University of Toronto

CSC 488/2107 Compilers & Interpreters Spring 2000
Midterm [15% of final mark] February 29, 2000

Instructions: This midterm is open book, open notes.

Non-programmable calculators allowed. No electronic communication devices allowed.
Total marks 100 - Total time is 50 minutes.

Two pages, 5 questions, answer all questions.

1. [25 marks| Character string constants (string literals) in the C programming language
begin and end with a ” (double quote) character. A string constant may directly contain
any character except \ " or newline. String constants can also contain any of the es-
cape sequences

Special Character Escapes - \" \?> \? \\ \a \b \f \n \r \t \v

1, 2 or 3 digit Octal Escapes - \3 \23 \342

1 or 2 digit Hexadecimal Escapes - \x9 \x8f \xBD

Where each of the escape sequences becomes a single character in the string constant.
Design a lexical analysis algorithm to process string literals in C. You can describe your
algorithm any way you wish, but a finite state machine is recommended. Make sure to be
clear in your algorithm about successful completion and error conditions.

2 [10 marks] The C programming language standard specifies that two adjacent character
string constants separated by an arbitrary amount of whitespace should be automatically
concatenated by the compiler so that they behave as one character string constant.

For example "ABCD” "EFG” is the same as "ABCDEFG”
[4 marks] Describe how this language feature could be implemented during lexical analysis.
[4 marks| Describe how this language feature could be implemented during syntax analysis.

[2 marks] Which implementation is better and why.

3. [20 marks| For the fragment of C code given below, list all of the static semantic analysis
checks that a compiler would make to validate the correctness of the program.

for(I =0 ; I <N ; I++) {
scanf("%e ", &AL N-I-1 J[I 1);
ifC ' (I % 10))
B[J++] = AL N-I-1][I] ;
}
printf("Last value for B is J%e\n", B[J -1 1);

4. [25 marks| Show the Abstract Syntax Tree that would be generated for the following
program in the course project language.

int COUNT
int SUM
COUNT = 0
SUM = 0
loop
if COUNT > 100 then
exit
else {
int TMP
get TMP

if TMP !< 0 then
SUM = SUM + TMP
COUNT = COUNT + 1
b
put "Sum is " , SUM

5. [20 marks] Assuming the other definitions from astDef.h in the course project, show
the typical symbol table entries that a compiler might create for the declaration.

/**/

/* Data structure used to describe expressions */
[K3k ok ok ok ok sk skok ok ok o o ok ok sk sk ok ok ok o o ok ok ok sk sk sk ok ok sk ok o ok ok sk sk skok sk sk sk o kK ok ok sk sk ok ok ok /

typedef struct Expn_tag {
ExpnType etype; /* type of expression */
union expnVal_tag {

struct expnOp_tag { /* operator */
OperType eoper ; /* type of operator */
ExpnP eopleft ; /x left operand (if any) */
ExpnP eopright ; /* right operand (if any) */
} eop ;
struct expnFn_tag { /* function call */
char * efname ; /* name of function */
ArgsP efargs ; /* list of arguments */
} efn ;
LitObj elitVal ; /* literal constant */
char * eident ; /* identifier */
ScopeP escope ; /* expresion scope */

} evalue; /* value of the expression */

} ExpnObj;

