CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

e Recognize, Analyze, Transform
e | exical analysis

e Building lexical analyzers

Recognize Analyze Transform

Gr— {—
Frontend Backend

Syntax Analysis

* The syntax of a language defines the rules by which a
seguence of tokens can be recognized as a legal
construction in that language.

* Recognize and distinguish legal and illegal sentences of
the language

Addition expressions

Addition expressions tokens
as regular expressions

Digits = 0" ... 'O’
Plus = '+
Literal = Digits+*

Token = Plus | Literal

Addition expressions
as regular expressions

Digits =(‘0’ ... ‘9’)+
Expr = (Digits ‘+’)* Digits

Digits = (‘0’ ... ‘9")+
Expr = (Digits ‘+’)* Digits

>

Expr=((‘0" ... ‘9")+ ‘4’)* (‘0’ ...

9)

Expressions with parentheses

Digits = (‘0" ... 9’)+
Add = Expr '+’ Expr
Expr = Digits | ‘(" Add ‘)’

4388
(400+33)

(400+(44+44))
((400+4)+(42+42))

Digits = (‘0’ ... ‘9’)+
Add = Expr '+ Expr
Expr = Digits | ‘(* Add ‘)’

>

Expr = Digits | (Expr ‘+’ Expr)

>

Expr = Digits | (
(Digits | (Expr ‘+” Expr)) '+’
(Digits | (Expr ‘+’ Expr)))

Abbreviations in regular
expressions are just
syntactic sugar...

They add no additional
expressive power

Recursion adds expressive power

Recursive abbreviations?

e Simplifies regular expressions
e Alternation within expressions is no longer required
e Alternation pipe | is no longer required

 Kleene closure is no longer required

Recursive abbreviations

prod =af(y|d)e

helper =y | 6
prod = a 3 helper €

Recursive abbreviations

helper =y | 6
prod = a (3 helper €

helper =y

helper = 0
prod = a (3 helper €

Recursive abbreviations

prod = (aBy)’

>

prod =(apy) prod
prod = A

This simple but powerful
notation of recursive
abbreviations is referred to as
context-free grammars (CFQ)

Context-free grammars

» CFGs can describe richer languages than regular
expressions

* Thus need something more powerful than finite automata
to recognize them (key is having memory)

* A language is a set of strings over an alphabet 2
* Alphabet 2 ranges over tokens, not characters
e Example: 2 = {IF, IDENT, PLUS, LBRACE, EQ, ... }

e A CFG consists of a set of productions

Context-free grammars

A production is of the form:

symbol — symbol symbol ... symbol

Right hand side has 0 or more symbols (0 means A)

A symbol is either:

* Jerminal: a token from alphabet 2

* Non-terminal. appears on the left hand side of a
production

Left hand side symbol is always a non-terminal

Distinguished start production (typically the first)

S—S4%S
S—id‘="E
S — ‘print’ E

E— Id
E— num

X 400 ;

y = 42;
print x + (y + 46)

Derivations

* Derive a sentence from the grammar to show that it is In
the language

 Begin with the start symbol, and repeatedly replace right
hand side non-terminals with symbols from productions

* Many possible derivation orders

e [eft-most derivation: always expand the left-most non-
terminal first, working towards the right

* Right-most derivation

S—»SS s | ?
S—id‘=‘E S;S

i e $;S;S
S — ‘print’ E S:id=E:S
S;id=num;S
E—id id=E;id=num;$S
E— num id=num;id=num;$S
E_ L E‘“E !d:num;!d:num;pr!ntg
o id=num;id=num;printE+E
E—"(E’ id=num ;id =num ; printE + (E)

id=num;id=num;printE+(E + E)
id=num ;id =num ;printid+ (E + E)
id=num ;id = num ; printid + (id + E)

Parse trees

id E S \ S
| AN
num id = E
I
num print/ E \
E + / E \
id (/ E \)
For each symbol in the derivation, E + E

connect up to its originating symbol ‘ ‘

Ambiguous grammars

Two possible parse trees for the same sentence

Removing ambiguity

We want left-associativity

S— E
>—E E_. T
E—id E—E+T
E— num *
E—E+E T—id

T — num
E— (E) T— (E)

T for terms because they are added together

Removing ambiguity

S— E

E— T >

E—E+T 5
E/J-\T

T— id SN

E
T — num |
T_)(E) 'i' num

More ambiguity

We want multiplication & division to be higher-precedence, or to bind more tightly

S— E S—E

E— id E—T

E — num E—E+T g
E—E*E * =—FE T F_um
E—E/E T—T1+f F—(E)
E— E+E T—T/F

E— E-E IT—F

E—(E)

F for factors because they are multiplied together

Impossible to derive

S—E
E—T
E—SE+T

E—E-T

T—T*F /

T—T/F
T—F

F— id
F — num
F— (E)

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) —
ALGOL 60 Report

<expression>

<factor>

<term>
<expression> “+”7 <term>
<expression> “-" <term>

<factor>
<term> “*” <factor>
<term> “/” <factor>

<jdentifier>
<number>
“(”7 <expression> *)”

PLY (Python Lex-Yacc)

expression . term
expression PLUS term
expression MINUS term

. factor
term STAR factor
term SLASH factor

factor . 1dentifier
number
LPAREN expression RPAREN

https://www.dabeaz.com/ply/

Parsing Top Down
VS
Bottom Up

Top Down Parsing

e Starting from the start symbol S, find the correct
sequence of production expansions that will transform

S into the input token stream (if possible)
e Called a derivation

 Build the parse tree from the root (S) to the leaves
(terminals)

* Top down techniques: LL(k), Recursive Descent

Bottom Up Parsing

e Given a stream of input tokens, find the correct
sequence of production contractions that take the
iInput back to the start symbol

e (Called a reduction or reverse derivation

e Build the parse tree from the leaves (terminals) to the
root (S)

 Bottom up techniques: LR(k), LALR(k), SLR(k)

LL(1) Grammars

Peter McCormick

January 24, 2018

Context-free Grammars

o Define a context-free grammar G = (N, X, S, P) where

» ¥ is the set of terminals (the alphabet), each represented as lower case
Roman letters (t,x,y,z)

N is the set of non-terminals, each represented by capitalized Roman
letters (A, B, X,Y)

S € N is the distinguished start symbol

P is a finite set of productions

V =X UN is the vocabulary of the grammar. Strings ranging over V,
such as Aw X t, are each represented by Greek letters (o, 3,7)

v

\{

v

v

@ X =T o means that there is a valid sequence of derivations starting
from the non-terminal X to the string o

o Let $ be a special end-of-input marker

Productions

A production is a rewriting rule of the form:
X — 010 - Om
where X € N, a; € V* for each i, and m> 0. If m=0, then

X —

That is, X can be replaced by A, the empty string.

@ Rewriting is the act of replacing a non-terminal X with the right hand
of a production for X, so o - - &, replacing X

@ X =71 o means that there is a valid sequence of derivations starting
from the non-terminal X to the vocabulary string o

Definitions

A vocabulary string is in sentential form if it is in the set of all strings that
can be derived from the start symbol:

{w:5="w}

A language is the set of all terminal strings that can be derived from the
start symbol:

{w:S="w}nk"

Definitions

Given a production X — ¥ and a sentenial form aXf3, then

oaXB = oyB is a derivation in one step
oaXB =* oyB is a derivation in zero or more steps

aXB =71 ayB is a derivation in one or more steps

@ A left-most derivation expands non-terminals left to right, while a
right-most derivation expands right to left

LL(1) Grammars

@ LL is a set of all languages that can be parser by an LL parser

@ An LL parser consumes its input Left-to-right, producing a
Leftmost-derivation

o LL(k) means LL with k tokens worth of input look ahead
@ LL(1) means 1 input token lookahead

Nullable

o € VT is nullable iff ¢ =* A

Nullable

Given the productions:

YZW

z|Y
wl|YZ

S N < X
1114

Then X is nullable since:

w

(since Y is nullable)

X =

N2
< IN <
SN

< |

(again since Y is nullable)
z

Z (again)

Y=2A

LR R
NI

First Sets

First (z3)
First (L)
First (BY)

{z}

{}

First (B)

First (B) U First ()

z is a terminal symbol
(the empty set)

(if B is not nullable)
(if B is nullable)

Follow Sets

Follow (X) =

{tez:S=>"aXtp}

Follow Set Construction Rules

Starting from initially empty follow sets, iteratively apply these rules until
the sets no longer change.
#1. If S is the goal symbol Add {$} to Follow (S)

42 1f S=F aX Add {$} to Follow (X)
#3. If S=T aXtp Add {t} to Follow (X)
#4. 1f S=T aXYp If Y is not nullable:

- Add First(Y') to Follow (X)

Else if Y is nullable:

- Add First (Y)U First (B) to Follow (X)
#5. f X—a¥Y Add Follow (X) to Follow (Y)

Predict Sets for LL(1) Grammars

Given a non-terminal X defined with several alternate productions:
X = 7

- P
— Ym
The predict set for each production X — 7; is defined as
Predict (X — v;) = First(yi) (if 7; is not nullable)

= First(y;)UFollow (X) (if y; is nullable)

Predict Sets for LL(1) Grammars

@ To be an LL(1) grammar, the Predict sets for all productions for a
given non-terminal X must be mutually disjoint

X = Ya
- YB

is not LL(1) because the Predict sets for the productions of X are not
mutually disjoint:

Predict (X — Y a) = First(Ya) (if Y is not nullable)

= First(Y)

= First(YB)

= Predict(X — Y B)
Predict(X — Y a) = First(Y a)UFollow(X) (if Y is nullable)
Predict (X — Y B) = First(Y B)U Follow(X) (if Y is nullable)

Factoring Out Common Prefix

Transform:
X — Ya
= YB
into:
X = Y Xuir
Xtail —- o
- B

Left Recursion

LL(1) grammars cannot handle left recursion:

X = Xo
- B

If B is not nullable:

Predict(X — Xa) = First(Xa)
= First(X)
-
Predict (X — B) = First(B)
= B

Similarly argument for existence of an intersection if 8 is nullable.

Factoring Out Left Recursion

Transform:
X = Xa
- B
into:
X — BXtail
Xtail — aXtail
- A

Next Week

 More on practical parser construction
e Bottom up parsing

e LR(1) grammars

