
CSC488/2107S Winter 2019

Compilers & Interpeters

https://www.cs.toronto.edu/ ˜csc488h/

Week 5 notes c©David Wortman & Marsha Chechik 2019

0

Simple Generic Compiler

Source
Program

Lexical
Analysis

Analysis
Syntax

Semantic
Analysis

Characters

Lexical
Tokens

Program
Object

Generation
Code

Table

Symbol
Intermediate
Language

Code
Machine

Parse Tree

8

Source statement

Lexical analysis

if x < y then z = 1 else z = 2 fi

Syntax analysis

if x < y then z = 1 else z = 2 fi
reserved identifier operator reserved identifier operator integer reserved

statement

statement

if then else statement

statement

assignmentassignment

identifier

variable variable variable constant variable

expression expression

comparison

expression

expression

if x < y then z = 1 else z = 2 fi
reserved identifier identifieroperator

identifier operator integer reserved

identifier operator integer reservedreserved identifier operator integer reserved

constant

expression

9

Semantic analysis

if x < y then z = 1 else z = 2 fi

integer variable

integer expression

integer variable

integer expression

comparisoninteger

boolean expression

integer variable integer constant

integer expression

assignment

integer variable integer constant

integer expression

integer assignmentinteger

Code Generation

if x < y then z = 1 else z = 2 fi

load r1,x
load r2,y
less r1,r2
brfalse L23

load r1,=1
loadaddr r2,z
store r2,r1
branch L24

L23:

L24:

load r1,=2
loadaddr r2,z
store r2,r1

OK

OK

OK OK

OKOK

10

Syntax Analysis – Good Language Design

• Use reserved words not keywords

• Design statements and declarations for ease of parsing

e.g. statements start with distinct reserved words.

• Use sufficient bracketing so endings are clear.

ambiguous return and return expression

unambiguous return and return (expression)

Semicolons as statement terminators are good.

• Unambiguous syntax

ambiguous: if expression then statement else statement

unambiguous: if expression then statement else statement fi

• Design for parsing with one token look ahead.

82

Syntacticallly Challenged Language - Python

The Python programming language uses indentation to mark the beginning and end of

blocks. This includes delimiting the bodies of functions and the bodies of control

statements.

Python Description

def calc(x) ; define function calc

n = x * x + 7 assignment statement in calc

return n * n + 5 return statement in calc

end of calc

def map (n , m) define function map

if n < m : begin body of map

i = n - m body of if statement

j = n + m if statement continues

if n > m : start new if statement

i = n * m + 7 body of if statement

j = i * 2 + 5 if statement continues

return k - 17 end if statement

end of map

print map(17, 23) start of main program

83

Since the scanner is the only part of the compiler that knows about indentation

most of the heavy lifting should be done there. One possible solution.

• Define two lexical tokens <INDENT> and <EXDENT> that are emitted by

the scanner whenever the level of indentation changes.

• Define the compilers parsing grammar in terms of these lexical tokens, e.g.

body → <INDENT> statements <EXDENT>

statement → <INDENT> statements <EXDENT>

• Suppress these invented tokens in any compiler error messages

84

Shift Reduce Parsing

Bottom Up - LR(k), SLR(k), LALR(k)

• Parser Model

ParserInput
Output

Stack

• Parser Actions

Shift Next input symbol is pushed onto the stack

Reduce A sequence of symbols (the handle) starting

at the top of the stack is reduced using a production

rule to replace the symbols with one nonterminal symbol.

Accept Successful end of parse.

Error Call recovery routine to handle syntax error.

• Choice of actions is based on the contents of the stack (the left context) and the next

k input tokens (k-symbol lookahead).

•

118

• A handle is the right hand side (RHS) of some rule in the grammar. Bottom up

parsing allows more than one rule to have the same RHS iff the rules can be

distinguished using the left context and k-symbol lookahead.

• Given a grammar rule: A → B c D

a possible Reduce action would be

D
c

B
...

A

parse stack

h
a
n
d
l
e

.

.

.

• Issue: efficiently detecting when a handle is present on top of the parse stack.

• Issue: deciding which reduction to perform.

119

LR(k) Parsing

• The contents of the parser stack (left context) represents a string from which

the past input can be derived.

• Inputs are stacked until the top elements in the stack (the handle) are a

complete alternative (RHS) for some rule.

• When a handle is recognized, a reduction is performed and the handle on the

stack is replaced by the nonterminal symbol (LHS) of the applicable rule.

• Initial parser stack is ▽ and parsing continues until the stack contains

S ▽ and the next input is $

• At each stage the the top elements in the stack represent the initial portion of

one or more alternative rules.

The next input symbol may narrow the number of possible alternatives.

If the number of alternatives is narrowed to zero, a syntax error has occurred.

120

• Finally, an input symbol is stacked that completes one or more alternatives.

If there is more than one alternative, the language is not LR(0).

• At this point the next k input symbols must provide enough information to

distinguish among the alternatives. If it doesn’t, the language isn’t LR(k).

• For LL(k) we had to know at the start of an alternative, given k input symbols

which alternative to choose.

For LR(k) we do not need to know which alternative to choose until we reach

the end of a rule. Then the next k input symbols must be sufficient to decide if

a reduction can be performed.

• Parsing decisions can be made later in an LR(k) parser than in an LL(k)

parser. This is the reason that L (LL(1)) ⊂ L (LR(1))

A B C D
LL(k) parsing
decsion here

LR(k) parsing
decision here

LR(k) parsers effectively perform a rightmost derivation in reverse

121

Rightmost Derivation Example

For the grammar:

S → A B

A → a A

| a

B → B b

| b

Rightmost derivation of a a a b b

0 S

1 → A B

2 → A B b

3 → A b b

4 → a A b b

5 → a a A b b

6 → a a a b b

Parse Tree

Aa

Aa B b

b

B
A

S

a

Rightmost derivation in reverse

6 a a a b b

5 → a a A b b

4 → a A b b

3 → A b b

2 → A B b

1 → A B

0 → S

122

LR(k) Definition. The symbol ⇒∗
rm specifies a rightmost

derivation

• LR(k) parsers are the most powerful class of deterministic bottom up parsers

using k-symbol lookahead.

If a grammar G can be parsed by any deterministic parser with k-symbol

lookahead, then it can be parsed by an LR(k) parser.

• A grammar G is LR(k) if and only if the conditions

1. S ⇒∗
rm α A w ⇒ α β w Identical prefix α β

2. S ⇒∗
rm γ B x ⇒ α β y

3. Firstk(w) = Firstk(y) Identical lookahead

imply that α A y = γ B x

• This means that a reduction A → β can be performed whenever

1) α β is on top of the parse stack (α is the left context)

and 2) the k-symbol lookahead is Firstk(w).

⇒ the parser always has enough information to make a parsing decision.

123

LR(1) Example

Rule Grammar Input Tokens

1 L → L , E

2 → E a , b $

3 E → a

4 → b Note left recursion in grammar ⇒ not LL(k)

Stack LR(1) Table Stack Snapshots

Confg a b , $ St# Parse State Input Action

▽ Shift a Shift b ▽ ▽ a Next

Next Next Error Error 0 a ▽ 1 ▽ ,

a ▽ Error Error Reduce 3 Reduce 3 1 E ▽ 3 ▽ ,

b ▽ Error Error Reduce 4 Reduce 4 2 L ▽ 4 ▽ , Next

E ▽ Error Error Reduce 2 Reduce 2 3 , L ▽ 5 4 ▽ b Next

L ▽ Shift , b , L ▽ 7 5 4 ▽ $

Error Error Next Accept 4 E , L ▽ 8 5 4 ▽ $

, L ▽ Shift a Shift b L ▽ 4 ▽ $ Accept

Next Next Error Error 5

a , L ▽ Error Error Reduce 3 Reduce 3 6

b , L ▽ Error Error Reduce 4 Reduce 4 7

E , L ▽ Error Error Reduce 1 Reduce 1 8

Define: Reduce j , use grammar rule j to replace handle on top of parse stack.

124

LR(1) Parse Tables

• Some rows in table are the same as others , e.g. rows 1/6 , 2/7 in the

previous slide. To reduce table size these rows can be merged and assigned

multiple indices.

• If the grammar is right recursive , the number of different parse stacks is

infinite , but the number of different rows is finite (bounded by number of

actions × number of columns) so we must merge the rows that are the

same.

• Don’t want the inefficiency of pattern matching the top elements in the stack

against alternative stack configurations.

We want parsing action to be determined by the single top element on the

stack and a single input symbols (as in LL(1)).

• Assign a state number to each row in the table and stack the state number as

a synonym for a complete stack configuration.

The state number is labeled St# in the previous Slide.

Top state on parse stack represents entire stack configuration

125

• Redefine: Shift i

Stack input symbol Advance input Go to State i

• After a Reduce , need a list of states to restart in , the new state table.

With this table we don’t need to represent the stack configurations directly in

the parser tables.

• Redefine Reduce i

– Remove handle by doing popl where l is the length of the alternative i.

Need a table giving the length of each alternative.

This popping uncovers some state. Note state 0 is never popped.

– Push a new state where new state is a function of top item in the state stack and
the nonterminal symbol that is being reduced to (the LHS of alternative i)
State 0 on top signifies the empty stack. For example in the next slide:

Reducing Top state Push state From state Rule(s)

E 0 3 1 , 2 3 , 4

E 5 6 1 , 2 3 , 4

L 0 4 3 2

L 6 4 6 1

126

LR(1) Example Revisited

Grammar Condensed Parse Table

Stack St# a b , $

1 L → L , E ▽ 0 Shift 1 Shift 2

2 → E a ▽ a , L ▽ 1 Reduce 3 Reduce 3

3 E → a b ▽ b , L ▽ 2 Reduce 4 Reduce 4

4 → b E ▽ 3 Reduce 2 Reduce 2

L ▽ 4 Shift 5 Accept

, L ▽ 5 Shift 1 Shift 2

E , L ▽ 6 Reduce 1 Reduce 1

Example: parse of a , b $

Old Stack State Stack Input Action

▽ 0 a Shift 1

a ▽ 1 0 , Reduce 3

E ▽ 3 0 , Reduce 2

L ▽ 4 0 , Shift 5

, L ▽ 5 4 0 b Shift 2

b , L ▽ 2 5 4 0 $ Reduce 4

E , L ▽ 6 5 4 0 $ Reduce 1

L ▽ 4 0 $ Accept

127

Theoretical LR(1) Table Construction

• for all input symbols (Σ ∪ { $ }) /* table columns */

for all possible stack configurations /* table rows */

/* Fill one parse table entry */

Compute action(parseStackConfiguration , inputSymbol)

/* Compute one next state table entry */

Compute nextState(parseStackConfiguration , inputSymbol)

• There are a finite number of possible stack configurations for a finite grammar.

• Use parser state numbers to encode stack configurations so decisions can be

made based on state number instead of a pattern match on the stack.

• LR(1) tables for real grammars are very large due to the large number of

possible stack configurations

e.g. > 1240 states and > 10 , 000 table entries for for Pascal.

• For LR(k) iterate the columns over Σ k ∪{ $ }k

128

Practical LR(1) Parse Table Construction

1. First Compute LR(0) tables:

(a) LR(0) uses no lookahead

(b) Apply Closure and Completion to enumerate all possible stack

configurations

(c) Note Conflicts in tables when lookahead is needed.

Rules for which grammar is not LL(0)

2. Upgrade From LR(0) to LR(1)

• Use exact lookahead to resolve LR(0) table conflicts

• Split states as required to force unique left context and lookahead for

every conflicting rule.

3. SLR – Simple LR , uses Follow sets instead of lookahead to resolve LR(0)

conflicts.

4. LALR – LookAhead LR , use Item lookahead to make specific parsing

decisions.

129

LR(0) Table Construction

• Each parser state in an LR parser is associated with a unique item set of

LR(0) items (partially completed phrases).

The LR(0) item represents what has been seen prior to entering the state.

• Define: LR(0) item

A LR(0) item is a marked production rule

G → α • β γ

with α,γ in (N ∪ Σ)∗ and β in (N ∪ Σ)

An LR(0) item represents a partial phrase ,

α seen so far β γ to be seen

β is a single terminal or nonterminal symbol

• An LR(0) item with the bookmark
•

at the right end. e.g.

G → α β γ •

is a REDUCE production , α β γ is the handle , reduce to G

130

• To generate an LR(0) table , start with an item set that contains all of the

productions with a marker at the start of the right hand side of each rule.

This is the start state of the parser (nothing has been see yet).

• Generate additional item sets (parser states) by applying closure and

completion until all item sets have been generated.

Derive parser state transitions from the item sets.

• Define: closure

if
•

is immediately to the left of a nonterminal symbol B

Add to the item set all new LR(0) items such that

B is the left hand side of a rule , i.e. B → • ω

• Define: completion

Collect together in a new item set all LR(0) items

that have the same symbol after the
•

(e.g. β)

Complete by moving the
•

past the symbol , e.g. G → α β • γ

if β is a terminal symbol then this corresponds to SHIFT β

• Save space by eliminating duplicate configuration sets as they are generated.

131

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

132

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

133

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

134

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

3 : { E → a
• }

135

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

3 : { E → a
• }

4 : { E → b
• }

136

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

3 : { E → a
• }

4 : { E → b
• }

5 : { L → L , •
E E → •

a E → •
b }

137

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

3 : { E → a
• }

4 : { E → b
• }

5 : { L → L , •
E E → •

a E → •
b }

6 : { L → L , E
• }

138

LR(0) Table Construction Example

Grammar:

1: L → L , E

2: → E

3: E → a

4: → b

• Augment the set of productions with the rule

0 : Accept → L $

• Item sets:

0 : { Accept → •
L $ L → •

L , E L → •
E E → •

a E → •
b }

1 : { Accept → L
•

$ L → L
• , E }

2 : { L → E
• }

3 : { E → a
• }

4 : { E → b
• }

5 : { L → L , •
E E → •

a E → •
b }

6 : { L → L , E
• }

7 : { Accept → L $
• }

139

LR(0): State Machine view

2

1

6

5

0

4

3 La

a E

b

,

b

7
E

$

Grammar Parse table

0 Accept → E $ St# Action

1 L → L , E 0 Shift

2 → E 1 Shift

3 E → a 2 Reduce 2

4 → b 3 Reduce 3

4 Reduce 4

5 Shift

6 Reduce 1

7 Accept

140

LR(0) Parse Table Construction

• s - set of LR(0) items (table row)

• Building parse table P(s):

– {If B → ρ • ∈ s and B → ρ is numbered i

then Reduce i }

– {If A → α • aβ ∈ s for terminal symbol a

then Shift

else /0}

• If ∀s· | P(s) |= 1 , the grammar is LR(0).

141

LR(0) Conflict Diagnosis

• The LR(0) parse table construction has a conflict when it trys to assign more

than one value to the parse table entry for some state.

– shift/reduce conflicts Two alternatives exist:

– Shift the incoming terminal symbol onto the stack

– Reduce the top of the stack using some rule

– reduce/reduce conflicts. The right hand side of two or more rules match the

handle on top of the stack.

• Conflicts may arise because the grammar is ambiguous or because the parse

table construction method isn’t powerful enough.

• LR(0) conflicts are resolved by using some form of lookahead, i.e. using the

next k input symbols to resolve the conflict. Usually k = 1 .

• Lookahead only matters in cases where the
•

is at the right end of a

production.

Use the lookahead sets to decide which of several productions to apply.

Lookahead sets for each state and production must distinguish productions

uniquely.

142

• There are several strategies, e.g. SLR(k), LALR(k) and LR(k) for using

lookahead to resolve LR(0) conflicts. These strategies differ

– in how lookahead information is used

– in the size of the resultant parse tables

– in the complexity of the table building algorithm

• SLR(k) (Simple LR) uses Followk to resolve conflicts.

• LALR(k) (LookAhead LR)

Build LR(k)

Merge all conflicting states that differ only in their lookahead.

Lookahead can then be used to make the parsing decision for these states.

• LR(K) Construct LR(0) states, then augment with lookahead.

May require splitting states to force unique actions for a given lookahead.

May result in a very large number of states.

143

Example 2 – not LR(0)

Grammar:

S → E $

E → E + T | T

T → T ∗ P | P

P → id | (E)

Item sets:

0 : { S →
•

E $, E →
•

E + T , E →
•

T , T →
•

T ∗ P , T →
•

P , P →
•

id , P →
•

(E)}

1 : { S → E
•

$, E → E
•

+ T}

2 : {S → E $
•

}

3 : {E → E +
•

T , T →
•

T ∗ P , T →
•

P , P →
•

id , P →
•

(E)}

4 : { T → P
•

}

5 : { P → id
•

}

6 : {P → (
•

E) , E →
•

E + T , E →
•

T , T →
•

T ∗ P , T →
•

P , P →
•

id , P →
•

(E) }

7 : { E → T
• , T → T

•
∗ P}

8 : { T → T ∗
•

P , P →
•

id , P →
•

(E) }

9 : { T → T ∗ P
•

}

10 : { P → (E)
•

}

11 : { E → E + T
• , T → T

•
∗ P }

12 : { P → (E
•

) , E → E
•

+ T }

144

LR(0) State Machine for Example 2

0

9

12

5
id

T

+

)E
(

(

1

to state 5id

(

*T

id to state 5

(

T *+E
3 to state 8

6

P

P
to state 4

to state 6

8 P

to state 6

4

to state 3

10

to state 7

P
to state 4

id

2

$

7

11

• Shift/Reduce conflicts in states 7 and 11 Reduce to E or shift *

• Solution: Have more states (i.e., split states 7 and 11!)

145

Lookahead and Follow Sets

• Begin with LR(0) but augment with lookahead L ∈ Σ ∪ { $ } ∪ {λ}

• Define: Lookahead Set

The lookahead set for a production A → α is the set of terminal symbols

that can legally follow A or α during a rightmost canonical parse.

• Define: Follow Set

For any nonterminal symbol A the set Follow(A) is the set of terminal

symbols that can legally follow A in a sentential form during any parse.

• Therefore lookahead(A) ⊂ f ollow(A)

Lookahead sets provide more decision making power than Follow sets.

148

Computing LR(1) Lookahead Sets

• For each marked production the lookahead sets are calculated using closure.

If A → α • B β { LookAhead } is a configuration item and we are adding

B → • γ { newLookAhead } to the configuration set then

newLookAhead = f irst(β) β is not nullable

newLookAhead = f irst(β) ∪ LookAhead β is nullable.

• For a marked production obtained by moving a marker past a terminal

symbol, the lookahead set is unchanged.

Example

Lookahead Lookahead

0 S →
•

E $, { λ } E →
•

E + T, { $ +}

E →
•

T, { $ + } T →
•

T ∗ P, { $ + ∗}

T →
•

P, { $ + ∗} P →
•

id, { $ + ∗}

P →
•

(E), { $ + ∗ }

7 E → T
•

, { $ + } T → T
•

P, { $ + ∗ }

11 E → E + T
•

, { $ + } T → T
•

∗ P, { $ + ∗}

19 E → T
•

, {) + } T → T
•

P, {) + ∗ }

20 E → E + T
•

, {) + } T → T
•

∗ P, {) + ∗}

149

Example LR(1) Statemachine

0 11

9

12

18

17

19

14

to state 10
to state 14P

id

to state 14P

15

20

10
5

id

T

+

)E(

1

to state 5id

(

*T

id to state 5

(

T *+E
3 to state 8

6

7

P

P
to state 4

to state 6

8 P

to state 6

4

P

2

$

)

id

13

)

to state 19T

T

to state 10id

(

E

16
)

+ to state 17

21

*

*

22
P

id

150

Building LR(1) Tables

• Building parse table P(s,a):

– {If B → ρ • , { a } ∈ s and B → ρ is numbered i then Reduce i}

– {If A → α • aβ , {a} ∈ s for terminal a, then Shift else /0}

• If ∀s,∀a· | P(s,a) |= 1, the grammar is LR(1).

For our example: 23 states instead of 13

State Lookahead

+ ∗ id () $

0 S S

1 S A

2

3 S S

4 R5 R5 R5

5 R6 R6 R6

6 S S

7 R3 S R3

8 S S

9 R4 R4 R4

10 R6 R6 R6

11 R2 S R2

State Lookahead

+ ∗ id () $

12 S S

13 R7 R7 R7

14 R5 R5 R5

15 R7 R7 R7

16 S S

17 S S

18 S S

19 R3 S R3

20 R2 S R2

21 S S

22 R4 R4 R4

151

LALR(1) Parsing

• LALR(1) differs from LR(1) in that states with identical reductions but different

lookahead sets are merged in LALR(1) and kept distinct in full LR(1).

Goal: merge non-essential LR(1) states

• Construct LR(1) table, then merge states (table rows) with the same

reductions.

• Define Cognate(s′):

Those states with the same table row as s′, union lookaheads.

Example (from LR(1) table in Slide 151):
LALR(1) cognate 0 1 2 3 4 5 6 7 8 9 10 11 12

LR(1) rows 0 1 2 3,17 4,14 5,10 6,18 7,19 8,21 9,22 13,15 11,20 12,16

• Building parse table P(s,a):

– {If B → ρ •
, {a} ∈ Cognate(s) and B → ρ is numbered i then

Reduce i}

– {If A → α • aβ ∈ s for terminal a, then Shift else /0}

• If ∀s,a· | P(s,a) |= 1, the grammar is LALR(1).

152

LALR(1) Example (Cont’d)

State 7:

E → T
•

, {), $, +}

T → T
• ∗ P, {), $, +, ∗}

State 11:

E → E + T
•

, {), $, +}

T → T
• ∗ P, {), $, +, ∗}

Thus, in both cases, reduce on {), $, +}, shift on ∗.

Action table (same as SLR(1))

State Lookahead

+ ∗ id () $

0 S S

1 S A

2

3 S S

4 R5 R5 R5 R5

5 R6 R6 R6 R6

6 S S

State Lookahead

+ ∗ id () $

7 R3 S R3 R3

8 S S

9 R4 R4 R4 R4

10 R7 R7 R7 R7

11 R2 S R2 R2

12 S S

153

Parser Error Recovery

• LL(k) and LR(k) parsers have the valid prefix property:

if no error has been detected then

the input thus far is a valid prefix of one or more programs.

This is a consequence of processing the input token stream strictly left-to right

• Both kinds of parsers can give error messages in terms of input symbols

without mentioning the grammar (i.e. names of nonterminal symbols)

• Just look along current row of parse table for non-error entries and list the

column headings.

• Changing the parser stack can cause problems in later compiler phases, e.g.

compiler internal data structures may be left in an inconsistent state.

If and only if the parser has the valid prefix property, we can avoid changing

the parser stack.

154

Syntax Error Repair

• Goal: transform syntactically incorrect program into the closest correct

program, mainly to be able to continue parsing.

Try to maximize the number of useful error messages per compilation.

• Measure of closeness: smallest number of changes. For example:

insert 1 token or delete 1 token or change 1 token.

• Problems

– closest correct program may not be unique e.g. delete begin or insert end ?

– Algorithms to find a closest correct program are non-linear.

– Any measure of closeness may not give the intuitively closest program in all cases.

Examples

PL/I DOWHILE(I = 1); ⇒ DOWHILE(I) = 1 ;

Should be ⇒ DO WHILE(I = 1) ;

Turing gut S ⇒ get S

⇒ put S

155

Syntax Error Repair Strategy

• General strategy: isolate the error in a replaceable phrase. Replaceable

implies that the parse can continue.

• Making the closest correction may require changing the parser stack.

Example:

A = B then I = 1 else I = 0

The closest correction would be to insert an if and compile A = B as a

boolean expression. But it may have already been compiled as an

assignment statement before we know about the error.

• Three (of many) possible strategies are the recovery token strategy, the panic

strategy and spelling correction.

156

Syntax Error Repair Strategy

• Recovery token repair strategy

– For each row in the table, one input token is designated as the recovery token.

– Reserved words, identifiers, numbers and strings are long tokens.

All other tokens are short tokens

– if the incorrect token is long and the recovery token is short

insert the recovery token in front of the input.

– Otherwise, replace the current input symbol with the recovery token.

• Panic repair strategy

– Some tokens are designated as hard tokens. For example ; , end

All other tokens are soft

– Discard input up to and including the first hard token.

– Pop the parser stack down to a corresponding token or state.

• Spelling correction strategy:

– Replace identifier that is close to a reserved word with the reserved word.

157

Parsers for Compilers – Recursive Descent, LL(1) and LR(1)

• Almost all compilers use Recursive Descent, LL(1) or LALR(1)

• LALR(1) is more powerful than LL(1), but LL(1) may be strong enough.

• If you have a parser generator, use it.

• If you have both LL(1) and LALR(1) parser generators, use LALR(1)

• If you don’t have a parser generator, use Recursive Descent.

Or try to manually make the grammar LL(1) and build a simple LL(1) parser

If you don’t have a parser generator do not try and build an LALR(1) parser from

scratch.

• There are well designed and thoroughly tested open source parser generators for both

LL(1) and LALR(1).

• If you’re building a scanner/parser for an ugly or complicated language (i.e. C++, Java,

Fortran), consider buying an off the shelf compiler front end from a specialist compiler

company

158

