
University of Toronto

Faculty of Arts and Science

April/Ma y Examinations 2000

CSC488S CSC2107S

Duration - 2 hour s - 120 minutes

OPEN BOOK. ALL written aids, books and notes allowed.
All non-programmable calculator s allo wed. No other electronic aids allowed.

Part I - 4 Questions 80 marks, P ar t II - 4 Questions 40 marks. 120 marks total.
You must receive a mark of 35% or greater on this exam to pass the cour se .

WRITE LEGIBLY. Unreadable answer s are not answers.
State clearl y any assumptions that you have to make to answer a question.

Conventions for all questions:
In grammars, uppercase letter s are nonterminal symbols and lower case letter s are
terminal symbols. λ is the empty string.
Line/rule reference n umber s on t he left side of programs and grammar s are pr ov ided
for ease of reference onl y and are not par t of t he program or grammar.
The notation ... stands for correct code that has been omitted for clarity.

Part I - A nswer ANY 4 Questions in P ar t I

IF MORE THAN 4 QUESTIONS ARE ANSWERED, ONLY THE FIRST 4 WILL BE
COUNTED.

1. [20 marks] Describe the optimizations that a good optimizing compiler would perfor m on the
C function listed below. You may show only the final result of the optimization if you ver y
clear ly descr ibe all of the optimizations that have been perfor med. Assume that float
variables require 4 bytes of storage.

1 void batchersor t(float A[] , int L , int R){
2 int I, J, K, P, N = R - L + 1 ;
3 float T ;
4 for(P = 1 ; P < N ; P += P)
5 for(K = P ; K > 0 ; K /= 2)
6 for(J = K % P ; J + K < N ; J += (K + K))
7 for(I = 0 ; I < K ; i++)
8 if ((J + I + K) < N)
9 if (A[L+ J + I] < A[L+ J + I + K]){

10 T = A[L+ J + I] ;
11 A[L+ J + I] = A[L+ J + I + K] ;
12 A[L+ J + I + K] = T ;
13 }
14 return ;
15 }

Page 1 of 6

2. [20 marks] In C++ and Modula-3 there is an exception handling mechanism based on the
tr y and catch mechanism. An example (in C++ syntax) is given below.

1 void testForBorg() {
2 ...
3 thr ow "Borg Sighted" ;
4 ...
5 }
6 ...
7 tr y {
8 ...
9 testForBorg() ;

10 ...
11 if (badness > 1)
12 thr ow 23 ;
13 ...
14 }
15 catch (int code) { ... }
16 catch (char * msg){ ... }
17 ...

The try block associates some set of statements (including function calls) with a set of catch
handlers. The throw statement signals that an exception has occurred. Note that exception
signaling is not limited to statements in the try block, an exception can also be signaled by a
function called from the try block (e.g. testForBorg). In C++ the decision on which catch
handler to invoke is based on the type of value used in the throw statement. catch handlers
can have any type of for mal parameter that is legal for a function in C++. In the example
above the throw on line 3 will be caught by the handler on line 16 and the throw on line 12
will be caught by the handler on line 15. tr y blocks may be nested. An exception will
propagate outward through nested try blocks until a catch handler with a parameter type that
matches the type of the thrown exception is found.

Design an implementation for this for m of try/catch exceptions. Descr ibe how your
implementation will deal with
- storage management, unwinding the run time stack.
- keeping track of active catch handlers.
- associating an exception signaled by a throw statement with the nearest (dynamically)

enclosing catch handler of the correct type.
- show the code that you will generate for the throw, try and catch constructs in the example

above .

Page 2 of 6

3. [20 marks] The lecture notes described a method for implementing case or switch
statements where the set of case labels was compact and a branch table implementation
was suitable.

Design a complete similar mechanism for implementing case or switch statements for the
situation where the set of case labels is spare and non-compact (e.g. 1, 100, 10000,
10000000) and an if statement-like implementation is appropriate. Show the translations
steps for all parts of the case/switch statement as was done in the lecture slides. Show the
branching code that your would generate and describe the compile time data structures that
you would need to do the code generation.

4. [20 marks] Transfor m the grammar below into LL(1) for m:

1 S → S a T
2 → T
3 T → A b B
4 A → A c x
5 → x
6 B → D
7 → d e E f g B
8 D → x
9 → F h F

10 F → G y
11 → x
12 G → p
13 → m
14 → λ
15 E → E c D
16 → D

5. [20 marks] A proposal has been made to extend the language used in the course project by
adding a with statement similar to the with statement in Pascal. The statement would have
the definition:

withStmt : with withList do statement
withList : oneWith ,

withList ’,’ oneWith
oneWith : variable ’as’ identifier

The purpose of this statement is to provide efficient access to the var iables in
the withList in the body of the statement. An example:

1 with A[J] as X , A[K+J] as Y do
2 % use X and Y here instead of A[J] and A[K+J]

Descr ibe the static semantic analysis that should be applied to this statement.
Descr ibe the code that would be generated for this statement on the machine used for the
course project.

Page 3 of 6

Part I I - Answer ANY 4 Questions in P ar t II

IF MORE THAN 4 QUESTIONS ARE ANSWERED, ONLY THE FIRST 4 WILL BE
COUNTED.

6. [10 marks] Consider a for matted pr int statement of the for m:

print format-str ing expression-list
Where format-str ing is a string constant which defines the layout of the printed output. A
format string may contain the special markers:

%d insert an integer expression at this point
%s insert a str ing expression at this point

Any other characters occurring in format-str ing are passed as is to the output. The
expression-list is a list of values that are to be printed. Execution of this statement starts at
the beginning of the format-str ing and the beginning of the expression-list. Ordinar y
characters in the format-str ing are simply copied into the print output buffer. If a special
mar ker (%d or %s) is encountered, the next value from the expression-list is converted into
its character representation and copied into the output buffer. There must be exactly as
many special markers in the format-str ing as there are expressions in the expression-list.

Descr ibe how you would implement this statement in the general case. What static semantic
checks would you perfor m dur ing compilation? Show the code (tuples) that you would
generate for the typical print statement:

print "Hello Wor ld, Today is %s the %d day of %s in %d",
dayName, dayOrdinal , monthName, year

7. [10 marks] A proposal has been make to extend C to allow initial values for struct fields in
typedef declarations. Every var iable created using such a type would be initialized by the
compiler to the values specified in the typedef declaration. For example

1 typedef
2 struct studentStr uct {
3 char * name = "Anonymous" ;
4 long number = 0999999999 ;
5 int projectTeam ;
6 shor t mar ks[6] = { 0, 0 , 0, 0, 0 , 0 } ;
7 shor t rawMar k ;
8 } studentRecord ;

Discuss how you would implement this language feature. What implementation
problems/issues are raised by this proposal? Discuss the impact that this feature would
have on the compilers symbol and type table mechanisms, semantic analysis, run time
storage organization and code generation.

8. [10 marks] Show how the Boolean expression given below would be translated into
branching code.

W | X <= Y & Z != 0 | ! (P&Q&R) & Z > X

Page 4 of 6

9. [10 marks] Describe how the structure declaration shown below would be mapped into
memor y using the space conserving Algorithm 2 described in the lecture notes.

1 struct mapMeIfYouCan {
2 char key ;
3 double hashKey ;
4 struct {
5 shor t index ;
6 double oldKey ;
7 int * locator ;
8 } info ;
9 union {

10 shor t keyCode ;
11 long masterCode ;
12 } codeInfo ;
13 } ;

Assume the following size and alignment constraints (in bits)

Type Size Align Type Size Align
char 8 8 pointer 32 32
int 32 32 short 16 16
double 64 64 long 32 32

10. [10 marks] In Pascal, value and reference parameter modes are often confused. In
par ticular, because value mode is the default, value parameters are sometimes used in a
manner that suggests that reference mode was intended. A sign of this problem is an
assignment to a value parameter before the value of the parameter has been used. Show
how data flow analysis could be used to identify value parameters that are defined (i.e.
assigned to) before they are used.

11. [10 marks] You have been as a compiler guru by Microsoft. Their operating system
software has become so large (e.g. 50,000,000 lines of C code) that compiling it is ver y time
consuming. They want fast compilation of extremely large programs with a high level of
optimization.

Descr ibe the design of a compiler that can efficiently process extremely large programs.
Discuss the organization of the compiler and the major data structures that the compiler will
use.

Page 5 of 6

12. [10 marks] Assume a display is used to address the activation records of procedures and
functions as was described in lecture. For the procedures declared below, show the state of
the display after the sequence of procedure calls

P → Q → Q → Q → A(R) −> F

Show both the static and dynamic links. Which activation records are addressable when F
has been called in this sequence?

1 procedure P(...)
2 procedure R(...)
3 ...
4 end R
5 procedure Q(...)
6 ...
7 A(R);
8 ...
9 end Q

10 ...
11 Q(..)
12 end P
13 procedure A (procedure F(...))
14 ...
15 F(...)
16 ...
17 end A

Page 6 of 6

