University of Toronto

CSC 488/2107 Language Processors Midterm Test [15% of final mark]

Fall 2005 Oct. 20, 2005

Total marks 65 - Total time is 50 minutes. Answer all 4 questions.

Instructions: This midterm is open book, open notes. Non-programmable calculators allowed. No electronic communication devices allowed.

The line numbers in grammars are for reference only and are not part of the grammars. Ellipses ... indicate omitted, correct text. ϵ indicates an empty string.

If you need to make any assumptions in order to answer a question, state the assumptions clearly in your answer book.

I. [7 marks] Type declarations.

Let the following type declaration in a fictional (but inspired by Pascal) language be given:

```
typedef B = *A; /* create a type of pointers to type A */
typedef A =
   X : integer;
   Y : B;
end;
var Z : A;
```

- 1. [5 marks] Without defining new types, can you create an expression that is structure equivalent to Z (other than Z itself)? If so, do it. If not explain why not.
- 2. [2 marks] What about name equivalent to Z?

II. [20 marks] Parsing and Lexical Analysis.

Suppose we are are interested in defining const, and are doing so with the following set of expressions:

1:	const	::=	id number intconst ϵ
2:	number	::=	$\operatorname{bin} \mid \operatorname{oct} \mid \operatorname{hex}$
3:	le	::=	a-z
4:	di	::=	0-9
5:	bin	::=	b $(0 1)^+$
6:	oct	::=	o $(0 1 2 3 4 5 6 7)^+$
7:	hex	::=	h (di A B C D E F) ⁺
8:	intconst	::=	di^+
9:	id	::=	$le(le di)^+$

- 1. [8 marks] Create the NFA for recognizing const.
- 2. [8 marks] Make this automaton deterministic.
- 3. [4 marks] Is the resulting grammar LL(1)?

III. [18 marks] LL parsing.

Let the following grammar be given:

- 1. [4 marks] Is this grammar LL(1)? If not, convert it into an LL(1) grammar.
- 2. [10 marks] Create the LL(1) parse table for the (potentially modified) grammar.
- 3. [4 marks] Is this grammar LR(1)? Explain why or why not.

IV. [20 marks] LR parsing.

Show that the following grammar is LALR(1) but not SLR(1):