
CSC488S 2013/2014 Final Exam Solution and Comments

1. [10 marks]
a) a = 2
b) a = 8
c) a = 3 or a = 7

depends on order of result storing y or z first
d) a = 9

a + b is reevaluated when used as x on line 5

2. [10 marks] As described the lexical analyzer can support this parsing scheme in two ways.
Recognizing level zero commas and equal signs Maintain a parenthesis counter. +1 for (and -1 for
) When an equal sign (=) character is encountered, emit a zeroLevelEquals token if the counter
is zero, otherwise emit a nonZeroLevelEquals token. Similarly when a comma (,) is encountered
emit a zeroLevelComma token or a nonZeroLevelComma token..

Equal signs and commas inside strings Recognize the start of a string when ’ is encountered.
Don’t change the parenthesis counter while inside a string. Any equal signs or commas encountered
inside the string are emitted as part of the string. Recognize end of string and resume parenthesis
counting.
Many solutions didn’t get the details right. A lot of solutions really didn’t answer the question. They
described parsing schemes or other actions outside the scope of a lexical analyzer.

3. [10 marks] This innocent looking construct actually has some nasty problems:
- Need a runtime check for M <= N at the point of T’s declaration
- If T is used to define array bounds, M and N may need to be stored at runtime.
- Anywhere that T is used to size an array or other data structure there will need to be runtime code
to deal with a varying size.
- The RHS of any assignment to a variable of type T will need a runtime check that the value is in
range for the current definition of T.
- Any array that uses T to define it’s bounds may need runtime subscript checking.

No one saw the really hard issues.
- if a variable of type T is passed as an argument to a parameter of some fixed subrange type (e.g.
K : 1 .. 100) then there will have to be a runtime check that the argument variable is correct.
- type equivalence between structures may be affected if T is used to define fields in a structure.

And the really big one:
- depending on the values of M and N, T might be represented as an signed integer of an unsigned
integer. This could require different code every where that a variable of type T is used.1

1When I pointed this problem out to the Euclid language designers they added a language restriction that the
definition of T must result in asigned integer

Page 1 of 5 pages.

4. [15 marks]

main mainmain

A

main

B

main

B

a)
b) c)

d) e)

C

f)

g(2) = 3

or

g(2) = undefined

Part e) illustrates a huge problem with the example2 When C is called inside B (as g), The activation
record for C’s parent A is long gone, so the reference to m inside C is broken. Some answers to part
e) had the activation record for A appear by magic so the reference to m was legal, other answers
ignored the issue. Since the example was broken, either answer for part f) was accepted.

6. [20 marks]

a) Check that argument passed to a var parameter is some form of variable that has an address
and can be stored into.

b Need new code to pass the addresses of arguments passed by reference.

c) Probably no changes since parameters/arguments aren’t handled here.

d) Need to recognize arguments passed by reference and generate addresses as described in
b)

e), f) Implementation specific. Any plausible code sequences was acceptable.

2An example of the design language in haste, repent in leisureprinciple. The language needs a restriction that
parents can’t give away their children thereby creating orphans.

Page 2 of 5 pages.

5. [15 marks]

boolean function expect(token) { boolean function caseLabel() {
return nextToken = token if not pattern() then

and getToken() return false
} if expect(Tvbar) then

return caseLabel()
return true

}
boolean function caseStatement() {

assert(expect(Tcase)) boolean function oneCase() {
return expression() return caseLabel()

and expect(Tin) and expect(TrightParen)
and caseList() and caseCommands()
and expect(Tesac) and expect(Tsemicolon)

} and expect(Tsemicolon)
}

boolean function caseList() {
if not oneCase() then boolean function caseCommands() {

return false while nextToken not = Tsemicolon do
while nextToken not = Tesac do { if not command() then

if not oneCase() then return false
return false return true

} }
return true

}

A lot of solutions didn’t get the syntax right. Either allowing too much or not enforcing all the
constraints in the grammar. The sample solution above is inspired by several solutions that made
clever use of the conditional properties of and .

Page 3 of 5 pages.

7. [20 marks] A lot of checking is required

- in the declarations on lines 2 and 3
check that in , x, a, b ,c have not be previously declared.
check that the value of N results in a valid array declaration

- everywhere that N is used on lines 3,63,69
check that N is declared, accessible and a scalar value
(N might have been substituted by the C preprocessor)

- everywhere in is used, lines 63,64,65,66,69,71
check that in is declared, accessible and a scalar value

- everywhere x is used, lines 61,66,71
check that x is declared, accessible and a one dimensional array

- everywhere a is used, lines 64,66
check that a is declared, accessible and a one dimensional array

- everywhere b is used, lines 60.61,64
check that b is declared, accessible and a one dimensional array

- everywhere c is used, lines 60,64,65,71
check that c is declared, accessible and a one dimensional array

- for the assignment statements on lines 60,61,63,64,65,66,69,71
check that the left hand side is a variable
check that the value being assigned is compatible with the variable

- for the subtraction operator (–) on lines 64,66,69,71
check that the operands are a suitable numeric type

- for the divide operator (/) on lines 60,61,64
check that the operands are a suitable numeric type

- for the multiply operator (*) on lines 64,65,66,71
check that the operands are a suitable numeric type

- for the less than (<) compare on line 63
check that the operands of the operator are suitable

- for the increment operator (++) on line 63
check that its operand is a suitable numeric type
check that its operand is a variable

- for the decrement operator (– –) on line 69
check that its operand is a suitable numeric type
check that its operand is a variable

- for the declaration on line 64
check that m has not been previously declared

- for the array subscript operator ([]) on lines 60,61,64.65,66,71
check that the subscript is a suitable numeric value

Page 4 of 5 pages.

8.[20 marks]
Possible optimizations include
- constant folding
- common subexpression elimination
- strength reduction and test replacement
Some solutions suggested loop unrolling although few actually did it
Loop fusion wasn’t a good choice due to loop carried dependencies.
A good solution had to show at least the final result, like the one below

AP = &a[1] /* a[1] */
BP = &b[0]
CP = &c[0]
XP = &x[0]
XLIM = XP + 792 /* x[N – 1] */

60 @CP = @CP / @BP
61 @XP = @XP / @BP
63 for (XP += 8 , CP += 8 , BP += 8 ; XP <= XLIM ; XP += 8) {
64 double m = 1.0 / (@BP – @AP * @(CP – 8))
65 @CP = @CP * m ;
66 @XP = (@XP – @AP * @(XP – 8)) * m ;

AP += 8 ;
BP += 8 ;
CP += 8 ;

67 }
XP = &x[0] + 792 ; /* x[N – 1] */
CP = &c[0] + 792 ; /* c[N – 1] */

69 for (; XP > &x[0] ; XP –= 8) {
71 @XP = @XP – @CP * @(XP – 8)

CP –= 8 ;
72 }

in = 0 ;

Page 5 of 5 pages.

