
1. The Parse Stack looks like
Apply

Stack Input Rule

S V a b c b b b d d a c |-
a S A V 1

S A V b c b b b d d a c |-
B b C A V 2

b B b b C A V 5
B b b C A V c b b b d d a c |-

c b C b b C A V 6
b C b b C A V b b b d d a c |-

C b b C A V b b d d a c |-
b b C A V 8
b C A V b d d a c |-

C A V d d a c |-
d C A V 7

C A V d a c |-
d C A V 7

C A V a c |-
A V 8

a c V 3
c V c |-

V |- ACCEPT

Where V stands for bottom of stack marker.

2. In Turing this expression has a lot of possibilities.
(Don’t you just HATE it when language designers overload the syntax?)

2a. Static checks

A, I and B should all be checked for declaredness, visibility and
accessibility.

The identifier I could be almost anything
e.g the name of a type, constant, variable, procedure, function, module
Type/kind of I need to be checked against type/kind of A in all cases.
If I is used to produce a value it should be checked:

- if it is a variable or constant check that it’s scalar.
- if it is a function, check that it has no parameters and

that it’s return type is scalar.

The operand A(I) could be
array subscript

check A is 1-dimensional array,
check I produces a scalar value of suitable type

function call
check A is function with 1 parameter
check I is suitable actual parameter, e.g. var/const/func/proc

and correct type
substring reference, i.e. A is a string variable/constant

check that I is a variable/constant of integer type
if I is a constant check that it is <= max length of A

collection dereference, i.e. A is the name of a collection,
I has to be checked that it is a pointer to the same collection.

set type constructor, i.e. A is the name of a set type and
I has to be checked that it is the correct type for a set member.

The operand B(7) could be
array subscript

check B is a 1-dimensional array,
integer 7 is a suitable type of subscript
check 7 is in range for subscript of B

(if upper bound of B is known at compile time)
function call

check B is function with 1 parameter
check 7 is suitable actual parameter, e.g. non-var, correct type

substring reference, i.e. B is a string variable/constant
check that 7 is <= max length of B.

set type constructor, i.e. B is the name of a set type and
7 has to be checked that it is the correct type and in range

for a set member.

The + operator could be
integer add
real add
string concatenation
set union

in each case the operands A(I) and B(7) have to be checked
for type compatibility with each other and the operator.

2b. Dynamic Checks
If any of A, B, I are variables, check for use of uninitialized variables
If A is an array, check I is in range as a subscript.
If B is an array with dynamic upper bound, check that subscript 7 is in range.
If A is a string, check I is a valid substring reference
If B is a string check that 7 is a valid substring reference.
If A is a collection, check that I is a valid pointer, i.e. not null

and pointing at data that has not been freed.
If A is a set type, then check that I is in range for the set constructor

3. There are a lot of steps that one can take to make a compiler for
generated program compile quickly. The language being compiled
will partially determine which of these speedups can be implemented.

a) tune lexical analysis for raw speed
- use hash function for reserved word determination, use perfect hash

if the hash function isn’t too expensive.
- while accumulating identifiers, record whether a digit is seen,

if a digit has been found the identifier can’t be a reserved word
so skip the reserved word test.

- do all of the lexical analyzer optimizations on Slide 51
- try to make each lexical token as small as possible, possibly

package tokens in blocks to save space.
- try to have the lexical analyzer recognize large constant tables

and store them in special memory or disk tables, i.e. try to
keep these large objects out of the lexical token stream.

b) tune for memory efficiency
- try to make all table entries as small as possible, especially

the symbol table. Use auxiliary tables and special case code
to keep the common case small.

- *if* the machine on which the compiler runs permits it, use
main memory lavishly. 200 Mb of tables in real memory is faster
than any alternative. Be prepared to back tables up to disk if
the program being compiled gets too large.

c) use an O(n) parser tuned for speed, LL(1) and LALR(1) are *both*
good bets depending on the language.

d) Optimize symbol lookup
Use a *very large* hash table. Tune hash function for the expected
form of identifiers.

e) Tune processing for efficiency
- use a single pass compiler if the language allows it.
- try to avoid building large internal data structures (e.g. statement lists)
- make emitting of generated code as efficient as possible.

f) semantic analysis
- do the minimal checking required to ensure correctness. Question

stated that this was required to check for bugs in the program generator.
- don’t implement recovery strategies, an error halt is appropriate

in this case.
- numeric error messages referencing a printed list of messages is sufficient.

Source program coordinate of the error is very important
-design a special processor for checking initialization lists so they
don’t have to go through the full parse, semantic analysis mechanism.

g) optimization
A real toss up. Users want it but the size of programs will render
almost all contemporary optimization techniques infeasible.

4. Successful Exits

T1 - integer consisting of a string of digits
T2 - the subrange separator ..
T3 - real number of the form .digits
T4 - real number of the form digits.
T5 - integer followed by the subrange separator ..

T6 - real number with explicit exponent, any of
digitsE+digits digitsE-digits
digits.E+digits digits.E-digits
.digitsE+digits .digitsE-digits
digits.digitsE+digits digits.digitsE-digits

T7 - real number of the form digits.digits

Error exits

E1 - single period not followed by digits or period
(this probably shouldn’t be an error, since it
could be part of A . B)

E2 - sign in explicit exponent of a real number
is not followed by a digit.

E3 - E in explicit exponent of a real number is not
followed by a sign or digit.

5.
5a. Follow sets

follow(S)
Add |- since S is the goal symbol
Rule 3 add { d }
Rule 5 add first(A) and { c }
Rule 8 add { f }

first(A) = { a, d }
follow(S) = { a, c, d, f, |- }

follow(A)
Rule 1 add first(B) and { b }
Rule 2 add first(S) and { d }
Rule 5 add { c }

first(B) = { a, c, d, e }
first(S) = { a }
follow(A) = { a, b, c, d, e }

follow(B)
Rule 1 add { b }
Rule 11 add first(D) and follow(D)

first(D) = { a }
follow(B) = { a, b } U follow(D)

= { a, b, c, d, f, |- }

follow(C)
Rule 1 add first(D) and follow(S)
Rule 6 add follow(B)
Rule 9 add { g }

follow(C) = { a, g } U follow(S) U follow(B)
= { a, b, c, d, f, g, |- }

follow(D)
Rule 1 add follow(S)
Rule 11 add follow(D)

follow(D) = follow(S) = { a, c, d, f, |- }

5b. Director Sets

1 { a }
2 { a, c, d, f, |- } follow(S)
3 { a, d } first(A)
4 { a, b, c, d, e } follow(A)
5 { a, c, d } first(S) U first(A) U { c }
6 { e }
7 { a, b, c, d, f, |- } follow(B)
8 { a, f } first(S) U { f }
9 { a, f, g } first(C) U { g }
10 { a, b, c, d, f, g, |- } follow(C)

11 { a }
12 { a, c, d, f, |- }

5c. LL(1)ness

NO WAY
Left recursive in A and C
Many director set conflicts.

