
University of Toronto

Faculty of Arts and Science

April/Ma y Examinations 2001

CSC488H1S CSC2107H1S

Duration - 2 hour s - 120 minutes

OPEN BOOK. ALL written aids, books and notes allowed.
All non-programmable calculator s allo wed. No other electronic aids allowed.

Part I - 4 Questions 40 marks, P ar t II - 4 Questions 80 marks. 120 marks total.
You must receive a mark of 35% or greater on this exam to pass the cour se .

WRITE LEGIBLY. Unreadable answer s are not answers.
State clearl y any assumptions that you have to make to answer a question.

Conventions for all questions:
In grammars, uppercase letter s are nonterminal symbols and lo wer case letter s
are terminal symbols. λ is the empty string.
Line/rule reference n umber s on t he left side of pr ograms and grammar s are
prov ided for ease of reference onl y and are not par t of t he program or grammar.
The notation ... stands for correct code that has been omitted for clarity.

Part I - A nswer ANY 4 Questions in P ar t I

IF MORE THAN 4 QUESTIONS ARE ANSWERED, ONLY THE FIRST 4 WILL BE
COUNTED.

1. [10 marks] Descr ibe the optimizations that a good optimizing compiler would perfor m
on the C function shown below. You may show only the final result of the optimization if
you ver y clearly descr ibe all of the optimizations that have been perfor med. Assume
byte addressing and that int and float var iables occupy 4 bytes of storage.

1 void shellsor t (float A[], int L , int R) {
2 int I , H ;
3 for (H = 1 ; H <= (R -1)/9 ; H = 3*H + 1) ;
4 for (; H > 0 ; H /= 3)
5 for (I = L + H ; I <= R ; I++) {
6 int J = I ;
7 while(J >= L + H && A[I] < A[J - H]){
8 A[J] = A[J - H] ;
9 J -= H ;

10 }
11 A[J] = V ;
12 }
13 }

Page 1 of 4

2. [10 marks] Constr uct the director sets for the LL(1) grammar described below

1 S = ’a’ S ,
2 ’b’ S ’c’ ,
3 U T
4 T = ’a’ S ,
5 λ
6 U = ’d’ V
7 V = ’b’ S ’c’ ,
8 λ

3. [10 marks] Discuss the implications that each of the following programming language
features has for the design of a compiler that implements the feature.

a) var iables may be declared after they are used.
b) the lower and upper bounds of arrays can be run-time expressions
c) procedure and function declarations may be nested.
d) non-local go to statements are allowed.

4. [10 marks] If you could add two new instr uctions (of similar complexity to the existing
instr uctions) to the pseudo-machine used in the course project in order to make the task
of compiling to the machine simpler, what would those instructions be? Justify your
choice.

5. [10 marks] Corresponding elements of a symmetr ic 2-dimensional array have the same
value above and below the main diagonal (.i.e. ∀ I ∀J A[I , J] = A[J , I]).

Design a space optimizing array subscr ipting scheme for symmetric arrays that allows
only the upper half of the array to be actually stored in memory.
Show how array storage is laid out by the compiler.
Show the general case of an array subscr ipt calculation, i.e. how is a reference to an
array element A[E1 , E2] transfor med into the memory address of the array element?

Page 2 of 4

Part I I - Answer ANY 4 Questions in P ar t II

IF MORE THAN 4 QUESTIONS ARE ANSWERED, ONLY THE FIRST 4 WILL BE
COUNTED.

6. [20 marks] Assume you have the misfor tune to be writing a compiler for a language that
has key words instead of reser ved word s. This means that words like if , return ,
while that determine the structure of the program can also be used by the programmer
as ordinary names for var iables, constants and types. Discuss the problems that
keywords cause for the compiler designer. Sketch a possible scanner/parser solution to
this problem.

7. [20 marks] Several programming languages include an iteration statement of the for m

1 for variable = expn1 , expn2 , ... , expnn do
2 . . .
3 end for

Where variable is a scalar var iable and each expni is a scalar expression that can be
assigned to the var iable. The example shown will loop n times with the var iable taking
on successively the values expn1 up to expnn. Example:

1 for V = 1 , N - 2 , ackermann(3, 2) , V / 7 do
2 printf("V = %d\n", V);
3 end for

In the style of the lecture slides, design a parse-tree directed translation for this
statement into the quadruples used in the lecture slides.

a) design a plausible set of AST tree nodes to represent the statement
b) design a scheme for translating this statement into quadruples
c) show the translation that is done for each tree node that you designed in a).

8. [20 marks] The programming language used in the course project has been augmented
with two new statements.

return from name
result of name is expression

These statements have the same meaning as the return and result statements in the
language except that name is the name of the function or procedure that is being
retur ned from. These statements cause a return from the most recent (i.e. closest in the
chain of outstanding calls) invocation of name.

a) discuss the implementation issues raised by these new statements.
b) what static semantic checking should be done on these statements?
c) what dynamic semantic checking should be done on these statements?
d) describe how these statements could be implemented at runtime. You don’t have to
show detailed instructions sequences, but you should discuss the runtime algorithms
that will be used.

Page 3 of 4

9. [20 marks] Several steps from the LL(1) table generation algorithm are listed below.
For each step describe in words the purpose of the table entries built by the step

3c if A → a β is a production
row a, col a ← REPLACE(β) NEXT }

3d if A → B α is a production and B α is not nullable
for each b in first(B α)

row a, col b ← REPLACE(B α)
3e if A → B α is a production and B α is nullable

for each b in first(B α) ∪ follow(A)
row a, col b ← REPLACE($B α)

3f if A → λ is a production
for each b in follow(A)

row a, col b ← POP

10. [20 marks] Several programming languages allow associative arrays as a builtin data
type. A typical definition might be
- the subscript of an associative array can be an arbitrar y (possibly non-integer)

expression, e.g. A["Hello Wor ld"] or A[3.141592653].
- the use of an array subscr ipt expression that has never been used before for that array

causes the spontaneous creation of an array element with that subscript.
- once an array element comes into existence, it remains available until the entire array is

deleted (e.g. by leaving the scope in which the array was declared.
- an associative array can be used in the same ways that an ordinary array can be used.
- some for m of iterator is available to enumerate all of the elements in the associative array,

for example: for v in A do

Descr ibe a complete implementation strategy for associative arrays. Include a description
of runtime storage management and the runtime algorithms used to process a reference to
an array element.

Page 4 of 4

