CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu



https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

e Symbol tables

e Semantic analysis



Symbol tables

An identifier is a language token type, while the value of an identifier is a
name (typically a string)

A symbol table maps names to symbols

What language constructs create new names, and when are those names
visible in subsequent parts of the program text?

What information is useful to track for each symbol?
Each language will have its own rules about scoping and symbol visibility:
e Hierarchical

e Parallel



Symbol table entry

Original point of instantiation
Kind: constant, variable, type, procedure/function
Type information:
e Scalar vs array vs routine
e Link to record/class/etc. definition
e For routines: formal parameters and their symbol information, optional return type
Language-specific attributes
Storage size of item
Runtime address (offset within stack)
Visibility modifiers

Uses (optional)



Implementing a symbol table

* Important operations:
e Create a nested scope
e EXit from a scope
e | ookup name in the current scope
e | ookup name according to language scoping rules
* Put a new name-to-symbol entry in the table
e Hierarchical map of names to symbols
e Stack of hash tables

e Or, a hash table of lists



Implementing a symbol table

 Entering into a major or minor scope will create a nested
symbol table

* Maps naturally between enter & exit and push & pop

e |f you perform an /dent-to-Symbol AST transformation, do
you still need the hash table anymore?

e Debuggers depend on knowing what names are visible/
accessible at each point in the program

 Create a new name-to-symbols map anywhere new
identifiers can be introduced



f 1 oat g p ad . Name  Kind —

gpa var p—

main func

lint main(
W% int argc,
char *argv[])

Name Kind Type

argc baram -

argv param char **

Sdehed ) — a2 — o

char *course; Name Kind Type BB

;

course var —



Type tables

e | anguages that support user-defined types require
additional name-to-type mapping tables

e Scoping rules may dictate whether these names appear in
parallel scopes, or alongside other kinds of symbols



Type table entries

e Jypical details:
e Name
e Kind: struct, union, enum, typedef, scalar
e Storage size

e Runtime information



Symbols

Name Kind Type

nt — % int builtin
in . int type char builtin
Lt ’ char  type / char” ptr ‘
struct S {
C h r " name struct symbols

Name Fields

int number:;

'

number Int



Symbols

Name Kind Type

nt — % int builtin
in . int type char builtin
Lt ’ char  type / char” ptr ‘
struct S {
C h r " name struct symbols

Name Fields

int number:;

'

number Int



Symbols Types

int t;  Name _Kind _Type IS Name ___Kind _

t var int int builtin
int type char builtin
struct S { char  type . char* ptr

char *name; R tpe .. < AR struct

int number; struct symbols

' Name  Fields -

typedef
struct S
R;

Name Type

name char*
number Int



C type table design



Memory layout

* A lower level language like C exposes the programmer to
certain machine & memory characteristics

* Jypes have a natural size and typically must obey certain
machine alignment restrictions

e struct’s and union’s inherit the most restrictive alignment
of their members



struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;




struct {
ud a;
ule b;

us2 c;
ucd d:;

16 bytes required to store 15 bytes of information

struct alignment = 8 bytes

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15



struct {
us a;
ucd d;

ule b;
u32 c;




struct {
us a;
ucd d;

ule b;
u32 c;

9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8
- I :



struct {
us a;
ucd d;

ule b;
u32 c;

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

IIIIIII : :



struct {
us a;
ucd d;

ule b;
u32 c;

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

IIIIIII : - il -



struct {
us a;
ucd d;

ule b;
u32 c;

24 bytes required to store 15 bytes of information

struct alignment = 8 bytes

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

IIIIIII : - il -



Semantic analysis



Semantic analysis

e Checking and enforcement of non-syntactic language constraints
 During compilation: static analysis
e At runtime: dynamic analysis

e Kinds of analysis:

Visibility and accessibility
e Type checking

e Proper usage

e Escape

e Range

e Symbol tables typically construct during these analyses



Semantic analysis example

Visibility

Accessibility

Usage

Type

Usage

A
declared(A)?
visible(A)?
access(A)?
write(A)?
variable(A)?
type(A)?

scalar(A)?

assignTo(A, B)?

B
declared(B)?
visible(B)?
access(B)?
read(B)?
variable(B)? | const(B)? function(B)?
type(B)? type(B)? type(B)?
scalar(B)?  scalar(B)? scalar(B)?

params(B)?



Type equivalence,
compatibility and suitability

* When different types can be used together depends on the context
and is governed by language specific rules

* Type equivalence: when can two objects of two different types be
considered equivalent

* Type compatibility: when can two objects of two different types
be considered compatible

* Type suitability: when can two objects of two different types be
considered suitable for one another

* Assignment usually requires compatibility, expression operands
usually require suitability



Type equivalence rules

* Name type equivalence:

 Two types are name equivalent if they derive from the
same definition

* Allows for aliases such as typedef’s
e Structural type equivalence:

* Two types are structural equivalent if their definitions
line up with one another (same structure, same values,
same types)



Name type equivalence

struct S { 1nt foo; };
typedef struct S A;

typedef struct S B;

struct S, A and B are all name type equivalent



Structural equivalence

typedef struct { Jtypedef struct {
int a, int P,

char *b; char *q;
float c; float r;
Y X Py,

X and Y are structurally equivalent



Type equivalence rules

e [ype equivalence checking is used to ensure that pointers
match the data type they are pointing to

e When a pointer is assigned the address-of something
e When a variable is passed by-reference as a parameter

* Type equivalence implies memory layout equivalence



Go: structural copying

type X struct {
F string
G 1nt

;

type Y struct {
F string
G 1nt

}




Type checking



Type this expression




Type this expression




Type this expression

(0 < True) :: boolean




Type check this expression




Type check this expression




Type check this expression




Type this expression

f(x, v, z)




Type check this expression

f(x, v, z)




Type & type check
this expression

func f(a, b, ¢ 1nteger) boolean




QrithExpr.AD

integer"./ \;Iteger?
X @ithExpr.Times

integer’:/ \‘integer?

Yy Z




