CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

e Semantic analysis

Type equivalence,
compatibility and suitability

* When different types can be used together depends on the context
and is governed by language specific rules

* Type equivalence: when can two objects of two different types be
considered equivalent

* Type compatibility: when can two objects of two different types
be considered compatible

* Type suitability: when can two objects of two different types be
considered suitable for one another

* Assignment usually requires compatibility, expression operands
usually require suitability

Structural & Name Type
Equivalence
typedef struct { jtypedef struct {
int A; int C;
float B; float D;
Y X Py

typedef X Z;

X and Y are structurally equivalent, but not name equivalent

X and Z are name equivalent
(therefore structurally equivalent as well)

Type Compatibility

* Type compatibility is used to check if the value of some given type is
compatible with another given type

* Can RHS value of assignment be assigned to LHS?

* Can the value expression for a given function argument be passed as
the corresponding formal argument?

* Same types are compatible, as are name equivalent types
* Different types may be compatible if language supports implicit casts

* Pass achar as an int (widening) or int as char (harrowing, may truncate)

* Signed to unsigned, and vice versa

* Floating point to integer, and vice versa (rounding, loss of precision)

Type Suitability

 Type compatibility is used to check if values can be used
together with some language operator/operation

 Does operand match a unary operator?
* Do both operands match the binary operator?
* Do both operands of a binary operator match each other?

Do both values of a ternary conditional match eachother?

Type Suitability

Not Suitable

not 1 -true

1 + true
false or 2

Type Suitability

Suitable!

true == false

Not Suitable

Type Suitability

Are X and Y type suitable?

X 1f C else Y

Can they be unified to a common type?
(if X were float, and Y were integer...)

Visibility & accessibility analysis
e |s the usage of a name legal at a given point in the program, according to

the language scoping rules?

e Design of symbol table data structures should be congruent with
language rules

e Symbol tables per major scope, with link to parent scope, possibly
with access modifiers/conditions

* Typical scoping rules allow names to be shadowed (early declaration
becomes inaccessible), but not necessarily deleted

e Language specific constructs:

e C++ “friend” keyword lets classes access private fields/methods

Visibility & accessibility analysis

¥ ClassDef
Nam Kind Type Viz
class P { x var int public
pub]_-ic -ln-t X ° Z var int private
Private int z; \ child-of
} CIésDef . S

N Kind T Vi
class Q extends P { S

y var int public

public 1nt y;

M method ... public -

public void M() {
int z = X + vy,

} Z var int

Scope

Name Kind Type

Usage analysis

e The application of type equivalence, type compatibility, type suitability,
accessibility and visibility

* |s the use of a name consistent with its definition?
e |s a name used as a constant/variable/type actually a constant/variable/type?

e |s a name used as a scalar actually a scalar? Is a variable used as an array
actually an array, and is the dimensionality of its use compatible?

* |s a name used as a function/procedure actually a function/procedure? Is the
argument list compatible with the formally declared parameters?

e Are the operands for all operators correct for that operator?
 Runtime implications
* Array bounds checking

e Use of uninitialized variables

Usage analysis

type u32 = int
var x 1int
var y u32

var a [100]bool
func f(p int) int { .. }

Statement Error

u32 = 32 Assignment to a type name
f(0) = 1 Assignment to a function return value
X=a Assign array to scalar
X[y] = 1 Array subscript on scalar
x = y.foo.bar Field access on scalar

B Assign int to bool array element
A =fx, al0) Wrong # of parameters to f

Performing semantic analysis

 High level overview:

Recursively AST starting from the top

Collect declarations and populate symbol tables associated
to the nearest enclosing scope

Process statements for context and correctness

Process all expressions, performing hame resolution, type
checking and usage analysis

Optionally replace certain classes of nodes (/dent to Symbol,
for example), and add annotations and useful links throughout

Performing semantic analysis

e Sandwich approach:
 Prepare to handle recursive processing
e Do recursive visitation

e Analyze results afterwards

Processing declarations

* Performed at each scope or language construct that can introduce
new names (function body, class definition, etc.)

* Processing:
* Collect declarations: list of names and associated types
e | ookup each name to check for possible redeclaration

e Add name to symbol table, with associated entry linking to
declaration and all relevant attributes

* Process initial value expression (if present)

* Recursively process sub-structures (such as records and
functions)

Processing declarations

var X, y, V, Z 1nteger

var t i1nteger =

Processing declarations

e Design considerations:
e Does order of declaration matter?

e How is initialization handled?

Initialization order

struct { 1nt x } s;

TNt *sx = &s.X:

Initialization order

Variable-length arrays (VLAS)

int x = 10;

char a[x];

Handling mutual recursion

func p() A
} .

func g() {
p()
]

Handling mutual recursion

func p() A
q() // legal?

;

func g() {
p()
]

Handling mutual recursion

func p() A
= 488 // legal?

;

var X integer

Forward prototypes

void g () . === Function prototype

void p() {
q();

;

: ______ Does the definition
vo1d e () { match the prototype?

p();
]

Processing declarations

* Design considerations:
e \WWhat does the symbol table entry for a forward prototype look like?
e Perform one or two passes
* One pass:
* Collect and process names in order, once
* [woO pass:
 Perform first pass as usual, but don’t recurse into functions

 On second pass, recurse into function bodies, with all symbols
accessible available

Processing statements

e Sandwich processing:
e Recursively process each sub-structure
e EXpressions, scopes

* Consider handling language constructs like break’s
within loops, or return’s

Variable processing

ident (“(“ argList *)” | “[* expr “]” | - field |)

* Regular expression describing the general form of a variable reference
e This form expresses:

* Function invocations

e Single dimension array subscripting

e Multiple sub-structure field lookup

Pointer dereferencing 1

e Multiple repeated iterations of all of the above

Variable processing

(“(“ argList “)” | “[“ expr “]” | “.” field | T)*

* Lookup ident in current ambient symbol table
e Could be:

* Alocal variable

e A formal parameter

e A function/procedure

* The name of a class or module or package

Variable processing

*

| < expr <7 | «» fiett | 1)

 Check that preceding name referred to a function
 Get symbol table entry for that name
* Verify length of argList against formal parameter list

 Check type compatibility & accessibility of each argList with
corresponding formal parameter

 EXpression return type is same as function return type

Variable processing

ident (“(“ argList “)” '

 Check that preceding name referred to an array

 Get symbol table entry for that name
* Verify that the type of expr is suitable to use as an index
 EXpression return type is same as array subscript type

* Consider the types when indexing a multi-dimensional
array...

Variable processing

ident (“(“ argLiSt “)!! | “[“ expr “]!! |
e Check that preceding name referred to something that contains named
sub-fields (think class, struct/union record, package, module, etc.)

* Get symbol table entry for that name

* Lookup the name field, ensuring that it exists and get its symbol table
entry

* Verify that field is visible & accessible

e EXxpression return type is same as declared field type

Variable processing

ident (‘(" argList “)

> | “1“ expr " | «.” field

 Check that preceding thing is of a pointer-to-something
type

 EXpression return type is same as that something

Variable processing

VarRefExpr (name)

FuncCallExpr(callable, args)
SubsExpr (expr, indexer)
FieldExpr (expr, field)
DerefExpr (expr)

Variable processing

C.x.f[1](a)1

DerefExpr (
FuncCallExpr (
SubsExpr (
FieldEXxpr (
FieldExpr (
VarRefExp(°C’),
X,
1),
VarRefExpr(‘17)),
[VarRefExpr(‘a’)]

))

o H H H H H H

(a)
Flil(a)

