CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu



https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

e Abstract Syntax Trees
e |dentifiers and names

e Symbol tables



Abstract Syntax Trees

* An tree-structured intermediate
representation of a program that
abstracts non-essential syntactic
details, while retaining the

fundamental shape of the input @hExpr.@

e (Generated by the parser, consumed
by subsequent analysis phases ¥
X

_ ArithExpr.Ti@
e While parse trees (concrete syntax)
follow the specific productions of the
grammar, the abstract syntax keeps

only the semantically meaningful

concepts Y g




Annotating AST

* ASTs start as trees: single root, directed graph, acyclic
e |t's sometimes useful to annotate the tree with additional graph edges
* Additional book keeping:

* Type information

e Symbols

* Runtime consideration

e Code generation: offsets, labels, stack memory layout, etc.

* Modify in-place or generate a transformed copy in the process



Backlinks



WhileLoop

condition




Other useful links

From break’s to their enclosing loop
From return’s to their enclosing function
From else arms to the initial 1 £ or to sibling else’s

From a nested function to their enclosing parent function
* Nested scopes

From identifier uses to their declarations



ldentifier uses &
declarations

Declare

Ident “x” ) Type “integer”

W & ',} Q
s e -
33
J 4 -
I Qo] ~
~
1 .

.

S

v

Ju—
Ident “x” g

e




From identifiers to symbols

Declare Type “integer”

AssignStmt




From identifiers to symbols

4

| Type “integer”
Y

v

AssignStmt Const 0




Symbol tables

An identifier is a language token type, while the value of an identifier is a
name (typically a string)

A symbol table maps names to symbols

What language constructs create new names, and when are those names
visible in subsequent parts of the program text?

What information is useful to track for each symbol?
Each language will have its own rules about scoping and symbol visibility:
e Hierarchical

e Parallel



Scoping &
symbol visibility



Major & minor scopes

* Major scopes: reserved for significant constructs in the language
* Top level program
* Body of a function/procedure/method
* Body of a class
* Module definition
e Minor scope: occur within major scopes
e Delimited by { and }

* Major scopes typically a unit of resource allocation, while minor scopes can be collapsed
together

 Nested scopes can hide access to names from earlier scopes (but they don’t alter the
original name/symbol)



var foo 1nteger

foo




Tnteger




var foo integer
foo =

!

var Too integer
foo =

;

print foo




Tnteger

var Too boolean
Tfoo = true

;
print




Name resolution

Each scope maintains a list of locally declared identifiers,
or names, mapped to symbol table entries

e At each point in the program, certain names are Iin
scope and visible

Typically search upwards through enclosing scopes to
find origin of declaration

Qualified names allow searching within another contexts

Importing brings names into scope from other contexts



Qualified names
(hierarchical scoping)

System.out.println(
“Hello World!”)




Qualified names
(hierarchical scoping)

System.out.println(
“Hello World!”)




Importing names

Tmport mypkg.Foo;

Foo f = new Foo();




Importing names

Tmport mypkg.Foo;

Foo T = new Foo();




public, private, protected

class Parent {
public int anyone;
private int only me;
protected int children;

;

class Child extends Parent {
void m() {
nyone
nildren
Nly me

488; // allowed
488; // allowed
-1:; // ERROR!




Parallel scopes

e Some languages define multiple contexts in which the
same name can be used, without conflict

e (C: struct, enum, union

e Not C++

e Haskell: data types vs data constructors



Parallel scopes — C




Parallel scopes — Haskell




Symbol table entry

* QOriginal point of instantiation
e Type information:
e Scalar vs array vs routine
* Link to record/class/etc. definition
e For routines: formal parameters and their symbol information
* For function: return type information
e Visibility modifiers

e Uses (optional)



Implementing a symbol table

* Core operations:
e Enter into a new scope
e EXit from a scope
e Lookup if a name exist in the current immediate scope
e [Lookup if a name exist in the current or a parent scope
* Put a new name-to-symbol entry in the table

e Multi-level map of names to symbols
e Stack of hash tables

e Or, a hash table of lists



Implementing a symbol table

e New levels in the symbol table with typically begin with
the start of major and minor scopes

e Maps naturally between enter & exit and push & pop

e If you perform an Ident-to-Symbol AST transformation, do
you still need the hash table anymore?

e Debuggers depend on knowing what names are visible/
accessible at each point in the program



