
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Abstract Syntax Trees

• Identifiers and names

• Symbol tables

Abstract Syntax Trees
• An tree-structured intermediate

representation of a program that
abstracts non-essential syntactic
details, while retaining the
fundamental shape of the input

• Generated by the parser, consumed
by subsequent analysis phases

• While parse trees (concrete syntax)
follow the specific productions of the
grammar, the abstract syntax keeps
only the semantically meaningful
concepts

Annotating AST
• ASTs start as trees: single root, directed graph, acyclic

• It’s sometimes useful to annotate the tree with additional graph edges

• Additional book keeping:

• Type information

• Symbols

• Runtime consideration

• Code generation: offsets, labels, stack memory layout, etc.

• Modify in-place or generate a transformed copy in the process

Backlinks

WhileLoop
Expression

…
Stmt

…
Stmt

Break

condition

body

Other useful links
• From break’s to their enclosing loop

• From return’s to their enclosing function

• From else arms to the initial if or to sibling else’s

• From a nested function to their enclosing parent function

• Nested scopes

• From identifier uses to their declarations

Declare Ident “x” Type “integer”

AssignStmt

Ident “x”

Const 0

Identifier uses &
declarations

From identifiers to symbols

Declare Ident “x” Type “integer”

AssignStmt

Ident “x”

Const 0

From identifiers to symbols

Declare

Symbol “x”

Type “integer”

AssignStmt Const 0

Tables…

Symbol tables
• An identifier is a language token type, while the value of an identifier is a

name (typically a string)

• A symbol table maps names to symbols

• What language constructs create new names, and when are those names
visible in subsequent parts of the program text?

• What information is useful to track for each symbol?

• Each language will have its own rules about scoping and symbol visibility:

• Hierarchical

• Parallel

Scoping &
symbol visibility

Major & minor scopes
• Major scopes: reserved for significant constructs in the language

• Top level program

• Body of a function/procedure/method

• Body of a class

• Module definition

• Minor scope: occur within major scopes

• Delimited by { and }

• Major scopes typically a unit of resource allocation, while minor scopes can be collapsed
together

• Nested scopes can hide access to names from earlier scopes (but they don’t alter the
original name/symbol)

var foo integer

foo = 0

var foo integer

foo = 0

var foo integer
foo = 0
{
 var foo integer
 foo = 1
}
print foo

var foo integer
foo = 0
{
 var foo boolean
 foo = true
}
print foo

Name resolution
• Each scope maintains a list of locally declared identifiers,

or names, mapped to symbol table entries

• At each point in the program, certain names are in
scope and visible

• Typically search upwards through enclosing scopes to
find origin of declaration

• Qualified names allow searching within another contexts

• Importing brings names into scope from other contexts

Qualified names
(hierarchical scoping)

System.out.println(
 “Hello World!”)

System.out.println(
 “Hello World!”)

Qualified names
(hierarchical scoping)

Importing names

import mypkg.Foo;

…
 Foo f = new Foo();

Importing names

import mypkg.Foo;

…
 Foo f = new Foo();

public, private, protected
class Parent {
 public int anyone;
 private int only_me;
 protected int children;
}

class Child extends Parent {
 void m() {
 anyone = 488; // allowed
 children = 488; // allowed
 only_me = -1; // ERROR!
 }
}

Parallel scopes

• Some languages define multiple contexts in which the
same name can be used, without conflict

• C: struct, enum, union

• Not C++

• Haskell: data types vs data constructors

Parallel scopes — C

struct s {
 int x;
};
struct s s;
s.s = 488;

data Atom = Atom;

c :: Atom;
c = Atom;

Parallel scopes — Haskell

Symbol table entry
• Original point of instantiation

• Type information:

• Scalar vs array vs routine

• Link to record/class/etc. definition

• For routines: formal parameters and their symbol information

• For function: return type information

• Visibility modifiers

• Uses (optional)

Implementing a symbol table
• Core operations:

• Enter into a new scope

• Exit from a scope

• Lookup if a name exist in the current immediate scope

• Lookup if a name exist in the current or a parent scope

• Put a new name-to-symbol entry in the table

• Multi-level map of names to symbols

• Stack of hash tables

• Or, a hash table of lists

Implementing a symbol table

• New levels in the symbol table with typically begin with
the start of major and minor scopes

• Maps naturally between enter & exit and push & pop

• If you perform an Ident-to-Symbol AST transformation, do
you still need the hash table anymore?

• Debuggers depend on knowing what names are visible/
accessible at each point in the program

