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Abstract

Although compression has been widely used for decades to reduce file sizes (thereby con-
serving storage capacity and network bandwidth when transferring files), there has been
limited use of hardware-based compression within modern memory hierarchies of com-
modity systems. Why not? Especially as programs become increasingly data-intensive,
the capacity and bandwidth within the memory hierarchy (including caches, main mem-
ory, and their associated interconnects) have already become increasingly important bot-
tlenecks. If hardware-based data compression could be applied successfully to the memory
hierarchy, it could potentially relieve pressure on these bottlenecks by increasing effective
capacity, increasing effective bandwidth, and even reducing energy consumption.

In this thesis, we describe a new, practical approach to integrating hardware-based data
compression within the memory hierarchy, including on-chip caches, main memory, and
both on-chip and off-chip interconnects. This new approach is fast, simple, and effective
in saving storage space. A key insight in our approach is that access time (including de-
compression latency) is critical in modern memory hierarchies. By combining inexpensive
hardware support with modest OS support, our holistic approach to compression achieves
substantial improvements in performance and energy efficiency across the memory hierar-
chy. Using this new approach, we make several major contributions in this thesis.

First, we propose a new compression algorithm, Base-Delta-Immediate Compression
(BAI), that achieves high compression ratio with very low compression/decompression
latency. BAI exploits the existing low dynamic range of values present in many cache
lines to compress them to smaller sizes using Base+Delta encoding.

Second, we observe that the compressed size of a cache block can be indicative of its
reuse. We use this observation to develop a new cache insertion policy for compressed
caches, the Size-based Insertion Policy (SIP), which uses the size of a compressed block
as one of the metrics to predict its potential future reuse.

Third, we propose a new main memory compression framework, Linearly Compressed
Pages (LCP), that significanly reduces the complexity and power cost of supporting main
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memory compression. We demonstrate that any compression algorithm can be adapted to
fit the requirements of LCP, and that LCP can be efficiently integrated with the existing
cache compression designs, avoiding extra compression/decompression.

Finally, in addition to exploring compression-related issues and enabling practical so-
lutions in modern CPU systems, we discover new problems in realizing hardware-based
compression for GPU-based systems and develop new solutions to solve these problems.
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Chapter 1

Introduction

The recent Big Data revolution has had a transformative effect on many areas of science
and technology [169]. Indeed, a key factor that has made Cloud Computing attractive is the
ability to perform computation near these massive data sets. As we look toward the future,
where our ability to capture detailed data streams from our environment is only expected
to increase, it seems clear that many important computations will operate on increasingly
larger data set sizes.

Unfortunately, data-intensive computing creates significant challenges for system de-
signers. In particular, the large volume and flow of data places significant stress on the
capacity and bandwidth across the many layers that comprise modern memory hierarchies,
thereby making it difficult to deliver high performance at low cost with minimal energy
consumption.

1.1 Focus of This Dissertation: Efficiency of the Memory
Hierarchy

This dissertation focuses on performance and energy efficiency of the modern memory
hierarchies. We observe that existing systems have significant redundancy in the data (i)
stored in the memory hierarchies (e.g., main memory, on-chip caches) and (ii) transferred
across existing communication channels (e.g., off-chip bus and on-chip interconnect). Fig-
ure 1.1 shows parts of the system stack where we aim to apply data compression (in red/-
dark).

In this dissertation, we first propose a simple and fast yet efficient compression algo-
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CPU, GPU SRAM DRAM, PCM

Figure 1.1: Data compression from the core to the main memory.

rithm that is suitable for on-chip cache compression. This algorithm solves one of the
key challenges for cache compression: achieving low decompression latency, which is on
the critical path of the execution. Then, we show that compressed cache block size is a
new important factor when making cache replacement decisions that helps to outperform
state-of-the-art cache replacement mechanisms.

We then propose a new design for main memory compression that solves a key chal-
lenge in realizing data compression in main memory: the disparity between how the data is
stored (i.e., at a page granularity) and how it is accessed (i.e., at a cache line granularity).

Finally, we show that bandwidth compression—both on-chip and off-chip—can be ef-
ficient in providing high effective bandwidth in the context of modern GPUs (with more
than a hundred real applications evaluated). At the same time, we find that there is a new
important problem with bandwidth compression that makes it potentially energy inefficient
— the significant increase in the number of bit toggles (i.e., the number of transitions be-
tween zeros and ones) that leads to an increase in dynamic energy. We provide an efficient
solution to this problem.

1.1.1 A Compelling Possibility: Compressing Data throughout the
Full Memory Hierarchy

At first glance, data compression may seem like an obvious approach to reducing the neg-
ative impacts of processing large amounts of data. In theory, if data compression could
effectively reduce the size of the data without introducing significant overheads, it would
relieve pressure on both the capacity of the various layers of the memory hierarchy (in-
cluding caches, DRAM, non-volatile memory technologies, etc.) as well as the bandwidth
of the communication channels (including memory buses, etc.) that transfer data between
these layers. This in turn would allow system designers to avoid over-provisioning these
resources, since they could deliver performance more efficiently as a function of system
cost and/or power budget. Perhaps surprisingly, although forms of data compression have
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been used for many years to reduce file system storage requirements (e.g., by using gzip
to compress files), there has been little to no use of compression within modern memory
hierarchies.! Why not?

1.1.2 Why Traditional Data Compression Is Ineffective for Modern
Memory Systems

Traditional file compression algorithms such as Lempel-Ziv [268] achieve high compres-
sion ratios by scanning through the file from the beginning, building up a dictionary of
common character sequences (which is stored within the compressed file and used for
decompression). In the context of storing files on disk, variations of Lempel-Ziv have
been very popular because files are often accessed as sequential streams, and because the
large decompression latencies are considered to be acceptable given that (1) disk accesses
are already slow, and (ii) saving as much disk space as possible is typically a very high
priority.

In contrast to accessing compressed files on disk, two things are fundamentally dif-
ferent when a processor accesses data (via loads and stores) within its memory hierarchy:
(i) latency is extremely critical, and (ii) data is commonly accessed randomly (rather than
sequentially). Because processor performance is so sensitive to memory access latency,
it is critical that the decompression latency must be as small as possible when accessing
compressed data within the memory hierarchy. Otherwise, system designers and users
will quickly become disenchanted with memory compression if it costs them significant
performance. Ideally, if decompression latency is small enough, compression within the
memory hierarchy should actually improve performance by improving cache hit rates and
reducing bandwidth-related stalls. The fact that main memory is randomly accessed cre-
ates additional challenges, including locating (as well as decompressing) arbitrary blocks
of data efficiently, plus achieving significant compression ratios without being able to use
Lempel-Ziv’s approach of building up dictionaries over large access streams.

1.2 Related Work

Several prior works have proposed different mechanisms to improve the efficiency of the
memory hierarchy to provide (i) higher capacity, (ii) higher bandwidth, (ii1) lower latency,

'The only real exception that we are aware of is IBM’s MXT technology [3], which was shipped in
commercial products roughly 10 years ago, but which has not become widely adopted.



and (iv) higher energy efficiency. In this section, we summarize some of the approaches
that are related to our work. We summarize those works based on their high-level insight
and compare them with the mechanisms proposed in this thesis.

1.2.1 3D-Stacked DRAM Architectures

One of the major limitations of the existing DRAM-based memories is their limited off-
chip bandwidth. One way to overcome this limitation is by vertically stacking multiple
DRAM chips that provide wider IO interfaces, and hence increase the available off-chip
bandwidth to improve performance. Many recent works have proposed designs and ar-
chitectures based on this idea (e.g., [101, 99, 99, , 84, 86]) to get higher off-chip
bandwidth, or to utilize 3D-stacked memory’s higher capacity as a cache (e.g., [28, ,

, ]). These designs are largely orthogonal to the ideas proposed in this thesis, and
hence can be used together.

1.2.2 In-Memory Computing

Processing in memory (PIM) has been previously (e.g., [222, , , 69, 59, , ,
, 65]) and more recently (e.g., [207, , , 30, 82, 76, , 75, , 62]) explored to
perform computation near the data to reduce the off-chip bandwidth bottleneck improving
both the performance and energy efficiency. More recently the idea of PIM have been
actively explored again in the context of 3D-stacked memory (e.g., [7, &, 9, 19, 63, 67,
, , 68, 81, 30, ]). These prior works might require (i) programmer effort to
map regular computation and data to PIM, or (ii) significant increase in the overall cost
of the system and/or cost-per-bit of the modern DRAM. The mechanisms proposed in this
dissertation are also applicable to systems that perform in-memory computation.

1.2.3 Improving DRAM Performance

Many prior works look at different ways to improve the efficiency of modern DRAM
architectures by either reducing the average access latency (e.g., [134, , , ,

]) or enable higher parallelism within the DRAM itself (e.g., [120, 34]). The ap-
proaches used by these work include (i) exploiting DRAM heterogeneity (e.g., Tiered-
Latency DRAM [134]), Dynamic Asymmetric Subarray [|52], Low-Cost Interlinked Sub-
arrays [33]), (i1) improving DRAM parallelism [120, 34], (iii) exploiting variation in
DRAM latency (e.g., Adaptive Latency DRAM [133], ChargeCache [77]), (iv) smarter
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refresh and scheduling mechanisms (e.g., [92, , 34, , , 1), and (v) more intel-
ligent memory scheduling and partitioning algorithms (e.g., [165, , , , 56, ,

, , , , , 44, 17, , , 18, , , ]). Many of these techniques
can significantly improve DRAM performance (in terms of latency and energy efficiency),
but are not capable of providing higher effective off-chip bandwidth or higher effective
DRAM capacity by exploiting the existing redundancy in the data itself. The ideas in this
dissertation can be exploited in conjunction with many of these techniques, e.g., intelligent
memory scheduling.

1.2.4 Fine-grain Memory Organization and Deduplication

Several different proposals aim to improve memory performance by changing its page-
granularity organization (e.g., fine-grain memory deduplication [40], fine-grain virtual
page management [210]). The proposed frameworks usually require significant changes
to the existing virtual page organization that frequently leads to a significant increase in
the cost. The techniques proposed in this thesis are much less radical in the way they
affect the higher levels of the systems stack. The key difference with the deduplication
approach [40] is that data redundancy is exploited at a much finer granularity (e.g., 1-4
byte vs. 16-64 byte), hence much higher compression ratios are possible for many appli-
cations. Our techniques are complementary to fine-grain virtual page management works

(e.g., [210]).

1.2.5 Data Compression for Graphics

Data compression is a widely used technique in the specialized area of texture compres-
sion [227, 2, ] used in modern GPUs. These approaches have several major limita-
tions. First, compressed textures are usually read-only that is not acceptable for many
applications. Second, compression/decompression latency is quite significant that limits
applicability of these algorithms to latency-insensitive applications. Our work is targeted
towards more general-purpose workloads where it is difficult to customize the compres-
sion algorithm to very specialized characteristics found in graphics processing.

1.2.6 Software-based Data Compression

Several mechanisms were proposed to perform memory compression in software (e.g., in
the compiler [124], in the operating system [246]) for various modern operating systems
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(e.g., Linux [71], MacOS [14], Windows [66], AIX [90]). While these techniques can be
quite efficient in reducing applications’ memory footprint, their major limitation is very
slow (usually software-based) decompression. This limits these mechanisms to compress-
ing only “cold” pages (e.g., swap pages).

1.2.7 Code Compression

Compression was successfully applied not only to the application data, but also to the code
itself [122, , 42, , 41, , , 13, , 60, ]. The primary goal in these works
was usually to reduce the program footprint (especially in the context of embedded de-
vices).The reduced footprint can allow for more instructions to be stored in the instruction
caches, and hence reduce the number of instruction cache misses, which, in turn, improves
performance. In this dissertation, we do not specialize for code compression. Instead, our
goal is to enable general data compression. Hence, the key difference between these prior
works on code compression with the designs proposed in this dissertation is in the com-
pression algorithms themselves: code compression algorithms are usually significantly
tuned for a specific input — instructions, and usually not effective for data compression.

1.2.8 Hardware-based Data Compression

Hardware-based data compression received some attention in the past (e.g., [256, 3, 10,45,

, 57]), but unfortunately proposed general-purpose designs were not practical either due
to unacceptable compression/decompression latency or high design complexity and high
overhead to support variable size blocks after compression. In this thesis, we will show
how to overcome these challenges in several practical designs across the whole memory
hierarchy. We will provide comprehensive quantitative comparisons to multiple previous
state-of-the-art works on hardware-based data compression (e.g., [10, 38, 54, ,57,3).

1.3 Thesis Statement: Fast and Simple Compression
throughout the Memory Hierarchy

The key insight in our approach is that (i) decompression latency and (ii) simplicity of
design are far more critical than compression ratio when designing a compression scheme
that is effective for modern memory systems (in contrast to traditional file compression
techniques aimed at disk storage). We have identified simple and effective mechanisms
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for compressing data in on-chip caches (e.g., by exploiting narrow dynamic ranges) and
in main memory (e.g., by adopting a common compression ratio for all cache blocks within
a page) that achieve significant compression ratios (roughly a factor of two in most cases)
while adding minimal access latency overhead [ 185, , , ]. The simplicity of our
proposed mechanisms enables elegant solutions for dealing with the practical challenges
of how on-chip caches and main memories are organized in modern systems.

The ultimate goal of this research is to validate the following thesis:

It is possible to develop a new set of designs for data compression within
modern memory hierarchies that are fast enough, simple enough, and ef-
fective enough in saving storage space and consumed bandwidth such that
the resulting improvements in performance, cost, and energy efficiency will
make such compression designs attractive to implement in future systems.

The hope is to achieve this goal through the following new mechanism:

Data compression hardware (along with appropriate operating system sup-
port) that (i) efficiently achieves significant compression ratios with negligible
latencies for locating and decompressing data, and (ii) enables the seamless
transfer of compressed data between all memory hierarchy layers.

As a result