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Agenda
• Recognize, Analyze, Transform


• Lexical analysis


• Building lexical analyzers



Recognize Analyze Transform

Frontend Backend



Syntax Analysis
• The syntax of a language defines the rules by which a 

sequence of tokens can be recognized as a legal 
construction in that language.


• Recognize and distinguish legal and illegal sentences of 
the language



Addition expressions



Addition expressions tokens 
as regular expressions

Digits = ‘0’ … ‘9’

Plus = ‘+’

Literal = Digits+ 

Token = Plus | Literal



Addition expressions 
as regular expressions

Digits = ( ‘0’ … ‘9’ )+

Expr = ( Digits ‘+’ )* Digits



Digits = ( ‘0’ … ‘9’ )+

Expr = ( Digits ‘+’ )* Digits

Expr = ( ( ‘0’ … ‘9’ )+ ‘+’ )* ( ‘0’ … ‘9’ )+



Digits = ( ‘0’ … ‘9’ )+

Add = Expr ‘+’ Expr

Expr = Digits | ‘(’ Add ‘)’

Expressions with parentheses

488 
(400+88) 
(400+(44+44)) 
((400+4)+(42+42))



Digits = ( ‘0’ … ‘9’ )+

Add = Expr ‘+’ Expr

Expr = Digits | ‘(‘ Add ‘)’

Expr = Digits | ( Expr ‘+’ Expr )

Expr = Digits | (

    ( Digits | ( Expr ‘+’ Expr ) ) ’+’

    ( Digits | ( Expr ‘+’ Expr ) ) )



Abbreviations in regular 
expressions are just 
syntactic sugar…


They add no additional 
expressive power



Recursion adds expressive power



Recursive abbreviations?
• Simplifies regular expressions


• Alternation within expressions is no longer required


• Alternation pipe | is no longer required


• Kleene closure is no longer required



Recursive abbreviations

prod = α β ( γ | δ ) ε

helper = γ | δ

prod = α β helper ε



Recursive abbreviations
helper = γ | δ

prod = α β helper ε

helper = γ

helper = δ

prod = α β helper ε



Recursive abbreviations

prod = ( α β γ )*

prod = ( α β γ ) prod

prod = λ



This simple but powerful 
notation of recursive 

abbreviations is referred to as

context-free grammars (CFG) 



Context-free grammars
• CFGs can describe richer languages than regular 

expressions


• Thus need something more powerful than finite automata 
to recognize them (key is having memory)


• A language is a set of strings over an alphabet Σ


• Alphabet Σ ranges over tokens, not characters


• Example: Σ = { IF, IDENT, PLUS, LBRACE, EQ, … }


• A CFG consists of a set of productions



Context-free grammars

symbol ⟶ symbol symbol … symbol

A production is of the form:

• Right hand side has 0 or more symbols (0 means λ)

• A symbol is either:

• Terminal: a token from alphabet Σ

• Non-terminal: appears on the left hand side of a 

production

• Left hand side symbol is always a non-terminal

• Distinguished start production (typically the first)



S ⟶ S ‘;’ S 
S ⟶ id ‘=‘ E 
S ⟶ ‘print’ E 

E ⟶ id 
E ⟶ num 
E ⟶ E ‘+’ E 
E ⟶ ‘(‘ E ‘)’

x = 400; 
y = 42; 
print x + (y + 46)

id = num ; 
id = num ; 
print id + ( id + num )



Derivations
• Derive a sentence from the grammar to show that it is in 

the language


• Begin with the start symbol, and repeatedly replace right 
hand side non-terminals with symbols from productions


• Many possible derivation orders


• Left-most derivation: always expand the left-most non-
terminal first, working towards the right


• Right-most derivation 



S ⟶ S ‘;’ S 
S ⟶ id ‘=‘ E 
S ⟶ ‘print’ E 

E ⟶ id 
E ⟶ num 
E ⟶ E ‘+’ E 
E ⟶ ‘(‘ E ‘)’

id = num ; 
id = num ; 
print id + ( id + num )

S 
S ; S 
S ; S ; S 
S ; id = E ; S 
S ; id = num ; S 
id = E ; id = num ; S 
id = num ; id = num ; S 
id = num ; id = num ; print E 
id = num ; id = num ; print E + E 
id = num ; id = num ; print E + ( E ) 
id = num ; id = num ; print E + ( E + E ) 
id = num ; id = num ; print id + ( E + E ) 
id = num ; id = num ; print id + ( id + E ) 
id = num ; id = num ; print id + ( id + num )



Parse trees
S

S S;

S;S

id = E

num

id = E

num

print E

E E+

id E( )

+ EE

id num

For each symbol in the derivation, 
connect up to its originating symbol



Ambiguous grammars

x = 1 + 2 + 3

Two possible parse trees for the same sentence

S

id E=

E+E

E + E

num

num

num

(1 + 2) + 3

S

id E=

E + E

E + E

num

num

num

1 + (2 + 3)



S ⟶ E 
E ⟶ id 
E ⟶ num 
E ⟶ E + E 
E ⟶ ( E )

Removing ambiguity
S ⟶ E 
E ⟶ T 
E ⟶ E + T 

T ⟶ id 
T ⟶ num 
T ⟶ ( E ) 

T for terms because they are added together

We want left-associativity



Removing ambiguity
S ⟶ E 
E ⟶ T 
E ⟶ E + T 

T ⟶ id 
T ⟶ num 
T ⟶ ( E ) 

1 + 2 + 3

E

T+E

E + T

num

num

T

num

S



S ⟶ E 
E ⟶ id 
E ⟶ num 
E ⟶ E * E 
E ⟶ E / E 
E ⟶ E + E 
E ⟶ E - E 
E ⟶ ( E )

More ambiguity
S ⟶ E 
E ⟶ T 
E ⟶ E + T 
E ⟶ E - T 

T ⟶ T * F 
T ⟶ T / F 
T ⟶ F

F for factors because they are multiplied together

F ⟶ id 
F ⟶ num 
F ⟶ ( E ) 

We want multiplication & division to be higher-precedence, or to bind more tightly



Impossible to derive
S ⟶ E 
E ⟶ T 
E ⟶ E + T 
E ⟶ E - T 

T ⟶ T * F 
T ⟶ T / F 
T ⟶ F 

F ⟶ id 
F ⟶ num 
F ⟶ ( E ) 

(1 + 2) * 3

???

T*E

E + T

num

num

F

T

num

F

F



Backus-Naur Form (BNF)



Backus-Naur Form (BNF) — 
ALGOL 60 Report

<expression> ::= <term> 
               | <expression> “+” <term> 
               | <expression> “-” <term> 

<term>       ::= <factor> 
               | <term> “*” <factor> 
               | <term> “/” <factor> 

<factor>     ::= <identifier> 
               | <number> 
               | “(” <expression> “)”



PLY (Python Lex-Yacc)
expression : term 
           | expression PLUS term 
           | expression MINUS term 

term       : factor 
           | term STAR factor 
           | term SLASH factor 

factor     : identifier 
           | number 
           | LPAREN expression RPAREN

https://www.dabeaz.com/ply/


Parsing Top Down 
vs 

Bottom Up



Top Down Parsing
• Starting from the start symbol S, find the correct 

sequence of production expansions that will transform 
S into the input token stream (if possible)


• Called a derivation


• Build the parse tree from the root (S) to the leaves 
(terminals)


• Top down techniques: LL(k), Recursive Descent



Bottom Up Parsing
• Given a stream of input tokens, find the correct 

sequence of production contractions that take the 
input back to the start symbol


• Called a reduction or reverse derivation


• Build the parse tree from the leaves (terminals) to the 
root (S)


• Bottom up techniques: LR(k), LALR(k), SLR(k)



LL(1) Grammars

Peter McCormick
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Context-free Grammars

Define a context-free grammar G = (N,⌃,S,P) where
I ⌃ is the set of terminals (the alphabet), each represented as lower case

Roman letters (t,x ,y ,z)
I N is the set of non-terminals, each represented by capitalized Roman

letters (A,B,X ,Y )
I S 2 N is the distinguished start symbol
I P is a finite set of productions
I V = ⌃[N is the vocabulary of the grammar. Strings ranging over V ,

such as Aw X t, are each represented by Greek letters (a,b ,g)
X )+ a means that there is a valid sequence of derivations starting
from the non-terminal X to the string a
Let $ be a special end-of-input marker



Productions

A production is a rewriting rule of the form:

X ! a1a2 · · ·am

where X 2 N, ai 2 V ⇤ for each i , and m � 0. If m = 0, then

X !

That is, X can be replaced by l , the empty string.

Rewriting is the act of replacing a non-terminal X with the right hand
of a production for X , so a1 · · ·am replacing X
X )+ a means that there is a valid sequence of derivations starting
from the non-terminal X to the vocabulary string a



Definitions

A vocabulary string is in sentential form if it is in the set of all strings that
can be derived from the start symbol:

{w : S )⇤ w}
A language is the set of all terminal strings that can be derived from the
start symbol:

{w : S )⇤ w}\⌃⇤



Definitions

Given a production X ! g and a sentenial form aXb , then

aXb ) agb is a derivation in one step
aXb )⇤ agb is a derivation in zero or more steps
aXb )+ agb is a derivation in one or more steps

A left-most derivation expands non-terminals left to right, while a
right-most derivation expands right to left



LL(1) Grammars

LL is a set of all languages that can be parser by an LL parser
An LL parser consumes its input Left-to-right, producing a
Leftmost-derivation
LL(k) means LL with k tokens worth of input look ahead
LL(1) means 1 input token lookahead



Nullable

a 2 V+ is nullable i� a )⇤ l



Nullable

Given the productions:

X ! Y Z W
Y ! l
Z ! z |Y

W ! w |Y Z

Then X is nullable since:

X ) Y Z W
) Z W (since Y is nullable)
) Y W
) W (again since Y is nullable)
) Y Z
) Z (again)
) Y ) l



First Sets

First (z b ) = {z} z is a terminal symbol
First (l ) = {} (the empty set)

First (Bg) = First (B) (if B is not nullable)
= First (B)[First (g) (if B is nullable)



Follow Sets

Follow (X ) =
�

t 2 ⌃ : S )+ a X t b
 



Follow Set Construction Rules

Starting from initially empty follow sets, iteratively apply these rules until
the sets no longer change.
#1. If S is the goal symbol Add {$} to Follow (S)
#2. If S )+ a X Add {$} to Follow (X )
#3. If S )+ a X tb Add {t} to Follow (X )
#4. If S )+ a X Yb If Y is not nullable:

· Add First (Y ) to Follow (X )
Else if Y is nullable:
· Add First (Y )[First (b ) to Follow (X )

#5. If X ! a Y Add Follow (X ) to Follow (Y )



Predict Sets for LL(1) Grammars

Given a non-terminal X defined with several alternate productions:
X ! g1

! g2
. . .

! gm
The predict set for each production X ! gi is defined as
Predict (X ! gi) = First (gi) (if gi is not nullable)

= First (gi)[Follow (X ) (if gi is nullable)



Predict Sets for LL(1) Grammars

To be an LL(1) grammar, the Predict sets for all productions for a
given non-terminal X must be mutually disjoint

X ! Y a
! Y b

is not LL(1) because the Predict sets for the productions of X are not
mutually disjoint:

Predict (X ! Y a) = First (Y a) (if Y is not nullable)
= First (Y )

= First (Y b )
= Predict (X ! Y b )

Predict (X ! Y a) = First (Y a)[Follow (X ) (if Y is nullable)
Predict (X ! Y b ) = First (Y b )[Follow (X ) (if Y is nullable)



Factoring Out Common Prefix

Transform:

X ! Y a
! Y b

into:

X ! Y Xtail
Xtail ! a

! b



Left Recursion

LL(1) grammars cannot handle left recursion:

X ! X a
! b

If b is not nullable:

Predict (X ! X a) = First (X a)

= First (X )

= b
Predict (X ! b ) = First (b )

= b

Similarly argument for existence of an intersection if b is nullable.



Factoring Out Left Recursion

Transform:

X ! X a
! b

into:

X ! b Xtail
Xtail ! a Xtail

! l



Next Week
•More on practical parser construction


• Bottom up parsing


• LR(1) grammars


