
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Semantic analysis

Type equivalence,
compatibility and suitability
• When different types can be used together depends on the context

and is governed by language specific rules

• Type equivalence: when can two objects of two different types be
considered equivalent

• Type compatibility: when can two objects of two different types
be considered compatible

• Type suitability: when can two objects of two different types be
considered suitable for one another

• Assignment usually requires compatibility, expression operands
usually require suitability

Structural & Name Type
Equivalence

typedef struct {
 int A;
 float B;
} X;

typedef X Z;

typedef struct {
 int C;
 float D;
} Y;

X and Y are structurally equivalent, but not name equivalent

X and Z are name equivalent

(therefore structurally equivalent as well)

Type Compatibility
• Type compatibility is used to check if the value of some given type is

compatible with another given type

• Can RHS value of assignment be assigned to LHS?

• Can the value expression for a given function argument be passed as
the corresponding formal argument?

• Same types are compatible, as are name equivalent types

• Different types may be compatible if language supports implicit casts

• Pass a char as an int (widening) or int as char (narrowing, may truncate)

• Signed to unsigned, and vice versa

• Floating point to integer, and vice versa (rounding, loss of precision)

Type Suitability
• Type compatibility is used to check if values can be used

together with some language operator/operation

• Does operand match a unary operator?

• Do both operands match the binary operator?

• Do both operands of a binary operator match each other?

• Do both values of a ternary conditional match eachother?

Type Suitability

not 1 -true

1 + true
false or 2

Not Suitable

Type Suitability

1 == 2
true == false

Suitable!

Not Suitable

 0 == false
 true != 1

Type Suitability

X if C else Y

Are X and Y type suitable?

Can they be unified to a common type?

(if X were float, and Y were integer…)

Visibility & accessibility analysis
• Is the usage of a name legal at a given point in the program, according to

the language scoping rules?

• Design of symbol table data structures should be congruent with
language rules

• Symbol tables per major scope, with link to parent scope, possibly
with access modifiers/conditions

• Typical scoping rules allow names to be shadowed (early declaration
becomes inaccessible), but not necessarily deleted

• Language specific constructs:

• C++ “friend” keyword lets classes access private fields/methods

Visibility & accessibility analysis

class P {
 public int x;
 Private int z;
}

class Q extends P {
 public int y;

 public void M() {
 int z = x + y;
 }
}

Name Kind Type

z var int

Name Kind Type Viz
y var int public
M method … public

Nam
e

Kind Type Viz
x var int public
z var int private

ClassDef

ClassDef

Scope

child-of

Usage analysis
• The application of type equivalence, type compatibility, type suitability,

accessibility and visibility

• Is the use of a name consistent with its definition?

• Is a name used as a constant/variable/type actually a constant/variable/type?

• Is a name used as a scalar actually a scalar? Is a variable used as an array
actually an array, and is the dimensionality of its use compatible?

• Is a name used as a function/procedure actually a function/procedure? Is the
argument list compatible with the formally declared parameters?

• Are the operands for all operators correct for that operator?

• Runtime implications

• Array bounds checking

• Use of uninitialized variables

Usage analysis
type u32 = int
var x int
var y u32
var a [100]bool
func f(p int) int { … }

Statement Error

u32 = 32 Assignment to a type name

f(0) = 1 Assignment to a function return value
x = a Assign array to scalar

x[y] = 1 Array subscript on scalar
x = y.foo.bar Field access on scalar

A = f(x, a[0]) Assign int to bool array element

Wrong # of parameters to f

Performing semantic analysis
• High level overview:

• Recursively AST starting from the top

• Collect declarations and populate symbol tables associated
to the nearest enclosing scope

• Process statements for context and correctness

• Process all expressions, performing name resolution, type
checking and usage analysis

• Optionally replace certain classes of nodes (Ident to Symbol,
for example), and add annotations and useful links throughout

Performing semantic analysis

• Sandwich approach:

• Prepare to handle recursive processing

• Do recursive visitation

• Analyze results afterwards

Processing declarations
• Performed at each scope or language construct that can introduce

new names (function body, class definition, etc.)

• Processing:

• Collect declarations: list of names and associated types

• Lookup each name to check for possible redeclaration

• Add name to symbol table, with associated entry linking to
declaration and all relevant attributes

• Process initial value expression (if present)

• Recursively process sub-structures (such as records and
functions)

Processing declarations

var x, y, y, z integer

var t integer = true

Processing declarations
• Design considerations:

• Does order of declaration matter?

• How is initialization handled?

Initialization order

int x = 10;

int y = x;

struct { int x } s;

int *sx = &s.x;

int x = 10;
char a[x];

Variable-length arrays (VLAs)

Initialization order

func p() {
 …
}

func q() {
 p()  
}

Handling mutual recursion

func p() {
 q() // legal?
}

func q() {
 p()  
}

Handling mutual recursion

func p() {
 x = 488 // legal?
}

var x integer

Handling mutual recursion

void q();

void p() {
 q();
}

void q() {
 p();
}

Forward prototypes
Function prototype

Does the definition
match the prototype?

Processing declarations
• Design considerations:

• What does the symbol table entry for a forward prototype look like?

• Perform one or two passes

• One pass:

• Collect and process names in order, once

• Two pass:

• Perform first pass as usual, but don’t recurse into functions

• On second pass, recurse into function bodies, with all symbols
accessible available

Processing statements

• Sandwich processing:

• Recursively process each sub-structure

• Expressions, scopes

• Consider handling language constructs like break’s
within loops, or return’s

Variable processing

• Regular expression describing the general form of a variable reference

• This form expresses:

• Function invocations

• Single dimension array subscripting

• Multiple sub-structure field lookup

• Pointer dereferencing ↑

• Multiple repeated iterations of all of the above

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing

• Lookup ident in current ambient symbol table

• Could be:

• A local variable

• A formal parameter

• A function/procedure

• The name of a class or module or package

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing

• Check that preceding name referred to a function

• Get symbol table entry for that name

• Verify length of argList against formal parameter list

• Check type compatibility & accessibility of each argList with
corresponding formal parameter

• Expression return type is same as function return type

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing

• Check that preceding name referred to an array

• Get symbol table entry for that name

• Verify that the type of expr is suitable to use as an index

• Expression return type is same as array subscript type

• Consider the types when indexing a multi-dimensional
array…

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing

• Check that preceding name referred to something that contains named
sub-fields (think class, struct/union record, package, module, etc.)

• Get symbol table entry for that name

• Lookup the name field, ensuring that it exists and get its symbol table
entry

• Verify that field is visible & accessible

• Expression return type is same as declared field type

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing

• Check that preceding thing is of a pointer-to-something
type

• Expression return type is same as that something

ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

Variable processing
ident (“(“ argList “)” | “[“ expr “]” | “.” field | ↑)*

VarRefExpr(name)
FuncCallExpr(callable, args)
SubsExpr(expr, indexer)
FieldExpr(expr, field)
DerefExpr(expr)

Variable processing

DerefExpr(
 FuncCallExpr(# C.x.f[i](a)
 SubsExpr(# C.x.f[i]
 FieldExpr(# C.x.f
 FieldExpr(# C.x
 VarRefExp(‘C’), # C
 ‘x’), # .x
 ‘f’), # .f
 VarRefExpr(‘i’)), # [i]
 [VarRefExpr(‘a’)] # (a)
)) # C.x.f[i](a)↑

C.x.f[i](a)↑

