
CSC488S 2008/2009 Final Exam Solution and Comments

1. [10 marks] A simple solution:

– Remove all 2-character lexical tokens from csc488.flex
Add a new token DOT for a single period token.

– Replace all use of the 2-character lexical tokens in csc488.cup
with their single character equivalents. e.g.

ASSIGN → COLON EQUAL
NOT EQUAL → LESS GREATER
DOTDOT → DOT DOT

This is all the that is required. The scanner will remove whitespace between tokens as it already
does for all other tokens. The parser has no difficult parsing the revised grammar.

Comment: The question was a test of understanding of how scanners and parsers operate. Very
few students came up with a correct solution. There were a lot of very broken solution involving the
scanner returning a whitespace token in this case only.

2. [10 marks] The failure in the LL(1) property occurs during LL(1) table construction when the
algorithm attempts to create a table entry that has already been created by a previous step in the
algorithm. Each table entry corresponds to one member in the director set for some rule. Attempt-
ing to create the same entry more than once indicates non-disjoint director sets.

Comment: Very few students had a correct answer. Most answers simple repeated the LL(1)
disjointness condition instead of answering the question.

3. [15 marks] The scanner needs to keep a counter of the number of (* that it’s seen. The
counter is incremented each time a (* is encountered and decremented each time a *) is
encountered. If the counter is greater than zero the scanner is inside a comment and everything
should be discarded.

Error detection
– if the counter becomes negative after a *) is seen this indicates an extra *)
– if the counter is greater than zero when end of file is detected, this indicates one or more unclosed
comments.

Page 1 of 4 pages.

4. [25 marks]

a) string assignment Roughly equal in implementation effort. Each requires a copy of the
string value and for b) and c) a copy of the string length.

b) string length O(1)) for b) and c). O(N) for a) hence much slower.

c) string concatenation O((N + M) for a), need to search to find end of string before adding
characters.
O(M) for b), just the cost of copying in moreS
O(N + M) for c), have to shift the existing string over before adding moreS

d) substring About the same for all alternatives, search in subject for substring, copy substring
to new string.

e) string parameters About the same for all alternatives, if strings are passed by reference,
just pass the address of the string. If strings are passed by value, same as assignment, and
length is available to the function/procedure.

5. [10 marks] Possible optimizations
— Expand squareIt and cubeIt inline
— fuse loop on lines 20/21 into following loop

need X[0] = 0.0 before loop for correctness
– Move all computations that don’t depend on J out of the inner loop.

i.e. X[J], X[J-1], A[J], B[J]
– Do common subexpression elimination and constant folding
– Do strength reduction and test replacement on J and K
– Possibly unroll loop on lines 23/25 5 times

7 double A[50][50], B[50][50], X[50] ;
8 int J, K ;
9 /* Assume A and B are given values here */

...
21 X[0] = 0.0 ;
22 for(J8 = 8 ; J8 < 400 ; J8 += 8)

22a XJP = &X[0] + J8 ;
22b @XJP = 0.0 ;
22c XJM1 = @(XJP -8) ;
22d J400 = 50 * J8 ;
22d AJP = &A[0][0] + J400 ;
22e BJP = &B[0][0] + J400 ;
23 for(K8 = 0 ; K8 < 400 ; K8 += 8)

23a AJK = @(AJP + K8) ;
23b BJK = @(BJP + K8) ;
24 @XJP = @XJP + 56.0 * AJK * AJK * AJK
25 + 5.0 * BJK * XJM1 * BJK * XJM1 + 3.0 ;

Page 2 of 4 pages.

6. [10 marks] Combined basic blocks and dataflow diagram

*to ... *to ... *to ... *to ... *to ... *to ... *to ... *to ...int n ...
switch(...

while ...

Comment: most common mistake was to make case labels into basic blocks.

7. [20 marks]
a) Static semantic checks
– Check that type of Expr is suitable for a TYPECASE statement
– Check that the Tis are disjoint and suitable for the TYPECASE.
– Check that the vis are not already declared and disjoint
– Create a minor scope for each Si that contains the corresponding vi

b) Implementation
The hard part of implementing this statement is creating a mechanism for identifying types at run-
time. This gets particularly messy if separate compilation must be supported. Most solutions tagged
(somehow) each type with a unique identifying integer.
Once this is done, the TYPECASE statement can be mapped into the implementation of switch
statements, with the switch being made on the runtime type of Expr.

Comment: A lot of answers were weak on runtime type identification.

Page 3 of 4 pages.

8.[20 marks] Here is a solution in (almost) C.

#define FAIL false parseTypeCase() {
#define OK true /* deal with initial TYPECASE */
/* Check for expected token */ assert(expect(tTYPECASE));
int expect(token expected) { if(! expression()) return FAIL ;

if(nextToken == expected) { if(! expect(tOF)) return FAIL ;
getNextToken() ; do
return OK if(! oneCase()) return FAIL ;

} else while(expect(tVerticalBar)) ;
return FAIL ; if(expect(tELSE))

} if(! statement()) return FAIL ;
/* parse one case in TYPECASE */ return expect(tEND) ;
int oneCase() { }

if(! type()) return FAIL ;
if(expect(tLeftParen)) {

if(! variable()) return FAIL ;
if(! expect(tRightParen)) return FAIL ;

}
if(! expect(tRightArrow)) return FAIL ;
return statement() ;

}

Comment: Almost everyone forgot to process the initial TYPECASE (read the question!). This
solution uses assert because it’s a logic error in the higher level parser if parseTypeCase is called
anywhere except at the start of a TYPECASE statement.

Page 4 of 4 pages.

