1. The Parse Stack | ooks like

Appl y
St ack I nput Rul e
SV abcbbbddac |-
aSAV 1
SAYV bcbbbddac]|-
BbCAYV 2
bBbbCAYV 5
BbbCAYV cbbbddac]-
cbCbbCAV 6
bCbbCAYV bbbddac]-
CbhbCAV bbddac]-
bbCAV 8
b CAV bddac]|-
CAYV ddac |-
dCAV 7
CAYV dac |-
d CAV 7
CAV ac|-
AV 8
acV 3
cV c |-
Y, [- ACCEPT
Where V stands for bottom of stack marker.
2. In Turing this expression has a lot of possibilities.

(Don't you just HATE it when | anguage designers overload the syntax?)
2a. Static checks

A, | and B should all be checked for decl aredness, visibility and
accessibility.

The identifier |I could be alnost anything
e.g the name of a type, constant, variable, procedure, function, nodule
Type/ kind of | need to be checked against type/kind of Ain all cases
If I is used to produce a value it should be checked
- if it is a variable or constant check that it’s scalar.
- if it is a function, check that it has no paraneters and
that it’s return type is scalar.

The operand A(|) could be
array subscri pt
check A is 1-dimensional array,
check | produces a scalar value of suitable type
function cal
check Ais function with 1 paraneter
check | is suitable actual parameter, e.g. var/const/func/proc
and correct type
substring reference, i.e. Ais a string variabl e/ constant
check that | is a variable/constant of integer type
if I is a constant check that it is <= nmax length of A
coll ection dereference, i.e. Ais the nane of a collection
I has to be checked that it is a pointer to the sane collection.
set type constructor, i.e. Ais the name of a set type and
I has to be checked that it is the correct type for a set menber.

The operand B(7) could be
array subscri pt
check B is a 1-dinensional array,
integer 7 is a suitable type of subscript
check 7 is in range for subscript of B
(i f upper bound of B is known at conpile tine)
function cal
check B is function with 1 paranmeter
check 7 is suitable actual paraneter, e.g. non-var, correct type

substring reference, i.e. Bis a string variabl e/ constant
check that 7 is <= max |l ength of B.
set type constructor, i.e. Bis the nane of a set type and

7 has to be checked that it is the correct type and in range

for a set nenber.

The + operator could be

i nteger add

real add

string concatenation

set uni on
in each case the operands A(|) and B(7) have to be checked
for type conpatibility with each other and the operator.

2b. Dynami c Checks

If any of A, B, | are variables, check for use of uninitialized variables
If Ais an array, check I is in range as a subscript.
If Bis an array with dynam c upper bound, check that subscript 7 is in range
If Ais a string, check | is a valid substring reference
If Bis a string check that 7 is a valid substring reference
If Ais a collection, check that | is a valid pointer, i.e. not nul
and pointing at data that has not been freed.
If Ais a set type, then check that | is in range for the set constructor

3. There are a |ot of steps that one can take to make a conpiler for
gener ated program conpile quickly. The |anguage being conpil ed
will partially determ ne which of these speedups can be inpl enented.
a) tune lexical analysis for raw speed
- use hash function for reserved word determ nation, use perfect hash
if the hash function isn't too expensive.
- while accunulating identifiers, record whether a digit is seen,
if adigit has been found the identifier can’t be a reserved word
so skip the reserved word test.
- do all of the lexical analyzer optimzations on Slide 51
- try to nake each | exical token as small as possible, possibly
package tokens in blocks to save space
- try to have the |l exical analyzer recognize |arge constant tables
and store themin special nenmory or disk tables, i.e. try to
keep these | arge objects out of the |exical token stream
b) tune for nenory efficiency
- try to nake all table entries as small as possible, especially
the synbol table. Use auxiliary tables and special case code
to keep the comon case small.
- *if* the machi ne on which the conpiler runs pernmits it, use
mai n menory lavishly. 200 Mo of tables in real nenory is faster
than any alternative. Be prepared to back tables up to disk if
the program being conpiled gets too |arge.
c) use an Q(n) parser tuned for speed, LL(1) and LALR(1) are *both*
good bets dependi ng on the | anguage
d) Optimze synmbol | ookup
Use a *very |large* hash table. Tune hash function for the expected
formof identifiers.
e) Tune processing for efficiency
- use a single pass conpiler if the language allows it.
- try to avoid building large internal data structures (e.g. statement |ists)
- make emitting of generated code as efficient as possible.
f) semantic analysis
- do the mninmal checking required to ensure correctness. Question
stated that this was required to check for bugs in the program generator.
- don’t inplenent recovery strategies, an error halt is appropriate
in this case.
- nuneric error nessages referencing a printed list of nessages is sufficient.
Sour ce program coordinate of the error is very inportant
-design a special processor for checking initialization lists so they
don’t have to go through the full parse, semantic anal ysis mechani sm
g) optimzation
A real toss up. Users want it but the size of prograns will render
al nost all contenporary optim zation techni ques infeasible.

4. Successful Exits

Tl - integer consisting of a string of digits
T2 - the subrange separator

T3 - real nunber of the form .digits

T4 - real nunber of the form digits

T5 - integer followed by the subrange separator

T6 - real nunmber with explicit exponent, any of
digitsE+digits digitsE-digits
digits.E+digits digits.E-digits
.digitsE+digits .digitsE-digits
digits.digitsE+digits digits.digitsE-digits

T7 - real number of the form digits.digits

Error exits

El - single period not followed by digits or period
(this probably shouldn’t be an error, since it
could be part of A. B)

E2 - sign in explicit exponent of a real nunber
is not followed by a digit.

E3 - Ein explicit exponent of a real number is not
followed by a sign or digit.

5.
5a. Follow sets

follom S)
Add |- since S is the goal synbol
Rule 3 add { d}
Rule 5 add first(A) and { c }
Rule 8 add { f }

first(A) = { a, d}
a

follom{'. S) ={ a, ¢, d, f, |-}
follom A)
Rule 1 add first(B) and { b}
Rule 2 add first(S) and { d }

Rule 5 add { c }

first(B) ={ a, ¢, d, e}

first(S) ={ a}

follom{' A) ={ a, b, c, d, e}
follom B)

Rule 1 add { b}
Rule 11 add first(D) and follow(D)

first(D) ={ a}
followm(B) a, b} Ufollowmf D)
{a b, ¢, d, f, |-}

follow(C)
Rule 1 add first(D) and follow(S)
Rule 6 add follow B)
Rule 9 add { g }
followm(C) { a g} Ufollowm{ S) Ufollow B)
{a b, c, d f, g |-}

followm(D)
Rule 1 add followm S)
Rule 11 add follow D)
follo{t. D) = follow(S) ={ a, ¢, d, f, |- }

5b. Director Sets

1 { a}

2 {a ¢, d, f, |-} followm(S)

3 { a d} first(A)

4 { a b, c, d e} follow(A)

5 { a c, d} first(S) Ufirst(A) U{ c}
6 { e}

7 {a b, c, d, f, |-} followm(B)

8 { a f} first(S) U{ f }

9 {a f, g} first(C) U{ g}

10 {a b, c, d, f, g, |-} followm(C)

5c.

11
12

LL(1) ness

NO WAY

Left recursive in A and C
Many director set conflicts.

