
University of Toronto
CSC 488S Compilers and Interpreters Winter 2009/2010

Mid Term Test Solution

1. [20 marks] Given the declarations in C:

1 typedef struct { /* define dataStruct */
2 struct {
3 char name[5] ;
4 int key ;
5 double value ;
6 } data ;
7 unsigned char tag ;
8 } dataStruct ;
9
10 dataStruct A[100] ; /* array of dataStruct */
11 int i = 19 ;

Assume char is 8 bits aligned mod 8, int is 32 bits, aligned mod 32, double is 64 bits aligned mod 64 . Given the base address of the array A, show

in detail the address calculation for the subscript reference

A[i + 7] . data . value

First layout the structure. It should look like the figure
on the right.
Then notice that every array element has to be
padded with 7 bytes of fill so that all array elements
are properly aligned. So every element of A is 32
bytes long. The subscript calculation is then:

A[i + 7].data.value
A[26].data.value

baseA + (26 - 0) * 32 + 16
baseA + 832 + 16
baseA + 848

Almost everyone noticed the padding of the array el-
ements to 32 bytes. A surprising common error was
to mix bits and bytes in the array subscript calcula-
tion.

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

����
����
����
����

����
����
����
����

data
g
a
t

name key value

5 3 4 4 8

24 1

byte align: 8 length 24 bytes

byte align: 8 length 25 bytes

data:

dstruct:

1

2. [20 marks] Given an LL(1) parsing table constructed using the method discussed in lecture and a labelling of the table rows (non terminal symbols)

and the table columns (terminal symbols), give an algorithm to reconstruct the Predict sets for a given non terminal symbol N .

One possible algorithm is:

• Scan across the parse table row for non terminal symbol N

• Each column entry that isn’t an error entry marks an alternative for N

• Collect together all of the entries that are the same. Each collection of entries corresponds to one rule
for N

• For the columns corresponding to each of these collections the terminal symbols associated with the
column are the members of the Predict set for that rule for N

3. [20 marks] Consider the following declarations in a Turing/Pascal-like language

type R : record var X : R
ra : array 1 .. 100 of real var Y : record
rb : string (5) ya : string(1)
rc : record yb : R

i , j : 10 .. 45 /* subrange type */ end record
rcb : boolean

rd : int
end record /* end R declaration */

Using a symbol and type table similar to the examples given in lecture, show the symbol and type tables that would be created for these declarations.

One possible solution:

R type

ra rfield

rb rfield

rcb rfield

rd rfield

X var

Y var

ya rfield

yb rfield

record 4

array 1 100

real builtin

string 5

Symbol Table Type Table

rc rfield

i rfield

j rfield

boolean builtin

subrange 10 45

record 3

string 1

record 2
int builtin

Most common problems were missing links and incomplete tables.

2

4. [15 marks] The Python programming language uses indentation rather than explicit begin/end or { } characters to mark the beginning and end of
blocks. This includes delimiting the bodies of functions and the bodies of control statements. For example:

Python Description
def calc(x) : define function calc

n = x * x + 7 assignment statement in calc
return n * n + 5 return statement in calc

end of calc
def map (n , m) : define function map

if n < m : begin body of map
i = n - m body of if statement
j = n + m if statement continues
k = i * j if statement continues

if n > m : start new if statement
i = n * m + 7 body of if statement
j = i * 2 + 5 if statement continues
k = i * j + 1 if statement continues

return k - 17 end if statement
end of map

print map(17, 23) start of main program

Describe a method for scanning and parsing this language. In particular how would the scanner and parser interact to delimit blocks based on

indentation?

Since the scanner is the only part of the compiler that knows about indentation most of the heavy lifting
should be done there. One possible solution.

• Define two lexical tokens <INDENT> and <EXDENT> that are emitted by the scanner whenever the
level of indentation changes.

• Define the compilers parsing grammar in terms of these lexical tokens, e.g.
body → <INDENT> statements <EXDENT>
statement → <INDENT> statements <EXDENT>

• Suppress these invented tokens in any compiler error messages

Solutions that involved the parser keeping track of indentation did less well because standard off the shelf
parsers couldn’t be used.

3

5. [25 marks] Describe the semantic analysis checks that a Java compiler would perform on the following piece of Java code

1 class BreakDemo {
2 public static void main(String[] args) {
3 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8, 622, 127 };
4 int searchfor = 12;
5 int i;
6 boolean foundIt = false;
7 for (i = 0 ; i < arrayOfInts.length ; i++) {
8 if (arrayOfInts[i] == searchfor) {
9 foundIt = true;

10 break;
11 }
12 }
13 if (foundIt) {
14 System.out.println("Found " + searchfor + " at index " + i);
15 } else {
16 System.out.println(searchfor + " not in the array");
17 }
18 }
19 }

Even this relatively simple piece of code requires a lot of checks

Line(s) Check
1 Check that class BreakDemo is not already defined
2 Check that main with this argument signature is not already defined
3 Check that arrayOfInts is not already defined

Check that all initial values are compatible with int
4 Check that searchFor is not already defined

Check that initial value is compatible with int
5 Check that i not already defined
6 Check that foundIt is not already defined

Check that initial value is compatible with boolean
7,8 Check that i has been declared, and that it is assignable

Check that arrayOfInts has been declared
7 Check that arrayOfInts has a field named length

Check that the type of length is compatible with int
Check that 0 can be assigned to i

8 Check that arrayOfInts is a one dimensional array
Check that i is a compatible subscript for arrayOfInts
Check type compatibility of operands of ==

9,13 Check that foundIt has been declared and is of boolean type
Check that true can be assigned to foundIt

10 Check that break occurs inside a loop
14,16 Check that class System has been declared

Check that class System has a field named out
Check that System.out.println is a defined function
Check that System.out.println accepts a string argument

4

