
University of Toronto
Faculty of Arts and Science

April/May Examinations 2003
CSC488H1S / CSC2107H1S

Duration – 2 hours (120 minutes)

120 marks total, 8 Questions on 4 Pages. ANSWER ALL QUESTIONS
Write all answers in the Exam book.
You must receive a mark of 35% or greater on this final exam to pa ss the course.

OPEN BOOK ALL written aids, books and notes are allowed.
ALL non-programmable calculators allowed. NO other electronic aids allowed.

WRITE LEGIBLY Unreadable answers cannot be marked.
Line/rule reference numbers on the left side of of programs and grammars are provided for ease
of reference only and are not part of the program or grammar .
The notation . . . stands for correct code that has been omitted for brevity
State clearly any assumptions that you have to make to answer a question.

1. [15 marks] Show the branching code that would be generated for the Boolean expression in
the while statement on lines 20 and 21 below. You can invent any branch or compare instructions
you need as long as you describe them fully

10 char ch ;
. . .

20 while(’a’ <= ch && ch <= ’z’ || ’A’ <= ch && ch <= ’Z’
21 || ’0’ <= ch && ch <= ’9’ || ch == ’_’) {

...
30 }

2. [15 marks] Convert the grammar below into an LL(1) grammar.
Show the director sets for your revised grammar.

1 S → S r Y
2 → r X
3 → X
4 X → X s Y
5 → Y u Y
6 → Y
7 Y → u Y
8 → t

Page 1 of 4 pages.

3. [15 marks] Describe the optimizations that a good optimizing compiler might perform on the
fragments of C code listed below.

10 int R[100] , I, RM , J ;
. . .

35 int lz(int X[] , int N){
36 if(N < 0)
37 return -1 ;
38 else
39 if(X[N] == 0)
40 return N ;
41 else
42 return lz(X , N - 1);
43 }

. . .
70 RM = lz(R , 99) ;
71 for(I = 99 ; RM >= 0 ; I = RM) {
72 printf("%d\n", RM);
73 for(J = RM+1 ; J <= 99 ; J++)
74 R[J - 1] = R[J] * R[J] ;
75 RM = lz(R , RM - 1) ;
76 }
77 I = 99 ;

. . .

4.[15 marks] Use the simple storage mapping Algorithm 1 described in the lecture notes to show
how the C structure given below might be laid out in memory.

1 struct {
2 char C ;
3 struct {
4 float X ;
5 double Y ;
6 } Z ;
7 int I, J ;
8 struct {
9 char D ;

10 short E ;
11 double F ;
12 } G ;
13 int K ;
14 } A ;

You may assume the bit sizes and alignments for the basic data types that are given in the table
below.

Type Size Align Type Size Align Type Size Align
char 8 8 int 32 32 short 16 16
float 32 32 double 64 64

Page 2 of 4 pages.

5. [15 marks] A programming language with a rich set of character string manipulating primitives
has the following characteristics:

• String variables must be declared. The declaration for a string variable specifies a maximum
length for the variable. The actual length of a string variable ranges from zero (null string)
up to the maximum declared length.

• The maximum length may be a compile time constant or a run time expression. In the case
of a run time expression the maximum allowed length of the string is determined when the
declaration is encountered during program execution.

• The string processing functions provided in the language include the usual set of opera-
tions on strings: length, substring, concatenation, indexing, etc. You can use the C string
functions as a model. Strings can be passed as parameters to routines and returned by
functions.

a) Describe a complete strategy for implementing storage for character string variables in this
language. Discuss how strings with a maximum length determined at run time should be
handled.

b) One unique feature of this language is that it allows the substring operation to be used on
the left side of an assignment statement. For example:

substr(S , E1 , E2) = ”Hello World” ;

Assigns the string constant ”Hello World” to the substring of the string variable S starting
at the character position given by the value of the expression E1 , and continuing for the
number of characters determined by the value of the expression E2.

For the general case, discuss the implementation issues raised by allowing substring to
be used on the left side of an assignment statement. What run time checks would be
necessary to ensure the correct execution of this construct?

6. [15 marks] The CSC488S resident computer architect is about to redesign the pseudo ma-
chine processor used in the course project. What four machine instructions would you like to see
added to the machine to make code generation easier?

Page 3 of 4 pages.

7. [15 marks] Some programming languages (e.g. Modula-3) allow default values to be provided
for routine parameters when the routine is declared. For example:

procedure P(A : float = 3.14 , B : int = 23 , invert : boolean = false ,
msg : string (*) = ”Hello World”) ;

. . .
end P ;

A routine call in such a language would have some notation (e.g. consecutive commas) to indicate
that there is no actual parameter in a given call corresponding to some formal parameter. For
example, the call:

P(2.78 , , , ”Goodbye Cruel World”);

would cause P to be called with default values for the parameters B and invert .
Describe the programming language implementation issues raised by this parameter mechanism.
Describe the semantic analysis and code generation mechanisms that would be required to sup-
port this construct.

8. [15 marks] The C programming language allows the size of fields in a structure to be specified
with bit resolution. The general form of a structure field definition is:

unsigned name : bits
Where name is the name of the field, and bits is a constant giving the size of the field in bits.
The C standard allows the compiler to impose an implementation defined maximum on the size
of a field (usually word size). The implementation can layout fields so that they don’t cross
storage unit boundaries by adding unnamed fill in the structure. The implementation also decides
what storage unit it uses in laying out structures. Most implementations use a memory word, but
halfword or even byte is allowed by the standard. The special value zero for the bits specifier
forces the next field in the structure to start on a storage unit boundary. The address of operator
(&) cannot be applied to bit sized fields. Example:

unsigned int X ;
struct {

unsigned int A : 7 ;
unsigned int B : 13 ;
unsigned int C : 12 ;

} Y ;

a) Describe the impact that the presence of bit fields will have on the compiler processing of
structures.

b) Assume the compiler is using 32-bit words as the storage unit for structures. Describe the
kind of code that a compiler would have to emit to support the assignment statement:

X = Y.B ;
based on the structure declared above.

c) Using the same assumptions as the previous part, Describe the code that a compiler would
have to emit to support the assignment statement:

Y.B = X ;

Page 4 of 4 pages.

