
University of Toronto

CSC488S/CSC2107S Compilers & Interpreters Winter 2001
Midterm Test [15% of final mark] March 1, 2001

Instructions: This midterm is open book, open notes.
Total marks 100 - Total time is 50 minutes. Two pages, 5 questi ons. Answer all questions .
Non-programmable calculators allowed. No electronic communication devices allowed.
The line numbers in example programs are for reference only and are not a part of the programs.

1. [20 marks] The C programming language standard has two conventions that complicate the
design of a lexical analyzer for C.

1. backslash continuation If the backslash character \ occurs at the end of an input line, then
the next input line is taken as an immediate continuation of the first line. The backslash can
occur almost anywhere including in the middle of an identifer, reserved word or constant.

2. trigraphs ANSI C contains a brain-damaged mechanism for supporting keyboards that do
not contain all of the characters required to express C programs. A trigraph is a 3-character
sequence beginning with ?? that stands for some other single character.
The 9 ANSI trigraphs are shown below

??(is [, ??) is] , ??< is { , ??> is } , ??/ is \
??= is # , ??- is ˜ , ??’ is ˆ , ??! is |

These trigraphs may be used anywhere that the corresponding character could be used.

Discuss for these lexical features might be implemented in a lexical analyzer for C.

2. [25 marks] Describe the static semantic checks that a competent C compiler would perform
on the statements shown below

... ...
10 if ((ch = getchar()) != EOF)
11 fprintf(stderr, ”next char is %c”, ch);
12 else
13 return ;
14 buffer[bp++] = ch ;
15 for (K = 0 ; K ¡ bp - 1 ; K++)
16 if (ch == buffer[K])f
17 bp – ;
18 break ;
19 g ;

1

3. [20 marks] For the declaration given below

1 union bigU f
2 unsigned char uchar ;
3 struct f
4 int ordinal ;
5 double dNumb ;
6 g stra ;
7 struct f
8 unsigned char cursor ;
9 int xCoord, yCoord ;

10 char * sptr ;
11 double value ;
12 g strb ;
13 short clink[4] ;
14 g ;

Show how this structure would be laid out in memory using the space conserving Algorithm 2
that was discussed in lecture. Assume the size and alignment constraints in the table below.

type size align type size align
char * 32 32 unsigned char 8 8
double 64 64 short 16 16
int 32 32

4. [15 marks] Show the symbol and type table entries that a typical compiler would create for the
declarations in Question 4.

5.[20 marks] Which of the following four grammars are LL(1)? Justify your answers.
Answers without justification will get partial credit. (λ is the empty string).

1 S ! A B ’c’ 2 S ! A B B A
A ! ’a’ A ! ’a’
A ! λ A ! λ
B ! ’b’ B ! ’b’
B ! λ B ! λ

3 S ! A ’b’ 4 S ! ’a’ S ’e’
A ! ’a’ S ! B
A ! B B ! ’b’ B ’e’
A ! λ B ! C
B ! ’b’ C ! ’c’ C ’e’
B ! λ C ! ’d’

2

