CSC488S Language Processors

Spring 1995/96

Mid Term Test100 marks total.5 Questions50 minutes.5 March5 March1996

OPEN BOOK and NOTES. Write legibly; unreadable answers are not answers. Conventions for all questions:

In grammars, uppercase letters are nonterminal symbols and lower case letters are terminal symbols. λ is the empty string.

Line/rule reference numbers on the left side of programs and grammars are provided for ease of reference only and are not part of the program or grammar.

1. [25 marks] Describe the symbol and type table entries that a typical compiler would make for the following declarations:

1	#define ABOUND1 10
2	#define ABOUND2 20
3	<pre>float * getMember(float X [] , const int i);</pre>
4	const float waterlooPi = 3.0 ;
5	int iaa[ABOUND1][ABOUND2], **ipp, *(if());
6	typedef struct person {
7	char * name ;
8	int iaa ;
9	double if ;
10	union cupe {
11	int memberNo ;
12	char * membRec ;
13	} unionRec ;
14	} PERSON ;
15	PERSON Class[100], * persPtr ;

- 2. [20 marks] List all of the semantic analysis checks that a typical compiler would perform when processing the declarations in Question 1.
- 3. [20 marks] The programming language Modula-3 allows the programmer to specify an optional base for integer constants by prefixing the constant with an base specifier of the form: N_ (i.e. base specification digit(s)(N) followed by the underscore (_) character). Integer constants without this optional specifier are assumed to be decimal numbers. Legal values for the base specifier N are 2 .. 16. The number following the base specification is written in base N notation. For any given base N, only the digits 0 .. (N-1). can legally occur in the constant. The letters A, B, C, D, E, F are used to represent the "digits" 10, 11, 12, 13, 14, 15 respectively.

Examples: 2_10101 16_DEADBEEF 13_CBC941 8_4775 123456789

Sketch the design of the part of a lexical analyzer that will correctly processes integer constants in Modula-3.

 [15 marks] The grammar shown below is LL(k) for some value of k. Determine the value of k for the grammar. Explain your answer (i.e. why is your value of k the smallest k for which this grammar is LL(k)).

1	S	\rightarrow	a	А	a	В
2		\rightarrow	b	А	b	В
3	A	\rightarrow	а			
4		\rightarrow	а	b		
5	В	\rightarrow	а	В		
б		\rightarrow	а			

5. [20 marks] Construct the director sets for the following LL(1) grammar:

1	S	\rightarrow	В	С	С	
2		\rightarrow	g	D	В	
3	В	\rightarrow	b	С	D	Ε
4		\rightarrow	λ			
5	С	\rightarrow	D	а	В	
6		\rightarrow	С	а		
7	D	\rightarrow	d	D		
8		\rightarrow	λ			
9	Е	\rightarrow	g	S	f	
10		\rightarrow	С			