
University of Toronto
Faculty of Arts and Science

April 2013 Examinations
CSC488H1S / CSC2107HS

Duration – 2 hours (120 minutes)
OPEN BOOK ALL written aids, books and notes are allowed.

ALL non-programmable calculators allowed.
NO other electronic aids allowed.

120 marks total, 8 Questions on 5 Pages. ANSWER ALL QUESTIONS
Write all answers in the Exam book.
You must receive a mark of 35% or greater on this final exam to pa ss the
course.

WRITE LEGIBLY Unreadable answers cannot be marked.
Line/rule reference numbers on the left side of of programs and grammars are provided for ease of
reference only and are not part of the program or grammar .
The notation . . . stands for correct code that has been omitted for brevity
State clearly any assumptions that you have to make to answer a question.

1. [10 marks] Given the declarations:

integer I , J , A[100]
boolean P, Q, R [50]

Show the branching code (i.e quadruples) that would be generated for the boolean expression:

! P & (Q | A[I] > 12) & R[J] ! = Q | (P & ! Q)

2. [10 marks] Assume that the exit construct in the project language was replaced by a more
general version:

exit expression
exit expression when booleanExpression

Where expression is an arbitrary integer expression i.e. the number of loops to exit is determined
at runtime.
Describe how you would implement this enhanced version of the exit statement.

Page 1 of 5 pages.

3. [10 marks] In programming languages that include value-result parameters the mode of param-
eter passing is often confused. In particular value-result parameters are sometimes used in a way
that suggests that reference mode was intended. An indication of this problem is an assignment
to a value-result parameter before the value of the parameter has been used. Show how data flow
analysis could be used to identify value-result parameters that are defined (i.e. assigned to) before
they are used.

4. [10 marks] The representation of information is evolving toward the use of meta languages like
XML as a standard encoding format. Suppose that this evolution has gone forward so that even text
files containing source programs are now encoded in XML. For example, the program fragment:

if (X != 13) {
Y = 12 ;
Z = X -1 ;

}
else

X++ ;

Might be encoded as

<RESERVED>if</RESERVED> <PARENTHESIS> <IDENTIFIER>X</IDENTIFIER>
<OPERATOR>!=</OPERATOR> <INTEGER>13</INTEGER> </PARENTHESIS>
<BRACKET> <IDENTIFIER>Y</IDENTIFIER> <OPERATOR>=</OPERATOR>
<INTEGER>12</INTEGER> <OPERATOR>;</OPERATOR> <IDENTIFIER>Z</IDENTIFIER>
<OPERATOR>=</OPERATOR> <IDENTIFIER>X</IDENTIFIER> <OPERATOR>-</OPERATOR>
<INTEGER>1</INTEGER> <OPERATOR>;</OPERATOR> </BRACKET>
<RESERVED>else</RESERVED> <IDENTIFIER>X</IDENTIFIER>
<OPERATOR>++</OPERATOR> <OPERATOR>;</OPERATOR>

Describe how you would design a compiler scanner to process source programs that are encoded
in this way.
Emphasize what would be different from the traditional scanner that was discussed in lecture.

Page 2 of 5 pages.

5. [20 marks] The for statement in the Algol 60 programming language has the syntax:

1 forStatement → for variable ’:=’ forList do statement
2 forList → forSpec
3 → forList ’,’ forSpec
4 forSpec → expression
5 → expression while expression
6 → expression step expression until expression

For example the program fragment:

1 for i := 3 , 7 ,
2 11 step 1 until 16 ,
3 i ÷ 2 while i >= 1 ,
4 2 step i until 32 do
5 print(i);

will print 3 7 11 12 13 14 15 16 8 4 2 1 2 4 8 16 32

Design a recursive descent parsing function for this for statement to be used as part of an Algol 60
compiler. You may assume:

• your parser is called when the statement level parser encounters the reserved word for

• that there is a function boolean function variable ()
that recognizes variables and returns true if it is successful.

• that there is a function boolean function expression ()
that recognizes expressions and returns true if it is successful

• that there is a function boolean function statement ()
that recognizes statements and returns true if it is successful.

• that the next incoming lexical token is in a variable named nextToken and that the function
boolean function getToken() advances the lexical input stream by one lexical token. It returns
true if it was successful.

Page 3 of 5 pages.

6. [20 marks] Describe the machine independent optimizations that a good optimizing compiler
would perform on the C function listed below. You can show only the final result if you describe
very clearly exactly which optimizations have been performed. Assume variables of type double
are stored in 8 bytes.

1 #define N (100)
...

20 void G (double A[N][N] , double B[N] , double X[N]) {
21 double W[N][N+1] , M ;
22 int I , J , K ;
23 for (I = 0 ; I < N ; I ++) {
24 for (J = 0 ; J < N ; J ++)
25 W[I][J] = A[I][J] ;
26 W[I][N] = B[I] ;
27 }
28 for (I = 0 ; I < N ; I ++)
29 for (J = 0 ; J < N ; J ++)
30 if (J != I) {
31 M = W[J][I] / W[I][I] ;
32 for (K = 1 ; K <= N ; K ++)
33 W[J][K] -= M * W[I][K] ;
34 }
35 for (I = 0 ; I < N ; I ++)
36 X[I] = W[I][N] / W[I][I] ;
37 }

7. [20 marks] Numerical analysts often take advantage of symmetries in a problem to make more
efficient use of memory to store large amounts of data. One well known technique is the use of
upper triangular storage for symmetric matrices.

A matrix A[N,N] is symmetric if and only if ∀I,J A[I,J] = A[J, I]
Since the information above and below the diagonal is the same, it is only necessary to store the
diagonal and the upper triangular region above the diagonal.

Assume you are implementing a Numerical Analyst friendly extension to C in which upper triangular
matrices are built in data types, e.g. a programmer might declare:

doubleupper A[100][100] ;

Design an implementation of upper triangular matrices
a) show how the matrices are laid out in memory.
b) based on your memory layout, give an algorithm for calculating the address of an arbitrary array
element B[E1][E2] where B is an MxM doubleupper matrix and E1 and E2 are integer expressions.

Page 4 of 5 pages.

8.[20 marks] A proposal has been made to extend the course project language to allow arrays to
be passed as parameters to procedures and functions. The syntax changes are:

1 parameters: type parametername ,
2 type arrayname [] ,
3 parameters , parameters

4 arguments: expression ,
5 arrayname ,
6 arguments, arguments

Describe how this extension could be implemented
- what new semantic analysis checks would be required ?
- Show code templates (i.e. pseudo machine instructions) to describe

- how arrays would be passed as arguments
- how parameter arrays are accessed inside a function/procedure

Example
1 begin
2 integer Sum(integer src[] , integer from , integer to)
3 begin
4 integer index , total
5 total := 0
6 index := from
7 loop
8 exit when index > to
9 total := total + src[index]

10 index := index + 1
11 pool
12 result total
13 end % Sum
14
15 integer A[-100 .. 100] , S
16 % Assume A gets a value here
17 S := Sum(A , 0 , 100)
18 end

Page 5 of 5 pages.

