
Answering Questions about LL (1) Grammars

Peter McCormick

pdm@cs.toronto.edu

February 27, 2015

1 De�nitions

In the following definitions and rules, we will use these conventions:

• Terminals are represented by lower case Roman letters (t, x, y, z)

• Non-terminals are represented by capitalized Roman letters (A,B,X, Y)

• Greek letters (α, β, γ) represent strings that range over both terminals and
non-terminals (such as AwX t) and can include the empty string λ

• X ⇒+ α means that there is a valid sequence of derivations starting from
the non-terminal X to the string α

1.1 Nullable

α is nullable iff α⇒∗ λ

1.2 First Sets:

First (z β) = {z} z is a terminal symbol
First (λ) = {} (the empty set)

First (Bγ) = First (B) (if B is not nullable)
= First (B) ∪ First (γ) (if B is nullable)

1.3 Follow Set Construction Rules

Starting from initially empty follow sets, iteratively apply these rules until the
sets no longer change.
#1. If S is the goal symbol Add {$} to Follow (S)
#2. If S ⇒+ αX Add {$} to Follow (X)
#3. If S ⇒+ αX tβ Add {t} to Follow (X)
#4. If S ⇒+ αXY β Add First (Y) to Follow (X) (if Y is not nullable)

Add First (Y) ∪ First (β) to Follow (X) (if Y is nullable)
#5. If X → αY Add Follow (X) to Follow (Y)

1

1.4 Predict Sets for LL (1) Grammars

Given a non-terminal A defined with several alternate productions:
A → α1

→ α2

. . .
→ αn

The predict set for each production A→ αi is defined as
Predict (A→ αi) = First (αi) (if αi is not nullable)

= First (αi) ∪ Follow (A) (if αi is nullable)

1.5 Factoring Out Repeated Pre�xes

For a prospective LL (1) grammar, a repeated common prefix in alternate pro-
ductions is problematic because the predict sets of the alternatives are not dis-
joint. For example, in the definition of

A → B α

→ B β

an LL (1) parser could not distinguish between the two alternatives for A
since

Predict (A→ B α) = First (B α)

(if B is not nullable)
= First (B)

= First (B β)

= Predict (A→ B β)

A similar argument holds even when B is nullable (why?)
Fortunately a mechanical transformation can alleviate this.

2

Given a non-LL (1) definition of the form

X → αβ1

→ . . .

→ αβn

→ σ1

→ . . .

→ σm

The common prefix can be factored out into additional helper non-terminals:

X → αXtail

→ σ1

→ . . .

→ σm

Xtail → β1

→ . . .

→ βn

1.6 Factoring Out Left Recursion

Left recursion is similarly not directly expressible in LL (1) grammars, but a
slightly more elaborate transformation can rectify this.

For a non-LL (1) left recursive definition of the form,

X → X α

→ σ1

→ . . .

→ σk

break the recursion in the first production by transforming it into

X → σ1Xtail

→ . . .

→ σkXtail

Xtail → αXtail

→ λ

Repeat this process until all left recursive productions are removed.
For example, given the definition

3

X → X α1

→ X α2

→ β3

→ . . .

→ βk

After the first transformation,

X → X α2X1

→ β3X1

→ . . .

→ βkX1

X1 → α1X1

→ λ

Then after the second,

X → β3X1X2

→ . . .

→ βkX1X2

X1 → α1X1

→ λ

X2 → α2X1X2

→ λ

Try applying this procedure to E → E + T |E − T |T .

2 Example

Consider the following grammar:

S → S z A

→ z B

→ B

A → y A

→ w

B → B xA

→ AyA

→ A

4

There are two clues that tell us that these definitions do not constitute a
valid LL (1) grammar:

1. In the last two productions for B, B → AyA and B → A, they have a
common prefix of A.

2. The left recursion in the productions S → S z A and B → B xA.

We will apply the transformation procedures and verify that the resulting gram-
mar is LL (1).

First we factor out the common prefix in the B productions:

B → B xA

→ BheadBtail

Bhead → A

Btail → y A

→ λ

After simplifying and a rename, the grammar has become:

S → S z A

→ z B

→ B

A → y A

→ w

B → B xA

→ AB1

B1 → y A

→ λ

Next we break up the left recursive productions for S and B:

S → z B S1

→ B S1

S1 → z AS1

→ λ

A → y A

→ w

B → AB1B2

B1 → y A

5

→ λ

B2 → xAB2

→ λ

We note that S1, B1 and B2 are nullable, since their definitions directly
include → λ productions. If there had been a production X → S1, it too would
be nullable by transitivity, since X ⇒ S1 ⇒ λ.

We compute the First sets for each non-terminal:

First (S) = First (z B S1) ∪ First (B S1)

= {z} ∪ First (B)

(since B is not nullable)
First (S1) = First (z AS1) ∪ First (λ)

= {z} ∪ {} = {z}
First (A) = First (y A) ∪ First (w)

= {y} ∪ {w} = {w, y}
First (B) = First (AB1B2)

= First (A)

(since A is not nullable)
= {w, y}

First (B1) = First (y A) ∪ First (λ)
= {y}

First (B2) = First (xAB2) ∪ First (λ)
= {x}

Finally, First (S) = {w, y, z}.
w x y z

F irst (S) X X X
First (S1) X
First (A) X X
First (B) X X
First (B1) X
First (B2) X

Next we compute the Follow sets. The process of iteratively applying the
construction rules is entirely mechanical, but we will attempt to inspect the
rules and the grammar in order to do this efficiently.

Since S is the goal symbol, we apply rule #1 and start by adding {$} to its
follow set, so {$} ⊂ Follow (S).

Since the two alternatives for S can be derived in one step, we will begin by
applying the rules recursively from there.

6

• Since S ⇒ z B S1 and S ⇒ B S1, we can apply rule #2 to the same effect
in both cases (X = S1 and α = z B or α = B, respectively), so we add
{$} to Follow (S1), thus {$} ⊂ Follow (S1)

• Rule #4 similarly applies to both one step derivations of S to the same
effect, so in the case of S ⇒ z B S1 (letting α = z, X = B, Y = S1,
β = λ), since S1 is nullable, we add

First (Y) ∪ First (β) = First (S1) ∪ First (λ)
= {z} ∪ {}

to Follow (B), so {z} ⊂ Follow (B).

At this point we know that {$} ⊂ Follow (S), {$} ⊂ Follow (S1) and {z} ⊂
Follow (B).

As per rule #3, we look in the grammar definition for anywhere that a
terminal appears immediately after a non-terminal (a sub-string sequence of
the form X t.) There are not any in this example.

Considering rule #4, we look for all other immediately adjacent non-terminals
in the grammar productions:

1. A and S1 in S1 → z AS1

2. A and B1 in B → AB1B2

3. Also B1 and B2 in B → AB1B2

4. A and B2 in B2 → xAB2.

While rule #4 is defined in terms of strings which are derivable from the start
symbol, if there is any path from the start symbol to a given non-terminal (i.e.
it is not orphaned), we can always find a suitable α and β to fit the pattern.

For example, we can derive a string involving adjacent A and B2 (the last
in the list) via the following sequence of derivations:

S ⇒ z B S1

⇒ z AB1B2︸ ︷︷ ︸ S1

(expanding B)

⇒ z
︷ ︸︸ ︷
AB1 xAB2︸ ︷︷ ︸ S1

(expanding B2 once)

In this case rule #4 applies with α = z AB1 x, X = A, Y = B2 and β = S1.
Since B2 is nullable, we add First (B2)∪First (S1) = {x}∪ {z} to Follow (A),
so {x, z} ⊂ Follow (A).

Since B2 was nullable, from the definition of rule #4 we can see that the
contents of β, and thus First (β), were significant, so we should check if there

7

were any other ways to derive an expression involving B2 such that something
other than S1 would appear immediately afterward. B2 appears as the right
most symbol in its own definition and in the definition of B, which in turn only
appears preceding an S1.

Back to the list of adjacent non-terminals:

1. S ⇒ z B S1 ⇒ z B z AS1︸ ︷︷ ︸, applying rule #4 (α = z B z, X = A, Y = S1,

β = λ), since S1 is nullable add First (S1)∪First (λ) = {z} to Follow (A),
so {z} ⊂ Follow (A).

2. S ⇒ B S1 ⇒ AB1B2︸ ︷︷ ︸ S1, applying rule #4 (α = λ, X = A, Y = B1,

β = B2 S1), since B1 is nullable add

First (B1) ∪ First (B2 S1) = {y} ∪ [First (B2) ∪ First (S1)]

(since B2 is nullable)
= {y} ∪ {x} ∪ {z}

to Follow (A), so {x, y, z} ⊂ Follow (A).

3. Same derivation, applying rule #4 (α = λA, X = B1, Y = B2, β = S1),
since B2 is nullable add First (B2)∪First (S1) = {x}∪{z} to Follow (B1),
so {x, z} ⊂ Follow (B1).

At this point, we know that {$} ⊂ Follow (S), {$} ⊂ Follow (S1), {x, y, z} ⊂
Follow (A), {z} ⊂ Follow (B), {x, z} ⊂ Follow (B1).

Finally, we look to apply rule #5 to propagate the follow sets:

• Since S → B S1, add Follow (S) to Follow (S1), so {$} ⊂ Follow (S1)

• SinceB → AB1B2, add Follow (B) to Follow (B2), so {z} ⊂ Follow (B2)

• Since B1 → y A, add Follow (B1) to Follow (A), so {x, z} ⊂ Follow (A)

We now have our completed Follow sets:
w x y z $

Follow (S) X
Follow (S1) X
Follow (A) X X X
Follow (B) X
Follow (B1) X X
Follow (B2) X

We are ready to compute the predict sets:

Predict (S → z B S1) = First (z B S1)

= {z}

8

Predict (S → B S1) = First (B S1)

(since B is not nullable)
= {w, y}

Predict (S1 → z AS1) = First (z AS1)

= {z}
Predict (S1 → λ) = First (λ) ∪ Follow (S1)

(since λ is nullable)
= {$}

Predict (A→ y A) = First (y A)

= {y}
Predict (A→ w) = First (w)

= {w}
Predict (B → AB1B2) = First (AB1B2)

(since A is not nullable)
= First (A)

= {w, y}
Predict (B1 → y A) = First (y A)

= {y}
Predict (B1 → λ) = First (λ) ∪ Follow (B1)

(since λ is nullable)
= {x, z}

Predict (B2 → xAB2) = First (xAB2)

= {x}
Predict (B2 → λ) = First (λ) ∪ Follow (B2)

(since λ is nullable)
= {z}

Summarizing:

9

w x y z $

Predict (S → z B S1) X
Predict (S → B S1) X X
Predict (S1 → z AS1) X
Predict (S1 → λ) X
Predict (A→ y A) X
Predict (A→ w) X
Predict (B → AB1B2) X X
Predict (B1 → y A) X
Predict (B1 → λ) X X
Predict (B2 → xAB2) X
Predict (B2 → λ) X

For every non-terminal in the grammar, the predict sets for each of their
alternatives are mutually disjoint, and thus this is a valid LL (1) grammar. �

10

