
University of Toronto
Faculty of Arts and Science

April 2016 Examinations

CSC488H1S / CSC2107HS

Duration – 2 hours (120 minutes)

OPEN BOOK ALL written aids, books and notes are allowed.
ALL non-programmable calculators allowed.

NO other electronic aids allowed.

120 marks total, 8 Questions on 5 Pages. ANSWER ALL QUESTIONS
Write all answers in the Exam book.
You must receive a mark of 35% or greater on this final exam to pa ss the
course.

WRITE LEGIBLY Unreadable answers cannot be marked.
Line/rule reference numbers on the left side of of programs and grammars are provided for ease of
reference only and are not part of the program or grammar .
The notation ... stands for correct code that has been omitted for brevity
State clearly any assumptions that you have to make to answer a question.

1. [15 marks] A proposal has been made to add array assignments to the project language.
Add syntax:

statement: arrayname ’:’ ’=’ arrayname
For example:

1 var A[1 .. 10] , B[1 .. 10] : integer
2 var P[-10 .. 10 , 17] , Q[-10 .. 10 , 17] : boolean

...
14 A := B
15 Q := P

a) Design a set of semantic analysis operations for checking the semantic correctness of array
assignments.
b) Design a code generation template for the general cases of one and two dimensional array
assignment.

Page 1 of 5 pages.

2. [15 marks] The hardware designer of the pseudo machine used in the course project is working on
version 2.0 of the pseudo machine.
One proposed improvement to allow larger programs in the 16,384 words of memory is to change
the encoding of the ADDR instruction.
Instead of using one memory word for the lexical level and one word for the offset, the lexical level
and offset would be encoded in one 16-bit word:

offsetlexic
level

4 12

using 4 bits for the lexical level and 12 bits for the offset.
Describe the changes that would be required in the project compiler to implement this new instruc-
tion format.

3. [20 marks] Consider the program fragments in a Pascal-like language below:

1 var a array 1 .. 20 , -15 .. 15 of float
2 var b array 1 .. 400 of float
3 var J , K : integer

... % Assume variables are initialized here
20 for J := 1 to 20 do
21 a[J , J] := 0
22 for K := -15 to 15 do
23 b[16 * J + K - 15] := a[J , K]
24 a[J , K] := a[J , K]**2 - 3.0 * a[J , K] + 1.0
25 end for
26 end for

Where ** is the exponentiation operator, and float variables are stored in 4 bytes or memory.
Describe classical optimizations that a good optimizing compiler would perform on the code in lines
20 .. 26. You do not have to show every step in the optimization separately. You can show only the
final result as long as it’s clear what optimizations have been performed.

Page 2 of 5 pages.

4. [5 marks] In lectures the instructor described a method for optimizing array subscription by folding
known constant information about the array into the array address to avoid unnecessary runtime
normalizing of array subscripts. For example:

Given var B [lb1 .. ub1 , lb2 .. ub2] integer

Subscript B[expr1 , expr2]
Code

1 ADDR LLB OFFSETB − ((ub1− lb1 +1)∗ lb1 + lb2)
2 PUSH ub1 − lb1 +1
3 expr1

4 MUL
5 expr2

6 ADD
7 LOAD

Are there any circumstances where doing this improvement could lead to incorrect results?

5. [10 marks] Many programming languages allow block comments For example:

/***
* Start of long comments
* long comment continues
* for a very long while
* and may include parts of comment marker like * or /
* block comment ends on next line
**/

Describe how a lexical analyzer could efficiently process block comments.
Assume that block comments begin with /* and end with */.

Page 3 of 5 pages.

6. [15 marks] Assume the code fragment below in the course project language:

1 var P, Q, R : boolean

... % variables given values here

10 R := (P or not Q ? not R or not P ? not (P and (Q or not R)))

Show a translation of the statement on line 10 into the quadruples used in lectures to describe
translation.

7. [20 marks] List the semantic analysis checks that a Java compiler would perform on the Java code
fragment shown below

1 public static void shell(int [] a) {
2 int increment = a.length / 2;
3 while (increment > 0) {
4 for (int i = increment; i < a.length; i++) {
5 int k = i;
6 int temp = a[i];
7 while (k >= increment && a[k - increment] > temp) {
8 a[k] = a[k - increment];
9 k = k - increment;

10 }

11 a[k] = temp;
12 }

13 if (increment == 2) {
14 increment = 1;
15 } else {
16 increment *= (5.0 / 11);
17 }
18 }
19 }

Page 4 of 5 pages.

8.[20 marks] In the programming language Modula-3 the definition of a procedure has the syntax:

1 ProcedureDeclaration: ProcedureHead ’=’ Block Identifier
2 ProcedureHead: ’PROCEDURE’ Identifier Signature
3 Signature: ’(’ FormalParameters ’)’ optType
4 optType: ’:’ Type , % function
5 % empty procedure
7 FormalParameters: FormalParameterList ,
8 % empty
9 FormalParameterList: FormalParameter ,

10 FormalParameterList ’;’ FormalParameter
11 FormalParameter: AccessType IdentifierList ’:’ Type optInitializer
12 AccessType: ’VALUE’ ,
13 ’VAR’ ,
14 ’READONLY’ .
15 % empty
16 optInitializer: ’:’ ’=’ constantExpression
17 % empty

Where terminal symbols are enclosed in single quotes (’). Identifier is also a terminal symbol.

Write a recursive descent parser function

boolean function procedureDeclaration()

that recognizes procedure declarations in Modula-3.

You may assume:
– your recognizer is called when the declaration parser recognizes the reserved word PROCEDURE
– there is a function boolean function Type () that recognizes all types
– there is a function boolean function IdentifierList() that recognizes lists of identifiers
– there is a function boolean function Block() that recognizes the body of a procedure
– there is a function boolean function constantExpression() that recognizes all forms of constant
expression
– there is a function boolean function getToken() that advances the scanner input to the next
token
– all of these functions return true if successful and false otherwise
– the global variable nextToken contains the next input token from the scanner
– you may use auxiliary parsing functions if you wish

Total Marks = 120

Page 5 of 5 pages.

