
University of Toronto
Faculty of Arts and Science

April/May 2009 Examinations
CSC488H1S / CSC2107H1S

Duration – 2 hours (120 minutes)
OPEN BOOK ALL written aids, books and notes are allowed.

ALL non-programmable calculators allowed.
NO other electronic aids allowed.

120 marks total, 8 Questions on 4 Pages. ANSWER ALL QUESTIONS
Write all answers in the Exam book.
You must receive a mark of 35% or greater on this final exam to pa ss the course.

WRITE LEGIBLY Unreadable answers cannot be marked.
Line/rule reference numbers on the left side of of programs and grammars are provided for ease of
reference only and are not part of the program or grammar .
The notation . . . stands for correct code that has been omitted for brevity
State clearly any assumptions that you have to make to answer a question.

1. [10 marks] Assume you would like to make the project language a little more programmer
friendly and allow all double character terminal symbols to have white space between them. For
example, allow := and : = , allow <> and < > .
Describe how you would implement this change in the compiler488 scanner and parser.

2. [10 marks] During the LL(1) table construction algorithm, how is a failure in the LL(1) property
detected, i.e. what condition indicates that the grammar is not LL(1)?

3. [15 marks] In some programming languages comments start with the characters (* and end
with the characters *) . Comments may be nested. For example:

(* Outer comment which contains
(* this inner comment

which ends here ->*)
and the outer comment ends on the next line

*)

Describe the lexical analysis algorithms necessary to process nested comments.

Page 1 of 4 pages.

4. [25 marks] The figure below illustrates three different ways of representing fixed length strings
(i.e. the maximum length of the string is a constant known to the compiler).

a) C-style null terminated strings.
b) String with an explicit length field at the front.
c) String with an explicit length field at the end.

Where the length field contains the current length of the string, 0 stands for a byte containing zero.
The arrow indicates the memory address used to access the string. The shaded part of each string
represents characters that are unused in the current value of the string (i.e. the current value is
shorter than maximum value)

0a)

b)

length

length

c)

Evaluate and compare each of these representations in terms of ease of implementation of common
string operations:

a) string assignment

b) obtaining the length of a string

c) string concatenation, you can assume that tail concatenation (S := S + moreS) is the domi-
nant form of concatenation.

d) obtaining a substring from a larger string

e) passing strings as arguments to functions/procedures that will accept any length string as an
argument.

Page 2 of 4 pages.

5. [10 marks] Describe the optimizations that a good optimizing compiler would make on the frag-
ment of C code on lines 20 .. 25 .

1 double cubeIt(double X) {
2 return X * X * X
3 }
4 double squareIt(double X) {
5 return X * X
6 }
7 double A[50][50], B[50][50], X[50] ;
8 int J, K ;
9 /* Assume A and B are given values here */

...
20 for (J = 0 ; J < 50 ; J ++)
21 X[J] = 0.0 ;
22 for (J = 1 ; J < 50 ; J ++)
23 for (K = 0 ; K < 50 ; K ++)
24 X[J] = X[J] + 7.0 * cubeIt(2.0 * A[J][K])
25 + 5.0 * squareIt(B[J][K] * X[J - 1]) + 3.0 ;

6. [10 marks] The following fragment of legal C code is known as Duffs device. It is a copy loop
that has been unrolled eight times that also efficiently deals with copy lengths that are not multiples
of eight.

1 void duff(char *to, char *from, int count) {
2 /* copy count characters */
3 int n = (count + 7) / 8 ;
4 switch(count % 8) {
5 case 0: do { *to++ = *from++ ;
6 case 7: *to++ = *from++ ;
7 case 6: *to++ = *from++ ;
8 case 5: *to++ = *from++ ;
9 case 4: *to++ = *from++ ;

10 case 3: *to++ = *from++ ;
11 case 2: *to++ = *from++ ;
12 case 1: *to++ = *from++ ;
13 } while(--n > 0) ;
14 }
15 }

Show the basic blocks for this function
Show the control flow graph for this function

Page 3 of 4 pages.

7. [20 marks] The TYPECASE statement in the statically typed Modula-3 programming language
has the form:

Definition Example

TYPECASE Expr OF PROCEDURE ToText(r : REFANY) : TEXT =
T1 (v1) => S1 (* Assume r = NIL or rˆ is a BOOLEAN or INTEGER *)

| T2 (v2) => S2 BEGIN
| ... TYPECASE r OF
| Tn (vn) => Sn NULL => RETURN ”NIL”

ELSE S0 | REF BOOLEAN (rb) => RETURN Fmt.Bool(rbˆ)
END | REF INTEGER (ri) => RETURN Fmt.Int(riˆ)

END
END ToText

Where Expr is an expression whose type is a REF ANY type (e.g. like void *), the Si are state-
ments, the Tis are specific reference types, and the vi are identifiers. The ˆ operator indicates
pointer dereferencing, REF type is a pointer to type. The ELSE part and the (vi) parts are optional.

The TYPECASE statement evaluates Expr. If the resulting reference value is a member of any
listed type Ti then Si is executed for the minimum such i. If the value of Expr is a member of no
listed type and ELSE S0 is present then S0 is executed otherwise a runtime error occurs. Each vi

declares a variable whose type is Ti and whose scope is Si. If vi is present it is initialized to the
value of Expr before Si is executed.

a) Describe a set of static semantic analysis checks that should be applied to this statement.

b) Describe how you would implement this statement. You can use pseudo-code or diagrams in
your answer. Include all runtime mechanisms that you require.

8.[20 marks] Design a recursive descent parser function for the TYPECASE statement in the pre-
vious question. You may assume the existence of functions that recognize statement, types and
expressions. The function you are writing will be called when the statement parsing function recog-
nizes the terminal symbol for TYPECASE as its next input token. Your function should parse one
entire TYPECASE statement and return success or failure. Describe any assumptions you make in
your solution.

Page 4 of 4 pages.

