and many others who helped and
supported me in many different ways. I am also grateful to people at PDL. and CALCM
groups for accepting me in their communities.

I am grateful to my internship mentors for making my work in their companies mu-
tually successful for both sides. At Microsoft Research, I had the privilege to closely
work with Karin Strauss, Dimitrios Lymberopoulos, Oriana Riva, Ella Bounimova, Patrice
Godefroid, and David Molnar. At NVIDIA Research, I had the privilege to closely work
with Evgeny Bolotin, Steve Keckler, and Mike O’Connor. I am also grateful to my
amazing collaborators from Georgia Tech: Hadi Esmaeilzadeh, Amir Yazdanbaksh, and
Bradley Thwaites.

And last, but not least, I would like to acknowledge the enormous love and support that
I received from my family: my wife Daria and our daughter Alyssa, my parents: Gennady
and Larissa, and my brother Evgeny.

vi

Contents

Abstract

Acknowledgments

1 Introduction

1.1 Focus of This Dissertation: Efficiency of the Memory Hierarchy

1.1.1

1.1.2

1.2 Related
1.2.1
1.2.2
1.2.3
1.24
1.2.5
1.2.6
1.2.7
1.2.8

A Compelling Possibility: Compressing Data throughout the Full
Memory Hierarchy,

Why Traditional Data Compression Is Ineffective for Modern Mem-
Oy SYStBIMS . .+ . v v v v v e e e e e e e e e e e e e e

Work
3D-Stacked DRAM Architectures
In-Memory Computing
Improving DRAM Performance
Fine-grain Memory Organization and Deduplication
Data Compression for Graphics
Software-based Data Compression
Code Compression v v v v v v v i e e

Hardware-based Data Compression

1.3 Thesis Statement: Fast and Simple Compression
throughout the Memory Hierarchy

1.4 Contributions e e e e e e

vil

iii

A O Lt Lt L A A B W W

@)

2 Key Challenges for Hardware-Based Memory Compression

2.1

2.2
2.3
24
2.5
2.6

Compression and Decompression Latency
2.1.1 Cache Compression
2.1.2 MainMemory e
2.1.3 On-Chip/Off-chipBuses
Quickly Locating Compressed Data
Fragmentation
Supporting Variable Size after Compression
Data Changes after Compression

Summary of Our Proposal

3 Base-Delta-Immediate Compression

3.1

3.2
33

34

3.5

3.6

Introduction L
3.1.1 Our Approach: BAI Compression
Background and Motivation L0 oL
Base + Delta Encoding: BasicIdea
3.3.1 WhyDoes B+A Work?,
3.3.2 Compression Algorithm
3.3.3 Decompression Algorithm
BATCOMpPression v v v v vt e e e e e e e e e e
3.4.1 Why Could Multiple Bases Help?
3.4.2 BAI Refining B+A with Two Bases and Minimal Complexity

BAIL Designand Operation

351 Design e e
352 Operationl e e e e
Related Worko

3.6.1 Zero-basedDesigns.
3.6.2 Frequent Value Compression

3.6.3 Pattern-Based Compression Techniques

viii

10
10
10
11
12
12
13

3.64 Follow-upWork, 36

3.7 Evaluation Methodology 36
3.8 Results& Analysis e 38
3.8.1 Single-coreResults L oL 38
3.8.2 Multi-coreResults oL, 39
3.8.3 EffectonCacheCapacity 41
3.84 EffectonBandwidth 43
3.8.5 Detailed Comparison with Prior Work 43
39 Summary e 45
Compression-Aware Cache Management 47
4.1 Introduction e 47
4.2 Motivating Observations e 50
421 SizeMatters oL e e e 50
422 SizeVarieso e e 51
423 Size CanlIndicateReuse 52
4.3 CAMP: Design and Implementation 55
43.1 Background oo 56
4.3.2 Minimal-Value Eviction MMVE) 57
4.3.3 Size-based Insertion Policy (SIP) 58
434 CAMP forthe V-Way Cache 60
4.3.5 Overhead and Complexity Analysis 64
4.4 Qualitative Comparison with Prior Work 64
4.4.1 Size-Aware Management in On-Chip Caches 64
4.42 Size-Aware Management in Web Caches 65
4.5 Methodology 66
4.5.1 BEvaluation Metrics Lo 66
452 Energy e e e 67
4.5.3 Parameters of Evaluated Schemes 67

ix

4.6 Resultsand Analysis o o 68
4.6.1 Single-coreResults 68
4.6.2 Multi-coreResults oL 73
4.6.3 Sensitivity to the Compression Algorithm 75
4.6.4 SIP with Uncompressed Cache 75
477 Summaryo e e e e e e e e e e e e e e e e e 76
Main Memory Compression: Linearly Compressed Pages 77
5.1 Introduction 77
5.1.1 Shortcomings of Prior Approaches 78
5.1.2 Our Approach: Linearly Compressed Pages 79
5.2 Background on Main Memory Compression 81
5.2.1 Compressing In-Memory Data 81
5.2.2 Challenges in Memory Compression 82
5.2.3 Prior Work on Memory Compression 83
5.3 Linearly Compressed Pages 85
53.1 LCP:Basicldea 85
532 LCPOperation i, 87
54 DetailedDesign 89
5.4.1 Page Table Entry Extension 89
542 LCPOrganization v v v v .. 90
5.4.3 Operating System Memory Management 93
5.4.4 Changes to the Cache Tagging Logic 93
5.4.5 Changes to the Memory Controller. 93
5.4.6 Handling Page Overflows 95
54.7 Compression Algorithms 97
5.5 LCPOptimizations o v vt v i v i et et 98
5.5.1 Enabling Memory Bandwidth Reduction 99
5.5.2 Zero Pages and Zero Cache Lines 100

X

5.6 Methodology
5.7 Results. oL e
5.7.1 Effecton DRAM Capacity
5.7.2 Effecton Performance
5.7.3 Effect on Bus Bandwidth and Memory Subsystem Energy
5.7.4 Analysis of LCP Parameters
5.7.5 Comparison to Stride Prefetching

5.8 Summary ... e e e

Toggle-Aware Bandwidth Compression
6.1 Introduction e
6.1.1 Compression & Communication Energy
6.1.2 Toggle-Aware Compression
6.2 Background
6.3 Motivation and Analysis L oo
6.4 Toggle-aware Compression v v v v v v i .
6.4.1 Energy vs. Performance Trade-off
6.4.2 Energy Control (EC)
6.4.3 Metadata Consolidation
6.5 ECArchitecture e
6.5.1 Toggle Computation for On-Chip Interconnect
6.5.2 Toggle Computation for DRAM
6.53 ECandDataBusInversion
6.5.4 Complexity Estimation
6.6 Methodology
6.7 Evaluation L
6.7.1 DRAMBusResults
6.7.2 On-Chip Interconnect Results
6.7.3 Effect of Metadata Consolidation

X1

6.8 Related Work

6.9 Summary e

7 Putting It All Together

7.1 Main Memory + Cache Compression

7.1.1 Effecton Performance

7.1.2 Effect on Bus Bandwidth

7.1.3 EffectonEnergy

8 Conclusions and Future Work

8.1 Future Work Directions e

8.1.1 Compiler-Assisted Data Compression

8.1.2 Data Compression for Non-Volatile Memories

8.1.3 New Efficient Representations for Big Data

Bibliography

Xii

143
143
144
146
147

149
150
150
151
151

155

List of Figures

1.1

3.1

3.2
33
34
3.5
3.6

3.7

3.8
39
3.10
3.11

3.12
3.13
3.14

Data compression from the core to the main memory. 2

Percentage of cache lines with different data patterns in a 2MB L2 cache.

“Other Patterns” includes “Narrow Values”. 19
Effective compression ratio with different value patterns 21
Cache line from h264ref compressed withB+A 22
Cache line from perlbench compressed with B4+A 22
Cache line from mcf compressed by B+A (twobases) 25

Effective compression ratio with different number of bases. “0” corre-
sponds to zero and repeated value compression. 25

Compression ratio comparison of different algorithms: ZCA [53], FVC [256],
FPC [10], B+A (two arbitrary bases), and BAI. Results are obtained on
a cache with twice the tags to accommodate more cache lines in the same

data space as an uncompressed cache.o 27
Compressor design. CU: Compressor unit. 28
Compressor unit for 8-byte base, 1-byte A 30
Decompressordesigno e 30

BAI vs. conventional cache organization. Number of tags is doubled,
compression encoding bits are added to every tag, data storage is the same

in size, but partitioned into segments. oL 31
@IPC . . . o e e e e e 39
(M)MPKI e e e e 39

Performance of BAI with different cache sizes. Percentages show im-
provement over the baseline cache (same size). 39

Xiii

3.15 Normalized weighted speedup for 2MB L2 cache, 2-cores. Percentages
show improvement over the baseline uncompressed cache.

3.16 IPC comparison of BAI against lower and upper limits in performance
(from 512kB 2-way - 4MB 16-way L2 cache). Percentages on the Ge-
oMean bars show how close BAI gets to the performance of the cache
with twice the size (upper limit).

3.17 Effective compression ratio vs. numberoftags.

3.18 Effect of compression on bus bandwidth (in terms of BPKI) between L2
(256kB)and L3 (8MB)o

3.19 Performance of BAI vs. prior work fora2MB L2 cache

4.1 Example demonstrating downside of not including block size information
inreplacement decisions.

4.2 Compressed block size distribution for representative applications with the
BDI [185] compression algorithm.

4.3 Code example: size and reuse distance relationship.

4.4 Plots demonstrate the relationship between the compressed block size and
reuse distance. Dark red circles correspond to the most frequent reuse
distances for every size. The first five workloads ((a)—(e)) have some rela-
tion between size and reuse, while the last one (f) do not show that size is
indicative of reuse. Lo oL

4.5 Set selection during training and decision of best insertion policy based on
difference in miss rate in MTD/ATD.

4.6 V-Way + compression cache design.

42

51
53

61

4.7 Set selection during training and update of counters on misses to each region. 63

4.8 Performance of our local replacement policies vs. RRIP and ECM, nor-
malizedto LRU. o L

4.9 Performance of our global replacement policies vs. RRIP and V-Way,
normalized toLRU. oL o

4.10 Performance with IM —16MB L2 caches.
4.11 Effect on memory subsystemenergy.

4.12 Effect on compression ratio witha2MB L2 cache.

Xiv

4.13

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12
5.13
5.14

5.15

5.16
5.17

5.18

5.19

6.1

6.2

Normalized weighted speedup, 2-cores with2MB L2. 74
Main Memory Page Mapping Challenge 82
Cache Line Address Computation Challenge 83
Organization of a Linearly Compressed Page 86
Memory requestflow o o L 87
Page table entry extension. L. 89
Physical memory layout with the LCP framework. 91
Metadata region, whenn =64. Lo 92
Main memory compression ratio.o e .. 102
Compressed page size distribution with LCP-BDIL. 103
Compression ratio over time with LCP-BDIL. 104
Performance comparison (IPC) of different compressed designs for the

single-core system. oL o 105
Average performance improvement (weighted speedup). 106
Number of page faults (normalized to Baseline with 256MB). 106
Effect of different main memory compression schemes on memory band-

width. . . . oL 108
Effect of different main memory compression schemes on memory sub-

SYSEEM NETEY. « « v v v v v e v e e e e e e e e e e e e e e e e e 108
Type-1 page overflows for different applications. 109
Average number of exceptions per compressed page for different applica-

HONS. . . . v vt e e e e e e e e e e e e e 110
Performance comparison with stride prefetching, and using prefetcher hints

with the LCP-framework., 111
Bandwidth comparison with stride prefetching. 112

Effective bandwidth compression ratios for various GPU applications and
compression algorithms (higher bars are better). 118

Bit toggle count increase due to compression. 120

XV

6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15
6.16
6.17
6.18

6.19
6.20

7.1
7.2
7.3

Normalized bit toggle count vs. compression ratio (with the FPC algo-

rithm) for each of the discrete GPU applications. 121
Bit toggles without compression. 122
Bit toggles after compression. L. Lo L. 122
Energy Control decision mechanism. 124
Bit toggle count w/o and with Metadata Consolidation. 125
System overview with interconnect compressionand EC. 126
System overview with off-chip bus compressionand EC. 126
Effect of Energy Control on the number of toggles on DRAM bus. 130
Effective DRAM bandwidth increase for different applications. 131
Effect of Energy Control with C-Pack compression algorithm on the num-

berof DRAMtoggles. 132
Effective DRAM bandwidth increase with C-Pack algorithm. 132
Speedup with C-Pack compression algorithm. 134
Effect on the DRAM energy with C-Pack compression algorithm. 135
Effect of Energy Control on the number of toggles in on-chip interconnect. 136
Effect of Energy Control on compression ratio in on-chip interconnect. . . 136
Effect of Energy Control on performance when compression is applied to

on-chip interconnect. e 138
Effect of Energy Control on on-chip interconnect energy. 139
Effect of Metadata Consolidation on DRAM bit toggle count with FPC

compression algorithm. oL oo 139
Performance comparison (IPC) of different compressed designs. 145
Effect of cache and main memory compression on memory bandwidth. . . 146
Effect of cache and main memory compression on DRAM bus energy. . . 147

XVi

List of Tables

3.1

3.2

33

34

3.5

3.6

3.7

4.1

4.2

Qualitative comparison of BAI with prior work. LDR: Low dynamic
range. Bold font indicates desirable characteristics.

BAI encoding. All sizes are in bytes. Compressed sizes (in bytes) are
given for 32-/64-byte cache lines.

Storage cost analysis for 2MB 16-way L2 cache, assuming 64-byte cache
lines, 8-byte segments, and 36 bits for address space.

Major parameters of the simulated system

Cache hit latencies used in simulations (in cycles). BAI caches have +1
cycle for 0.5-4MB (+2 cycle for others) on a hit/miss due to larger tag
stores, and +1 cycle for decompression.o

Benchmark characteristics and categories: Comp. Ratio (effective com-
pression ratio for 2MB BAI L2) and Sens. (cache size sensitivity). Sen-
sitivity is the ratio of improvement in performance by going from 512kB
to 2MB L2 (L - low (< 1.10) , H - high (> 1.10)). For compression ra-
tio: L - low (< 1.50), H - high (> 1.50). Cat. means category based on
compression ratio and sensitivity.o L.

Average performance improvement of BAI over other mechanisms: No
Compression, ZCA, FVC,and FPC.

Storage overhead of different mechanisms for a 2MB L2 cache. “V-Way+C”
means V-Way with compression.

Major parameters of the simulated system.

Xvil

4.3

5.1
5.2

6.1

7.1

Performance (IPC) / Miss rate (MPKI) comparison between our cache
management policies and prior works, 2MB L2 cache. All numbers are
pairwise percentage improvements over the corresponding comparison points

and averaged across fourteen memory-intensive applications. 69
Major Parameters of the Simulated Systems. 100
Listof evaluated designs. 102
Major Parameters of the Simulated Systems. 130
List of evaluated designs. L. 144

XViil

Chapter 1

Introduction

The recent Big Data revolution has had a transformative effect on many areas of science
and technology [169]. Indeed, a key factor that has made Cloud Computing attractive is the
ability to perform computation near these massive data sets. As we look toward the future,
where our ability to capture detailed data streams from our environment is only expected
to increase, it seems clear that many important computations will operate on increasingly
larger data set sizes.

Unfortunately, data-intensive computing creates significant challenges for system de-
signers. In particular, the large volume and flow of data places significant stress on the
capacity and bandwidth across the many layers that comprise modern memory hierarchies,
thereby making it difficult to deliver high performance at low cost with minimal energy
consumption.

1.1 Focus of This Dissertation: Efficiency of the Memory
Hierarchy

This dissertation focuses on performance and energy efficiency of the modern memory
hierarchies. We observe that existing systems have significant redundancy in the data (i)
stored in the memory hierarchies (e.g., main memory, on-chip caches) and (ii) transferred
across existing communication channels (e.g., off-chip bus and on-chip interconnect). Fig-
ure 1.1 shows parts of the system stack where we aim to apply data compression (in red/-
dark).

In this dissertation, we first propose a simple and fast yet efficient compression algo-

1

CPU, GPU SRAM DRAM, PCM

Figure 1.1: Data compression from the core to the main memory.

rithm that is suitable for on-chip cache compression. This algorithm solves one of the
key challenges for cache compression: achieving low decompression latency, which is on
the critical path of the execution. Then, we show that compressed cache block size is a
new important factor when making cache replacement decisions that helps to outperform
state-of-the-art cache replacement mechanisms.

We then propose a new design for main memory compression that solves a key chal-
lenge in realizing data compression in main memory: the disparity between how the data is
stored (i.e., at a page granularity) and how it is accessed (i.e., at a cache line granularity).

Finally, we show that bandwidth compression—both on-chip and off-chip—can be ef-
ficient in providing high effective bandwidth in the context of modern GPUs (with more
than a hundred real applications evaluated). At the same time, we find that there is a new
important problem with bandwidth compression that makes it potentially energy inefficient
— the significant increase in the number of bit toggles (i.e., the number of transitions be-
tween zeros and ones) that leads to an increase in dynamic energy. We provide an efficient
solution to this problem.

1.1.1 A Compelling Possibility: Compressing Data throughout the
Full Memory Hierarchy

At first glance, data compression may seem like an obvious approach to reducing the neg-
ative impacts of processing large amounts of data. In theory, if data compression could
effectively reduce the size of the data without introducing significant overheads, it would
relieve pressure on both the capacity of the various layers of the memory hierarchy (in-
cluding caches, DRAM, non-volatile memory technologies, etc.) as well as the bandwidth
of the communication channels (including memory buses, etc.) that transfer data between
these layers. This in turn would allow system designers to avoid over-provisioning these
resources, since they could deliver performance more efficiently as a function of system
cost and/or power budget. Perhaps surprisingly, although forms of data compression have

2

been used for many years to reduce file system storage requirements (e.g., by using gzip
to compress files), there has been little to no use of compression within modern memory
hierarchies.! Why not?

1.1.2 Why Traditional Data Compression Is Ineffective for Modern
Memory Systems

Traditional file compression algorithms such as Lempel-Ziv [268] achieve high compres-
sion ratios by scanning through the file from the beginning, building up a dictionary of
common character sequences (which is stored within the compressed file and used for
decompression). In the context of storing files on disk, variations of Lempel-Ziv have
been very popular because files are often accessed as sequential streams, and because the
large decompression latencies are considered to be acceptable given that (1) disk accesses
are already slow, and (ii) saving as much disk space as possible is typically a very high
priority.

In contrast to accessing compressed files on disk, two things are fundamentally dif-
ferent when a processor accesses data (via loads and stores) within its memory hierarchy:
(i) latency is extremely critical, and (ii) data is commonly accessed randomly (rather than
sequentially). Because processor performance is so sensitive to memory access latency,
it is critical that the decompression latency must be as small as possible when accessing
compressed data within the memory hierarchy. Otherwise, system designers and users
will quickly become disenchanted with memory compression if it costs them significant
performance. Ideally, if decompression latency is small enough, compression within the
memory hierarchy should actually improve performance by improving cache hit rates and
reducing bandwidth-related stalls. The fact that main memory is randomly accessed cre-
ates additional challenges, including locating (as well as decompressing) arbitrary blocks
of data efficiently, plus achieving significant compression ratios without being able to use
Lempel-Ziv’s approach of building up dictionaries over large access streams.

1.2 Related Work

Several prior works have proposed different mechanisms to improve the efficiency of the
memory hierarchy to provide (i) higher capacity, (ii) higher bandwidth, (ii1) lower latency,

'The only real exception that we are aware of is IBM’s MXT technology [3], which was shipped in
commercial products roughly 10 years ago, but which has not become widely adopted.

and (iv) higher energy efficiency. In this section, we summarize some of the approaches
that are related to our work. We summarize those works based on their high-level insight
and compare them with the mechanisms proposed in this thesis.

1.2.1 3D-Stacked DRAM Architectures

One of the major limitations of the existing DRAM-based memories is their limited off-
chip bandwidth. One way to overcome this limitation is by vertically stacking multiple
DRAM chips that provide wider IO interfaces, and hence increase the available off-chip
bandwidth to improve performance. Many recent works have proposed designs and ar-
chitectures based on this idea (e.g., [101, 99, 99, , 84, 86]) to get higher off-chip
bandwidth, or to utilize 3D-stacked memory’s higher capacity as a cache (e.g., [28, ,

,]). These designs are largely orthogonal to the ideas proposed in this thesis, and
hence can be used together.

1.2.2 In-Memory Computing

Processing in memory (PIM) has been previously (e.g., [222, , , 69, 59, , ,
, 65]) and more recently (e.g., [207, , , 30, 82, 76, , 75, , 62]) explored to
perform computation near the data to reduce the off-chip bandwidth bottleneck improving
both the performance and energy efficiency. More recently the idea of PIM have been
actively explored again in the context of 3D-stacked memory (e.g., [7, &, 9, 19, 63, 67,
, , 68, 81, 30,]). These prior works might require (i) programmer effort to
map regular computation and data to PIM, or (ii) significant increase in the overall cost
of the system and/or cost-per-bit of the modern DRAM. The mechanisms proposed in this
dissertation are also applicable to systems that perform in-memory computation.

1.2.3 Improving DRAM Performance

Many prior works look at different ways to improve the efficiency of modern DRAM
architectures by either reducing the average access latency (e.g., [134, , , ,

]) or enable higher parallelism within the DRAM itself (e.g., [120, 34]). The ap-
proaches used by these work include (i) exploiting DRAM heterogeneity (e.g., Tiered-
Latency DRAM [134]), Dynamic Asymmetric Subarray [|52], Low-Cost Interlinked Sub-
arrays [33]), (i1) improving DRAM parallelism [120, 34], (iii) exploiting variation in
DRAM latency (e.g., Adaptive Latency DRAM [133], ChargeCache [77]), (iv) smarter

4

refresh and scheduling mechanisms (e.g., [92, , 34, , , 1), and (v) more intel-
ligent memory scheduling and partitioning algorithms (e.g., [165, , , , 56, ,

, , , , , 44, 17, , , 18, , ,]). Many of these techniques
can significantly improve DRAM performance (in terms of latency and energy efficiency),
but are not capable of providing higher effective off-chip bandwidth or higher effective
DRAM capacity by exploiting the existing redundancy in the data itself. The ideas in this
dissertation can be exploited in conjunction with many of these techniques, e.g., intelligent
memory scheduling.

1.2.4 Fine-grain Memory Organization and Deduplication

Several different proposals aim to improve memory performance by changing its page-
granularity organization (e.g., fine-grain memory deduplication [40], fine-grain virtual
page management [210]). The proposed frameworks usually require significant changes
to the existing virtual page organization that frequently leads to a significant increase in
the cost. The techniques proposed in this thesis are much less radical in the way they
affect the higher levels of the systems stack. The key difference with the deduplication
approach [40] is that data redundancy is exploited at a much finer granularity (e.g., 1-4
byte vs. 16-64 byte), hence much higher compression ratios are possible for many appli-
cations. Our techniques are complementary to fine-grain virtual page management works

(e.g., [210]).

1.2.5 Data Compression for Graphics

Data compression is a widely used technique in the specialized area of texture compres-
sion [227, 2,] used in modern GPUs. These approaches have several major limita-
tions. First, compressed textures are usually read-only that is not acceptable for many
applications. Second, compression/decompression latency is quite significant that limits
applicability of these algorithms to latency-insensitive applications. Our work is targeted
towards more general-purpose workloads where it is difficult to customize the compres-
sion algorithm to very specialized characteristics found in graphics processing.

1.2.6 Software-based Data Compression

Several mechanisms were proposed to perform memory compression in software (e.g., in
the compiler [124], in the operating system [246]) for various modern operating systems

5

(e.g., Linux [71], MacOS [14], Windows [66], AIX [90]). While these techniques can be
quite efficient in reducing applications’ memory footprint, their major limitation is very
slow (usually software-based) decompression. This limits these mechanisms to compress-
ing only “cold” pages (e.g., swap pages).

1.2.7 Code Compression

Compression was successfully applied not only to the application data, but also to the code
itself [122, , 42, , 41, , , 13, , 60,]. The primary goal in these works
was usually to reduce the program footprint (especially in the context of embedded de-
vices).The reduced footprint can allow for more instructions to be stored in the instruction
caches, and hence reduce the number of instruction cache misses, which, in turn, improves
performance. In this dissertation, we do not specialize for code compression. Instead, our
goal is to enable general data compression. Hence, the key difference between these prior
works on code compression with the designs proposed in this dissertation is in the com-
pression algorithms themselves: code compression algorithms are usually significantly
tuned for a specific input — instructions, and usually not effective for data compression.

1.2.8 Hardware-based Data Compression

Hardware-based data compression received some attention in the past (e.g., [256, 3, 10,45,

, 57]), but unfortunately proposed general-purpose designs were not practical either due
to unacceptable compression/decompression latency or high design complexity and high
overhead to support variable size blocks after compression. In this thesis, we will show
how to overcome these challenges in several practical designs across the whole memory
hierarchy. We will provide comprehensive quantitative comparisons to multiple previous
state-of-the-art works on hardware-based data compression (e.g., [10, 38, 54, ,57,3).

1.3 Thesis Statement: Fast and Simple Compression
throughout the Memory Hierarchy

The key insight in our approach is that (i) decompression latency and (ii) simplicity of
design are far more critical than compression ratio when designing a compression scheme
that is effective for modern memory systems (in contrast to traditional file compression
techniques aimed at disk storage). We have identified simple and effective mechanisms

6

for compressing data in on-chip caches (e.g., by exploiting narrow dynamic ranges) and
in main memory (e.g., by adopting a common compression ratio for all cache blocks within
a page) that achieve significant compression ratios (roughly a factor of two in most cases)
while adding minimal access latency overhead [185, , ,]. The simplicity of our
proposed mechanisms enables elegant solutions for dealing with the practical challenges
of how on-chip caches and main memories are organized in modern systems.

The ultimate goal of this research is to validate the following thesis:

It is possible to develop a new set of designs for data compression within
modern memory hierarchies that are fast enough, simple enough, and ef-
fective enough in saving storage space and consumed bandwidth such that
the resulting improvements in performance, cost, and energy efficiency will
make such compression designs attractive to implement in future systems.

The hope is to achieve this goal through the following new mechanism:

Data compression hardware (along with appropriate operating system sup-
port) that (i) efficiently achieves significant compression ratios with negligible
latencies for locating and decompressing data, and (ii) enables the seamless
transfer of compressed data between all memory hierarchy layers.

As a result