
Daydream: Accurately Estimating the
Efficacy of Optimizations for DNN Training

Hongyu Zhu1,2, Amar Phanishayee3, Gennady Pekhimenko1,2

1 2 3

1

Executive Summary

• Motivation: Benefits of many DNN optimizations are not easy to exploit because
• Efficacy varies for different HW/SW deployments
• It is onerous to implement optimizations

• Goal: Need to quickly find the effective optimizations for a given deployment
• No need to FULLY implement the optimizations

• Our proposal: a system called Daydream, that can estimate runtime improvement
of various DNN optimizations, using dependency graph analysis:
• Tracking dependencies at the abstraction of GPU kernels (graph size is large)
• Correlating low-level traces with layer organization of DNN models
• Ability to model a diverse set of optimizations

• Evaluation: Low estimation error (8% average) on 5 optimizations, 5 DNN models
• Accurately estimating distributed training runtime based on single-GPU profile

2

DNN compute requirements are
growing exponentially

3

Advances in ML Full Stack Research

https://openai.com/blog/ai-and-compute/ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8259424&tag=1

Rapid advances in algorithms, systems
optimizations & hardware architectures

Hard for a ML programmer to identify the efficacy of
new algorithms, optimizations, and hardware improvements

in their deployments.

https://openai.com/blog/ai-and-compute/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8259424&tag=1

What-if Questions

4

ML Programmer

Why is my DNN training workload running slow? What is the bottleneck?

Will optimization X improve the performance of my model?

Will upgrading to a faster network (for example, 10Gbps to 40Gbps) improve
training throughput?

How will my workload scale with the number of GPUs?

What if I get the latest GPU and my compute is 2x faster?

+

Why Dependency Analysis

5

Answering what-if questions in non-ML contexts

Making Sense of Performance in Data Analytics Frameworks (Ousterhout et al., NSDI 15)

What-If Analysis of Page Load Time in
Web Browsers Using Causal Profiling
(Pourghassemi et al., SIGMETRICS 19)

COZ: Finding Code that Counts with Causal
Profiling (Curtsinger et al., SOSP 15)

DNN Computational Graph

Inception (2014)

TensorFlow’s
computational graph (2016)LSTM (2014)

Similarities between the graph structures, unique challenges and opportunities for the ML context

Challenges for Dependency Graph Analysis in
the ML context

6

Challenge #1: Thousands of tasks, and dependency needs to be tracked across CPU
threads, GPU streams, and interconnects.

CPU Thread #1

CPU Thread #2

CPU Thread #3

GPU Stream #1

GPU Stream #2

GPU Stream #3

Communication

launch cudaMalloc cudaFree

cudaDeviceSynchronize

launch launch launch

cudaMemcpy

volta_scudnn_128x64_relu_...

void cudnn::detail::wgrad_alg0_enging<float, …

MemCpy (DtoH)

nccl::all_reduce(…

MemCpy (DtoH)

launch

void cudnn…

Challenges for Dependency Graph Analysis in
the ML context

7

Challenge #2: Modeling DNN optimizations requiring correlation between kernel and layer
abstractions.

volta_scudnn_128x128…

CPU Thread

GPU Stream #1 cudnn::detail::wgrad…

volta_sgemm_..._ZN2at6native18ele… kernelPointwise…

What if I improve CONV layers?
Which kernels belong to these layers?

GPU Stream #2

Challenges for Dependency Graph Analysis in
the ML context

8

Challenge #3: Ability to easily model diverse DNN optimizations.

How to make it easy to model of all potential ?

Optimizations

Daydream
Transformation
Primitives

Daydream
Profiler

Daydream Overview

9

Kernel-level Traces

Layer Graph

Simulation

Layer L0

Layer L1

Layer L2

Daydream’s
Dependency Graph

Post-Optimization
Graph

Input: an DNN training implementation X, an optimization Y

Output: the estimation of runtime when applying Y to X

Training
Implementation X

Optimization Y

Challenge 1: Tracking Dependencies

Observation: GPU kernels are highly serialized for most DNN training workloads

NVProf profile of one ResNet50 iteration NVProf profile of one BERTLARGE iteration

10

GPU kernels

CUDA APIs

Daydream’s Graph Construction

(1) Sequential CPU-CPU: two consecutive CPU calls on the same CPU thread

We identify the six types of dependencies:

(2) Sequential GPU-GPU: two consecutive GPU kernels on the same stream

(3) CPU-GPU launching: A CPU call launching a GPU kernel/CUDA memory copies

Launch K0 cudaMemcpyAsync

K0 CUDAMemcpy

CPU Thread

GPU Stream

cudaDeviceSynchronize Launch K1

(4) GPU-CPU sync: A CPU synchronization call waiting for GPU kernel to finish

11

Daydream’s Graph Construction (cont.)

12

(5) CPU-Communication

Parameter Server Architecture:

CONV_BPCollapsed Compute CONV_FF

Communication

Server

Push Pull

Accumulate_Grad

MPI-like Architecture:

FC_BPCollapsed Compute CONV_FF

Communication AllReduce Grad AllReduce Grad

CONV_BP FC_FF

……

……

POOL_BP RELU_BP POOL_FF

(6) CPU-CPU (e.g. thread spawn, join, lock, …)

Challenge 2: Trace-Layer Correlation

• Optimizations requiring correlation between low-level traces and
DNN layers:
• E.g., Fusing CONV and RELU layers

• Low-level traces have NO domain knowledge

• Naïve approach: adding synchronization

13

Launch K0 Launch K1 Launch K2

K0 K1 K2

CPU Timeline

GPU Timeline

sync

Get timestamps

😕

Daydream’s Kernel-Layer Mapping

Launch K0 Launch K1 Launch K2

K0 K1 K2

CPU Timeline

GPU Timeline

14

K0, K1 belong to L0

t0 t1

❶ Get L0’s Timestamps

❷ Get L0’s CPU tasks

❸ Map K0, K1 to L0 according to
dependencies

Little overhead (only need to instrument frameworks for per-layer timestamps)

No alternation to the dependency graph (synchronization-free)

Challenge 3: Optimization Diversity

15

Optimization Goals Strategy Technique Examples

Improving Hardware
Utilization in Single-
Worker Environment

Increasing Mini-batch Size by
Reducing Memory Footprints

vDNN (MICRO16), Gist (ISCA18), Echo (ISCA20)

Reducing Precision Automatic Mixed Precision (arxiv17)

Kernel/Layer Fusion FusedAdam, MetaFlow (MLSys19), TASO
(SOSP19)

Improving Kernel
Implementation

Restructuring Batchnorm (MLSys19), TVM
(OSDI18), Tensor Comprehensions (arxiv18)

Lowering Communication
Overhead in Distributed
Training

Reducing Communication
Workloads

Deep Gradient Compression (ICLR18), QSGD
(NeurIPS17), AdaComm (MLSys19), Parallax
(EuroSys19), TernGrad (NeurIPS17)

Improving Communication
Efficiency/Overlap

Wait-free Backprop (ATC17), P3 (MLSys19),
BlueConnect (MLSys19), TicTac (MLSys19),
BytePS (SOSP19), Blink (MLSys19)

We evaluate “some optimizations”, and show that we can conveniently model “others” using Daydream

Daydream’s Transformation Primitives

(1) Select(expr): return tasks of interests for further process

16

Most DNN optimizations can be described as a combination of the following primitives:

Launch K0 Launch K1

K0 (POOL) K1 (CONV)

CPU Timeline

GPU Timeline

Launch K2

K2 (POOL)

Synchronize Launch K3

K3 (CONV)

Select(taskPtr (isOnGPU()))Select(taskPtr (is CONV()))

(2) Shrinking/Scaling the task duration

Shrink CONV layers by 2x

K1 (CONV) K3 (CONV)

Launch K0 Launch K1

K0 (POOL)

CPU Timeline

GPU Timeline

Launch K2

K2 (POOL)

sync Launch K3

Daydream’s Transformation Primitives (cont.)

17

CPU Thread
insert

remove

CPU Thread

GPU Stream

insert

remove

(3) Insert(s, task, t): Insert a task between s and t

(4) Remove(task): Remove a task from the graph

Daydream’s Transformation Primitives (cont.)

18

Compute L2_BP L1_BP

Communication

L0_BP

Grad_L2 Grad_L1

L0_FF

Grad_L0

L1_FF L2_FF

Compute L2_BP L1_BP

Communication

L0_BP

Grad_L2 Grad_L1

L0_FF

Grad_L0

L1_FF L2_FF

Reschedule Grad_L1 and Grad_L0

(5) Schedule(Q: a queue of tasks that are ready to execute): --> task
Decide which task to execute when multiple tasks are ready

Example – Automatic Mixed Precision

Using Daydream to estimate the efficacy of AMP (Micikevicius et al., arxiv 2017)

19

10 optimization examples, each around 20 lines of code (refer to our paper)

def estimate_AMP (cupti_file , timestamps_file):

graph = Graph(cupti_file)

graph.mapping (timestamps_file)

GPUNodes = [node for node in graph.nodes () if node.kind == “KERNEL”]

for node in GPUNodes:

if “wgrad ” in node.name or “sgemm” in node.name:

node.dur /= 3

else :

node.dur /= 2

return graph.simulate ()

Low-level traces Per-layer timestamps

Constructing kernel-level dependency graph
Map low-level traces to DNN layers using per-layer timestamps

Select all GPU tasks from the graph

If we expect this task to use TensorCore

Otherwise, use half-precision cores

Simulate the timeline, return the elapsed execution time

Methodology

20

Application Model Dataset

Image Classification VGG-19 Imagenet

DenseNet-121

ResNet-50

Machine Translation GNMT (Seq2Seq) WMT

Language Modeling BERT SQuAD

Woakloads: Setup:

v1.0 v1.1 v1.0

v2.4.2v7.4.2v10.0

RTX 2080 Ti Quadro P4000

Optimizations:

Improving hardware utilization:
Automatic Mixed Precision (AMP), FusedAdam, Reconstructing Batchnorm

Distributed training:
Data-parallel distributed training, Priority-based parameter propagation (P3)

Methodology (cont.)

21

Given a and a , we evaluate:

Baseline:

Ground Truth: +

Prediction:

Runtime Estimation Accuracy

0

50

100

150

200

250

300

350

400

BERT_Base BERT_Large Seq2Seq ResNet-50 BERT_Base BERT_Large Seq2Seq DenseNet

AMP FusedAdam RB

It
er

at
io

n
 T

im
e

(m
s)

Baseline Ground Truth Prediction

Estimating Automatic Mixed Precision (AMP), FusedAdam, and Restructuring Batchnorm (RB)

Daydream achieves 8% estimation error on average (15% maximum)

22

1.54x

1.63x

5.5%

3.9%

15.3%

12.6%

1.9%
12.5%

4.5%

6.1%

Estimating Distributed Training

Estimating data-parallel distributed training of BERTLARGE

0%

5%

10%

15%

20%

0

800

1600

2400

3200

1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

10Gbps 20Gbps 40Gbps

P
re

d
ic

ti
o

n
 E

rr
o

r

It
er

at
io

n
 T

im
e

(m
s)

System Configuration (# of machines x # of GPUs per machine, bandwidth)

Ground Truth Prediction Error

Daydream can accurately estimate the distributed performance for various system configurations

23

Estimating Distributed Training

24

0%

5%

10%

15%

20%

0

75

150

225

300

1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

10Gbps 20Gbps 40Gbps

P
re

d
ic

ti
o

n
 E

rr
o

r

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

System Configuration (# of machines x # of GPUs per machine, bandwidth)

Ground Truth Prediction Error

0%

5%

10%

15%

20%

0

800

1600

2400

3200

1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

10Gbps 20Gbps 40Gbps

P
re

d
ic

ti
o

n
 E

rr
o

r

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

System Configuration (# of machines x # of GPUs per machine, bandwidth)

Ground Truth Prediction Error

0%

5%

10%

15%

20%

0

400

800

1200

1600

1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

10Gbps 20Gbps 40Gbps

P
re

d
ic

ti
o

n
 E

rr
o

r

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

System Configuration (# of machines x # of GPUs per machine, bandwidth)

Ground Truth Prediction Error

0%

5%

10%

15%

20%

0

300

600

900

1200

1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

10Gbps 20Gbps 40Gbps

P
re

d
ic

ti
o

n
 E

rr
o

r

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

System Configuration (# of machines x # of GPUs per machine, bandwidth)

Ground Truth Prediction Error

ResNet-50 GNMT

BERTBASE BERTLARGE

Daydream can accurately estimate the distributed performance for a variety of DNN models

Estimating Efficacy of P3

Prediction accuracy for Priority-Based Parameter Propagation (P3)

Runtime Prediction for ResNet-50 Runtime Prediction for VGG-19

Using Daydream, we can successfully estimate whether P3 would provide significant or subtle improvement

25

0

500

1000

1500

1 2 3 4 5 6 7

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

Network Bandwidth (Gbps)

Baseline

Ground Truth

Prediction

0

1000

2000

3000

2 6 10 14 18 22

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

Network Bandwidth (Gbps)

Baseline

Ground Truth

Prediction

(we use 4 machines and 1 P400 GPU on each machine)

Conclusion

Benefits of DNN optimizations are not easy to exploit:
• Efficacy various across different hw/sw deployments
• Often onerous to implement and debug

Basic Idea: Dependency graph analysis

Our Solution: The Daydream system allowing users to quickly estimate
the performance of various DNN optimizations:

• Tracking dependencies at the kernel-level granularity
• Sync-free trace-to-layer mapping
• Simple graph transformation primitives

Key Results: Estimation error of 8% on average (15% maximum)
Modeling a wide range of optimizations (only 20 lines of code each)

26

Daydream: Accurately Estimating the
Efficacy of Optimizations for DNN Training

Hongyu Zhu1,2, Amar Phanishayee3, Gennady Pekhimenko1,2

1 2 3

27

Thank you!

serailhydra@cs.toronto.edu

