
CSC488S 2015/2016 Final Exam Solution and Comments

1. [15 marks]
a) Need semantic checks:
– RHS and LHS arrays are the same type (integer or boolean)
– RHS and LHS arrays are the same dimensionality (1d or 2d)
– RHS and LHS arrays have the same lower and upper bounds in each dimension

b) Need a loop to copy array elements one by one from LHS to RHS.

Code Stack
PUSH 0 index

LOOP: DUP index , index
DUP index , index , index
ADDR LHS @LHS , index , index , index
ADD @LHS+index , index , index
SWAP index , @LHS+index , index
ADDR RHS @RHS , index , @LHS+index , index
ADD @RHS+index , @LHS+index , index
LOAD value(@RHS+index) , @LHS+index , index
STORE index
PUSH 1 1 , index
ADD index+1
DUP index+1 , index+1
PUSH RHS.size RHS.size , index+1 , index+1
EQ RHS.size = index+1 , index+1
PUSH LOOP @LOOP , RHS.size = index+1 , index+1
BF index+1
POP

Since this loop depends only on the size of the array, it will work for both one and two dimensional
arrays.

Page 1 of 6 pages.

2. [15 marks] This proposed hardware change will require major revisions to the addressing strat-
egy in the compiler. Two problems:

1) The 12-bit offset only allows 4096 words of memory to be addressed in the main program or in
any procedure or function.

2) Some code generation designs use a negative offset to access parameters and the return ad-
dress. This will no longer work.

Possible solutions:
a) add a language restriction on the maximum size of data in the main program or any procedure
or function. This is a cop-out (cf. Java).

b) Modify the compiler generated addressing code to manage data that is not within the 4096 word
addressability limit.
Given

procedure P {
var A[5000] : integer % offset 10
var B : boolean % offset 5010

}

For any variable (e.g. A) with an offset within the 4096 limit, use the existing addressing code. For
any variable (e.g. B) above that limit generate extra code to calculate the correct address. For an
access to B in the example above something like:

ADDR LL,0 % display for level LL
PUSH 5010 % offset of B in activation record
ADD % address of B now on stack

A really clever compiler would layout activation records to minimize the amount of extra addressing
code required, e.g. put B before A in the example above and no extra code would be required.

Page 2 of 6 pages.

3. [20 marks] Optimizations applied: - constant folding, code motion, strength reduction, common
subexpression elimination, algebraic simplification.

1 var a array 1 .. 20 , -15 .. 15 of float
2 var b array 1 .. 400 of float
3 var J , K : integer

... % Assume variables are initialized here
20 for J := 1 to 20 do

J8020 := 80*J - 20
J6464 := 64*J - 64

21 % a[J , J] := 0
&A[1,-15] + J8020 + 4*J := 0.0

22 % for K := -15 to 15 do
for K4 := -60 to 60 do

JK4 := J8020 + K4
AJKP := &A[1,-15] + JK4
AJK := @AJKP + JK4

23 % b[16 * J + K - 15] := a[J , K]
&B[1]+J6464+K4 := AJK

24 % a[J , K] := a[J , K]**2 - 3.0 * a[J , K] + 1.0
@AJKP := AJK * (AJK - 3.0) +1.0

25 end for
26 end for

Some solutions did loop unrolling but that wasn’t necessary for full marks.

4. [5 marks]
The optimized subscript calculation was developed for well-behaved 0-origin or 1-origin arrays. It
breaks down when the user can specify arbitrary lower and upper bounds (as in the course project).
Two separate problems:

1) For some arrays, the calculation: OFFSETB − ((ub1 − lb1 +1)∗ lb1+ lb2)
Could overflow. For example: A[1 .. 256 , 32760 .. 32767]

2) For some arrays, the MUL on line 4 of the subscript calculation could result in an overflow for
valid subscripts. For example B[16384 .. 17000 , 16384 .. 17000].

Many students assumed this question had something to do with dynamically allocated arrays, which
it did not.
Since these problems are a function of the bounds of the array a really clever compiler could use the
range analysis techniques describe in lecture once at the point of array declaration to set a symbol
table flag safeToOptimizeSubscripts.

Page 3 of 6 pages.

5. [10 marks] The main issue here is how to delete very large comments efficiently. A regular
expression scanner really isn’t good enough.
Best strategy would be to recognize the start of a comment ’/*’ and then go into a very tight character
munching loop until the matching ’*/’ is found.
Many solutions tried to deal with nested block comments which was not a part of this questions.
Perhaps a leftover from a previous final exam solution.

6. [15 marks]
Corrected statement:

R := P or not (Q ? not R and not P : not (P and (Q or not R)))

1 (branch , P , trueExit , T2)
2 (branch , Q , T3 , T5)
3 (branch , R , falseExit , T4)
4 (branch , P , falseExit , trueExit)
5 (branch , P , T6 , trueExit)
6 (branch , Q , falseExit , T7)
7 (branch , R , trueExit , falseExit)

(,
8 (assign , R , true , ??)
9 (branch , true , T11 , ??)

10 (assign , R , false , ??)
11 (,

Page 4 of 6 pages.

7. [20 marks]
Line(s) Semantic Checks
1 Check that shell has not been previously declared

Check that a has not be previously declared as a parameter
2 Check that increment has not been previously declared in this scope
2,4,6,8,11 Every where that a is used

Check that a is declared, visible and accessible at the point of use
Check that a is a one dimensional array
Check that the subscript for a is a valid integer expression

2,4 Check that a.length is valid
3,4,7,8,9,13.14,16 Everywhere that increment is used

Check that increment is declared, visible and accessible at point of use
2,4,5,6,8,9,11,14.16 For every assignment operation

Check the the LHS is a variable
Check that the RHS is the correct type to assign to the LHS variable

3,4,7,13 For every comparison operation
Check that the left and right operands are the same type
Check that the left and right operands are legal for the compare operator

4 Check that i hasn’t been previously declared
Check that i++ is a valid operation on i

5 Check that k hasn’t been previously declared
6 Check that temp hasn’t been previously declared
7,8,9,11 Everywhere that k is used

Check that k is declared, visible and accessible at the point of use
7,11 Everywhere that temp is used

Check that temp is declared, visible and accessible at the point of use
2,7,8,9,16 For every arithmetic operator (+ , - , *)

Check that the left and right operands are legal for the arithmetic operator

Page 5 of 6 pages.

8.[20 marks]
boolean function expect(token) { boolean function FormalParameter() {

return nextToken = token return AccessType()
and getToken() and IdentifierList()

} and expect(colonToken)
and Type()

boolean function procedureDeclaration() { and optInitialzer()
asset (expect(procedureToken)) }
return expect(identifierToken)

and Signature() boolean function AccessType() {
and expect(equalToken) return expect(valueToken)
and Block() or expect(varToken)
and expect(identifierToken) or expect(readonlyToken)

} or true
}

boolean function Signature() {
return FormalParameterList() boolean function optInitializer() {

and optType return
} (expect(colonToken)

and expect(equalToken)
boolean function FormalParameterList() { and ConstantExpression()

if not expect(leftParenToken) then)
return false or

if FormalParameter() then true
while expect(semiColonToken) do }

if not FormalParameter() then
return false boolean function optType() {

return expect(rightParenToken) return
} (expect(colonToken)

and Type()
)

or
true

}

A lot of solutions didn’t get the syntax right. Either allowing too much or not enforcing all the
constraints in the grammar.

Page 6 of 6 pages.

