Daydream: Accurately Estimating the
Efficacy of Optimizations for DNN Training

Hongyu Zhu, ,, Amar Phanishayee;, Gennady Pekhimenko, ,

s UNIVERSITY OF ‘ ¢ VECTOR Microsoft

TORONTO NSTITUTE Research

Executive Summary

Motivation: Benefits of many DNN optimizations are not easy to exploit because

* Efficacy varies for different HW/SW deployments
* Itis onerous to implement optimizations

Goal: Need to quickly find the effective optimizations for a given deployment
* No need to FULLY implement the optimizations

Our proposal: a system called Daydream, that can estimate runtime improvement

of various DNN optimizations, using dependency graph analysis:
* Tracking dependencies at the abstraction of GPU kernels (graph size is large)
e Correlating low-level traces with layer organization of DNN models
» Ability to model a diverse set of optimizations

Evaluation: Low estimation error (8% average) on 5 optimizations, 5 DNN models

* Accurately estimating distributed training runtime based on single-GPU profile

Advances in ML Full Stack Research

Hard for a ML programmer to identify the efficacy of
new algorithms, optimizations, and hardware improvements
in their deployments.

https://openai.com/blog/ai-and-compute/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8259424&tag=1

What-if Questions

el

®
g

ML Programmer

Why is my DNN training workload running slow? What is the bottleneck?

3 Posted by 2 yeorsaga

247 . >
W, [D] Why is TensorFlow s@ man
Discussion m;:lets slow down by each batch@

Acco stack overflow Products Customers Use cases

O PyTorch

v Tens Home
hard

PUBLIC
You | ® St Nunsfine

framewyr Pestedby 1z

How will

CUDA How Does Kernel Fusion Improve Performance on Memory Boun
Applications on the GPU?

odel and trair
vever, | noticed
U also increase

/ 10 rain.
wereneaand Advice O s i it i

Use XLA to Tacotron2 is slower than without XLA # "

opened this ssUe o T crT T oommee, /\
Updated GPU recom ///
WI” Upgra1 TL:DR commented on 17 Jul 2019 \:7.4:\’_

Discussion

|

tra nin g th = Best GPU overall System information ! 5 . e
have both CUDA 9.0, « . .)) . rdes
GPU load is constantly * Have | written custom code (as opposed to using a stock example script provided in TensorFlow):No R vaiacen e
* Q5 Platform and Distribution (2.g.. Linux Ubuntu 16.04):centos == Googl.eNet (8-256) GoogLaiet(3-102
i D24) Linear Speedup

Why Dependency Analysis

network read [N 1 DN network read [N 1 1D ‘E ‘E ‘E
compue [N [N compue B TTNMTET, compue g 3 1 puggiigiigg.
diskwric QNN W discwie NN BN W Task runtime with i 8 1 gpgiigiigyg EH Ly g
time “me.‘l— e infinitely fast network ﬂmﬂﬁﬁnﬂgﬂﬂﬁﬁﬂﬂﬂﬂﬂﬁﬂﬂﬁﬁ i Eﬁ EE E'ﬁ
[]: time to handle one record l;:: blzzk:d 2: I.h: 2?5:,01‘ . time blocked on the disk ﬁ ‘E E ﬁ 'E ‘E m 'E E E E “E E _E a8
(a) Pipelined execution of a typical Spark task (b) Blocked times that we measured (c) Task runtime without blocking on network E ﬁ m E m .E E -E A
Making Sense of Performance in Data Analytics Frameworks (Ousterhout et al., NSDI 15) Inception (2014)
Tllustration of Virtual Speedup 1) No speedup }
« - I e | | Ny
© ’__. \ 2) Actual speedup ‘i‘ . m\‘uﬁ“:aj ouiput I y“' Fw_-net
(b) Actual Speedup nr:!i'jwm‘mc Thread 1 ‘ ‘/ gating auput gate
t Thread 2 c@ - .
t2 \ L ‘B‘ITE onginal, al inserted cell
R speedup \.\ tme ys state
() Virtual Speedup effect of optimizing [by d) . , N -/)
T8 *‘\ | - B o alE=
2 l : ’ l_. Fill 2 input gate
]
W
. . . |
COZ: Finding Code that Counts with Causal \vahak;‘;f A”aWS'-LOf Pa(g:e LOT%T'?'? in /';e;\ TensorFlow’s
Profiling (Curtsinger et al., SOSP 15) eb browsers Using Lausal FroTiling .
(Pourghassemi et al., SIGMETRICS 19) LSTM (2014) computational graph (2016)
Answering what-if questions in non-ML contexts DNN Computational Graph

Similarities between the graph structures, unique challenges and opportunities for the ML context

Challenges for Dependency Graph Analysis in
the ML context

Challenge #1: Thousands of tasks, and dependency needs to be tracked across CPU
threads, GPU streams, and interconnects.

CPU Thread #1 launch cudaMalloc cudaFree
CPU Thread #2 cudaDeviceSynchronize cudaMemcpy
CPU Thread #3 launch launch launch launch

GPU Stream #2 void cudnn::detail::wgrad_alg0_enging<float,

 —

Communication nccl::all_reduce(...

GPU Stream #1 """ | volta_scudnn_128x64 relu_...

Challenges for Dependency Graph Analysis in
the ML context

Challenge #2: Modeling DNN optimizations requiring correlation between kernel and layer
abstractions.

mmnl.m.n | CPU Thread | [][_]] g 10 o100
¥
Pocy /2 GPU Stream #1 | | volta_scudnn_128x128... | | cudnn::detail::wgrad... |
GPU Stream #2 | _zN2at6native18ele... || kernelPointwise... || volta_sgemm_...

What if | improve CONV layers?
' Which kernels belong to these layers?

v y

3x3 conv, 128

l
[
| 3x3 conv, 128, /2
[
[
|

Challenges for Dependency Graph Analysis in
the ML context

Challenge #3: Ability to easily model diverse DNN optimizations.

Optimizations

How to make it easy to model of all potential {é{??

Daydream Overview

Input: an DNN training implementation X, an optimization Y
Output: the estimation of runtime when applying Y to X

Kernel-level Traces Daydream
Training Daydream’s Transformation
Implementation X Dependency Graph Primitives Optimization Y

/ \
B3B8 - | S < G

PYTO6RCH

@Xnet \ Layer Graph /
Caffe [i?er L Post Optlmlzatlon
(Layert,) Graph Simulation
\g v ‘

(Layer L,) -

Challenge 1: Tracking Dependencies

CUDA APIs
Em

[=] Thread 3028834112
furtine | e e ! I —
[=] Thread 3523213056 5 Thread 92268288
* Runtime API e B L Runtime API [|
L Profiling Overhead & Profiling Overhead
[=] [0] GeForce RTX 2080 Ti [=] [01 GeForce RTX 2080 Ti
[—| Context 1 (CUDA) G P U ke rn e I S = CLD”teXH — oD} | | |
L SF MemCpy (HtaD) I L 5F MemCpy (DtoH) | -"I_.
L 5F MemCpy (DtoH) | L SF MemCpy (DtoD) '
Compute | A Ol | Compute | D 0 M AN |
Streams Streams
NVProf profile of one ResNet50 iteration NVProf profile of one BERT g iteration

Observation: GPU kernels are highly serialized for most DNN training workloads

10

Daydream’s Graph Construction

We identify the six types of dependencies:

CPU Thread|| Launch KO g=»| cudaMemcpyAsync cudaDeviceSynchronize

L Launch K1

GPU Stream Y KO CUDAMemcpy

(1) =——> Sequential CPU-CPU: two consecutive CPU calls on the same CPU thread

(2) Sequential GPU-GPU: two consecutive GPU kernels on the same stream

(3) = CPU-GPU launching: A CPU call launching a GPU kernel/CUDA memory copies

(4) =——> GPU-CPU sync: A CPU synchronization call waiting for GPU kernel to finish

11

Daydream’s Graph Construction (cont.)

(5) == CPU-Communication

Parameter Server Architecture:

Collapsed Compute CONV_BP {| POOL BP || RELU BP | «--- POOL_FFu CONV_FF

Communication Push Pull

(6) CPU-CPWdieg- thread spawn, join, I0tk, .A¢cumulate_Grad

MPI-like Architecture:

FC_BP CONV_BP ~N_ = - CO FC_FF

Collapsed Compute

Communication AllReduce Grad Reduce Grad

Challenge 2: Trace-Layer Correlation

* Optimizations requiring correlation between low-level traces and
DNN layers:

* E.g., Fusing CONV and RELU layers
* Low-level traces have NO domain knowledge

* Naive approach: adding synchronization

Daydream’s Kernel-Layer Mapping

€@ Get L’s Timestamps Ko, K, belong to L,
tO tl
@ Get L,’s CPU tasks
CPU Timeline i Launch K, Launch K, E\Launch K,
GPU Timeline 1 Kq 1 K, K,

€ vap Ko, K, to L, according to
dependencies

Little overhead (only need to instrument frameworks for per-layer timestamps)

No alternation to the dependency graph (synchronization-free)

Challenge 3: Optimization Diversity

Optimization Goals Strategy Technique Examples
Improving Hardware Increasing Mini-batch Size by | vDNN (MICRO16), Gist (ISCA18), Echo (ISCA20)
Utilization in Single- Reducing Memory Footprints
Worker Environment Reducing Precision Automatic Mixed Precision (arxiv17)
Kernel/Layer Fusion FusedAdam, MetaFlow (MLSys19), TASO
(SOSP19)
Improving Kernel Restructuring Batchnorm (MLSys19), TVM
Implementation (OSDI18), Tensor Comprehensions (arxivl8)
Lowering Communication | Reducing Communication Deep Gradient Compression (ICLR18), QSGD
Overhead in Distributed | Workloads (NeurlPS17), AdaComm (MLSys19), Parallax
Training (EuroSys19), TernGrad (NeurlPS17)
Improving Communication Wait-free Backprop (ATC17), P3 (MLSys19),
Efficiency/Overlap BlueConnect (MLSys19), TicTac (MLSys19),

BytePS (SOSP19), Blink (MLSys19)

We evaluate “some optimizations”, and show that we can conveniently model “others” using Daydream

Daydream’s Transformation Primitives

Most DNN optimizations can be described as a combination of the following primitives:

(1) Select(expr): return tasks of interests for further process

(2) Shrinking/Scaling the task duration

CPU Timeline

GPU Timeline

CPU Timeline

GPU Timeline

K3 (CONV)

Launch KO Launch K1 Launch K2 N Synchronize A Launch K3
1 Ko (POOL) | Y K1 (CONV) \f K2 (POOL)
Select(taskPtr (isGDGIRY))))
Shrink CONV layers by 2x
Launch KO Launch K1 Launch K2 sync W Launch K3
1 KO (POOL) | T K1 (CONV) |T K2 (POOL) 1 K3 (CONV)

Daydream’s Transformation Primitives (cont.)

(3) Insert(s, task, t): Insert a task between s and t

(4) Remove(task): Remove a task from the graph

insert

remove

CPU Thread -> insert >
<
GPU Stream ‘) remove Y

17

Daydream’s Transformation Primitives (cont.)

(5) Schedule(Q: a queue of tasks that are ready to execute): --> task
Decide which task to execute when multiple tasks are ready

Compute 12_BP > L1_BP || LO_BP \ L LO_FF [L1_FF [L[2_FF

Communication) Grad_L2 \f Grad_Ll\f Grad_LO

l Reschedule Grad_L1 and Grad_LO

Compute L2_BP > L1_BP 0 BP A LOFF [L1_FF P L2_FF

Communication) Grad_L2 H Grad_LO N Grad_L1

Example — Automatic Mixed Precision

Using Daydream to estimate the efficacy of AMP (Micikevicius et al., arxiv 2017)

Low-level traces Per-layer timestamps

def estimate_ AMP (cupti_%le , timestamps_file):
graph = Graph(cupti_file)
graph.mapping (timestamps_file

Go\structmg kernel-level dependency graph

low-level tra e to DNNIa ers usm er-layer timestamps
GPUNodes = [node for node in graph. nodaes XV e¥ v ﬁlf) Y P

for node in GPUNodes \
if “wgrad” in node.name or u%@@ﬁh@llﬁﬂhg@%kﬁgm@thegraph

node.dur /=3 \
else : If we expect this task to use TensorCore
node.dur /=2 ~_
_ Otherwise, use half-precision cores
return graph.simulate 0

Simulate the timeline, return the elapsed execution time

10 optimization examples, each around 20 lines of code (refer to our paper)

Methodology

Setup: &

Woakloads:
Application Model Dataset
Image Classification | VGG-19 Imagenet
DenseNet-121
ResNet-50
Machine Translation | GNMT (Seg2Seq) | WMT
Language Modeling | BERT SQUAD

Optimizations:

Improving hardware utilization:

-
C g
RTX 2080 Ti Quadro P4000
NCCL
[GRUR | [GRUR-
NVIDIA cu D N N W ‘
. l6PUz
CUDA
v10.0 v7.4.2 v2.4.2

PYT6RCH (xnet Caffe
v1.0 vl.l v1.0

Automatic Mixed Precision (AMP), FusedAdam, Reconstructing Batchnorm

Distributed training:

Data-parallel distributed training, Priority-based parameter propagation (P3)

Methodology (cont.)

Given a and a 'if} , we evaluate:
8 anda i

Baseline: @Z{
Ground Truth: @ + {:(ga

U N p—
rediction: @jlﬁ?ﬁ%—»j

Runtime Estimation Accuracy

Estimating Automatic Mixed Precision (AMP), FusedAdam, and Restructuring Batchnorm (RB)

400 - —
1.54x W Baseline @O Ground Truth M Prediction

g >0 1.63x 3.9% 6.1%
= 300 1.9% 12.5%
g 250 o .
= 200 5.5% 4.5%
(- 15.3%
O 150
L o °o
E 100 12.6%
g
— 50

0

BERT_Base BERT Large Seq2Seq ResNet-50 BERT_Base BERT Large Seq2Seq DenseNet
AMP FusedAdam RB

Daydream achieves 8% estimation error on average (15% maximum)

Estimating Distributed Training

Estimating data-parallel distributed training of BERT srae

:
1Hin |||||- A3200 20% [
é’ B Ground Truth B Prediction —a—FError o

Trnni IIIII: v2400 15%&

L o :

INE NN lIIIl- i:1600 10% .9

1 e c §
- O 800 5% ©

GPU = l . I I o 2“_)

NEEE T E 0 I 0%

NTRT @2x1 3x12x2 3x22x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2

GRU GPY| |-

|5 ELIE 10bps

System Configuration (# of machines x # of GPUs per machine,

Daydream can accurately estimate the distributed performance for various system configurations

23

Iteration Time (ms)

Iteration Time (ms)

Estimating Distributed Training

300 20% . 1600
E Ground Truth M Prediction —#—Error o g [Ground Truth I Prediction —#—Error
225 15% L = 1200
c
150 10% S E 800
A~
75 5% T S 400
& o, mall
0 0% :.3 0
Ix1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 - I1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2
10Gbps 20Gbps 40Gbps 10Gbps 20Gbps 40Gbps
System Configuration (# of machines x # of GPUs per machine, bandwidth) System Configuration (# of machines x # of GPUs per machine, bandwidth)
ResNet-50 GNMT
1200 20% _ 3200
EEN Ground Truth I Prediction —#—Error) [[Ground Truth B Prediction —@—Error
900 15% & £ 2400
o
600 10% § £ 1600
s [=
300 5% 2 = 800
| - M
0 0% & s o
Ix1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 9 1x1 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2 2x1 3x1 4x1 2x2 3x2 4x2
10Gbps 20Gbps 40Gbps 10Gbps 20Gbps 40Gbps
System Configuration (# of machines x # of GPUs per machine, bandwidth) System Configuration (# of machines x # of GPUs per machine, bandwidth)
BERTse BERT arae

Daydream can accurately estimate the distributed performance for a variety of DNN models

20%

S
15% &
c
10% .8
)
o
5% S
a
0%
20% _
o
15% £
w
10% §
k3]
5% 35
[
0% &

24

Estimating Efficacy of P3

Prediction accuracy for Priority-Based Parameter Propagation (P3)

(we use 4 machines and 1 P400 GPU on each machine)

1500 _ 3000
g Basel E —Baseline
‘J T oaseline @ 2000 ——Ground Truth
1000 ——Ground Truth £ -
E = ——Prediction
= ——Prediction ';
o
2 500 = 1000
E -
o 2
=) . 0
1 2 3 4 5 6 7 2 6 10 14 18 22
Network Bandwidth (Gbps) Network Bandwidth (Gbps)
Runtime Prediction for ResNet-50 Runtime Prediction for VGG-19

Using Daydream, we can successfully estimate whether P3 would provide significant or subtle improvement

25

Conclusion

Benefits of DNN optimizations are not easy to exploit:
* Efficacy various across different hw/sw deployments
* Often onerous to implement and debug

Basic Idea: Dependency graph analysis

Our Solution: The Daydream system allowing users to quickly estimate
the performance of various DNN optimizations:

* Tracking dependencies at the kernel-level granularity
* Sync-free trace-to-layer mapping
» Simple graph transformation primitives

Key Results: Estimation error of 8% on average (15% maximum)
Modeling a wide range of optimizations (only 20 lines of code each)

Daydream: Accurately Estimating the
Efficacy of Optimizations for DNN Training

Hongyu Zhu, ,, Amar Phanishayee;, Gennady Pekhimenko, ,

Thank you!
f UNIVERSITY OF 2 ? VECTOR 3 MiCI‘OSOft"“
% TORONTO N/ msmmure Research

serailhydra@cs.toronto.edu

27

