CSC488/2107 Winter 2019 – Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick pdm@cs.toronto.edu

Agenda

- Recognize, Analyze, Transform
- Lexical analysis
- Building lexical analyzers

Recognize Analyze Transform

Syntax Analysis

- The syntax of a language defines the rules by which a sequence of tokens can be recognized as a legal construction in that language.
- Recognize and distinguish legal and illegal sentences of the language

Addition expressions

Addition expressions tokens as regular expressions

Digits = '0' ... '9' <u>Plus</u> = '+' <u>Literal</u> = Digits+

Token = Plus | Literal

Addition expressions as regular expressions

Digits = $('0' ... '9')^+$ Expr = $(Digits '+')^*$ Digits

Digits = ('0' ... '9')+ Expr = (Digits '+')* Digits

$Expr = (('0' ... '9')^{+} '+')^{*} ('0' ... '9')^{+}$

Expressions with parentheses

488 (400+88) (400+(44+44)) ((400+4)+(42+42))

Abbreviations in regular expressions are just syntactic sugar...

They add no additional expressive power

Recursion adds expressive power

Recursive abbreviations?

- Simplifies regular expressions
 - Alternation within expressions is no longer required
 - Alternation pipe | is no longer required
 - Kleene closure is no longer required

Recursive abbreviations

Recursive abbreviations

Recursive abbreviations

This simple but powerful notation of recursive abbreviations is referred to as *context-free grammars* (CFG)

Context-free grammars

- CFGs can describe richer languages than regular expressions
 - Thus need something more powerful than finite automata to recognize them (key is having *memory*)
- A *language* is a set of strings over an alphabet Σ
- Alphabet Σ ranges over *tokens*, not characters
 - Example: $\Sigma = \{ IF, IDENT, PLUS, LBRACE, EQ, ... \}$
- A CFG consists of a set of *productions*

Context-free grammars

A *production* is of the form:

symbol \longrightarrow symbol symbol ... symbol

- Right hand side has 0 or more symbols (0 means λ)
- A *symbol* is either:
 - Terminal: a token from alphabet Σ
 - Non-terminal: appears on the left hand side of a production
- Left hand side symbol is always a non-terminal
- Distinguished start production (typically the first)

- $S \longrightarrow S$ ';' S $S \longrightarrow id$ '=' E
- $S \longrightarrow$ 'print' E
- $E \longrightarrow id$
- $E \longrightarrow num$
- $E \longrightarrow E'+'E$
- E → '(' E ')'

id = num ; id = num ; print id + (id + num)

x = 400; y = 42; print x + (y + 46)

Derivations

- Derive a sentence from the grammar to show that it is in the language
- Begin with the start symbol, and repeatedly replace right hand side non-terminals with symbols from productions
- Many possible derivation orders
 - Left-most derivation: always expand the left-most nonterminal first, working towards the right
 - Right-most derivation

- $S \longrightarrow S$ ';' S $S \longrightarrow id$ '=' E
- $S \longrightarrow `print' E$
- $E \longrightarrow id$
- $E \longrightarrow num$
- $E \longrightarrow E' + E'$
- E → '(' E ')'

num

Ambiguous grammars

Two possible parse trees for the same sentence

<u>(1 + 2) + 3</u>

<u>1 + (2 + 3)</u>

Removing ambiguity

We want left-associativity

T for terms because they are added together

Removing ambiguity 1 + 2 + 3 $S \longrightarrow E$ $E \longrightarrow T$ S $E \longrightarrow E + T$ Ε Ε $T \longrightarrow id$ Ε num $T \longrightarrow num$ num $T \longrightarrow (E)$

num

More ambiguity

We want multiplication & division to be higher-precedence, or to bind more tightly

F for factors because they are multiplied together

Impossible to derive

- $S \longrightarrow E$
- $E \longrightarrow T$
- $E \longrightarrow E + T$
- $E \longrightarrow E T$
- $T \longrightarrow T * F$ $T \longrightarrow T / F$ $T \longrightarrow F$
- $F \longrightarrow id$
- $F \longrightarrow num$
- $\mathsf{F} \longrightarrow$ (E)

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) – ALGOL 60 Report

<expression></expression>	= : : 	<term> <expression> "+" <term> <expression> "-" <term></term></expression></term></expression></term>
<term></term>	: := 	<factor> <term> "*" <factor> <term> "/" <factor></factor></term></factor></term></factor>
<factor></factor>	::=	<pre><identifier> <number> "(" <expression> ")"</expression></number></identifier></pre>

PLY (Python Lex-Yacc)

expression		term expression PLUS term expression MINUS term
term	•	factor term STAR factor term SLASH factor
factor	•	identifier number LPAREN expression RPAREN

Parsing Top Down vs Bottom Up

Top Down Parsing

- Starting from the start symbol S, find the correct sequence of production expansions that will transform S into the input token stream (if possible)
 - Called a *derivation*
- Build the parse tree from the root (S) to the leaves (terminals)
- Top down techniques: LL(k), Recursive Descent

Bottom Up Parsing

- Given a stream of input tokens, find the correct sequence of production contractions that take the input back to the start symbol
 - Called a *reduction* or *reverse derivation*
- Build the parse tree from the leaves (terminals) to the root (S)
- Bottom up techniques: LR(k), LALR(k), SLR(k)

LL(1) Grammars

Peter McCormick

January 24, 2018

(ロ)、(型)、(E)、(E)、 E) の(()

Context-free Grammars

• Define a *context-free grammar* $G = (N, \Sigma, S, P)$ where

- Σ is the set of *terminals* (the *alphabet*), each represented as lower case Roman letters (t,x,y,z)
- ► *N* is the set of *non-terminals*, each represented by capitalized Roman letters (*A*, *B*, *X*, *Y*)
- $S \in N$ is the distinguished *start* symbol
- P is a finite set of productions
- ► $V = \Sigma \cup N$ is the vocabulary of the grammar. Strings ranging over V, such as A w X t, are each represented by Greek letters (α, β, γ)

- X ⇒⁺ α means that there is a valid sequence of derivations starting from the non-terminal X to the string α
- Let \$ be a special *end-of-input* marker

Productions

A production is a *rewriting rule* of the form: $X \rightarrow \alpha_1 \alpha_2 \cdots \alpha_m$ where $X \in N$, $\alpha_i \in V^*$ for each *i*, and $m \ge 0$. If m = 0, then $X \rightarrow$ That is, X can be replaced by λ , the empty string.

- *Rewriting* is the act of replacing a non-terminal X with the right hand of a production for X, so $\alpha_1 \cdots \alpha_m$ replacing X
- $X \Rightarrow^+ \alpha$ means that there is a valid sequence of derivations starting from the non-terminal X to the vocabulary string α

Definitions

A vocabulary string is in *sentential form* if it is in the set of all strings that can be derived from the start symbol:

$$\{w: S \Rightarrow^* w\}$$

A *language* is the set of all terminal strings that can be derived from the start symbol:

$$\{w: S \Rightarrow^* w\} \cap \Sigma^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definitions

Given a production $X \rightarrow \gamma$ and a sentenial form $\alpha X \beta$, then

 $\begin{array}{ll} \alpha X\beta & \Rightarrow & \alpha \gamma \beta \text{ is a derivation in one step} \\ \alpha X\beta & \Rightarrow^* & \alpha \gamma \beta \text{ is a derivation in zero or more steps} \\ \alpha X\beta & \Rightarrow^+ & \alpha \gamma \beta \text{ is a derivation in one or more steps} \end{array}$

• A *left-most derivation* expands non-terminals left to right, while a *right-most derivation* expands right to left

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LL(1) Grammars

• LL is a set of all languages that can be parser by an LL parser

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- An *LL* parser consumes its input Left-to-right, producing a Leftmost-derivation
- LL(k) means LL with k tokens worth of input look ahead
- LL(1) means 1 input token lookahead

Nullable

 $\alpha \in V^+$ is *nullable* iff $\alpha \Rightarrow^* \lambda$

Nullable

Given the productions: $X \rightarrow Y Z W$ $Y \rightarrow \lambda$ $Z \rightarrow z | Y$ $W \rightarrow w | YZ$ Then X is nullable since: $X \Rightarrow YZW$ $\Rightarrow \underline{Z}W$ (since Y is nullable) $\Rightarrow YW$ \Rightarrow <u>W</u> (again since Y is nullable) $\Rightarrow YZ$ \Rightarrow <u>Z</u> (again) $\Rightarrow \underline{Y} \Rightarrow \lambda$

First Sets

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Follow Sets

$Follow(X) = \left\{ t \in \Sigma : S \Rightarrow^+ \alpha X \, t \, \beta \right\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Follow Set Construction Rules

Starting from initially empty follow sets, iteratively apply these rules until the sets no longer change. #1. If S is the goal symbol Add {\$} to Follow(S) #2. If $S \Rightarrow^+ \alpha X$ Add {\$} to Follow(X) #3. If $S \Rightarrow^+ \alpha X \mathbf{t}\beta$ Add {t} to Follow(X) #4. If $S \Rightarrow^+ \alpha X \mathbf{t}\beta$ If Y is not nullable: · Add First(Y) to Follow(X) Else if Y is nullable: · Add First(Y) \cup First(β) to Follow(X) #5. If $X \rightarrow \alpha \mathbf{Y}$ Add Follow(X) to Follow(Y)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Predict Sets for LL(1) Grammars

Given a non-terminal X defined with several alternate productions: $\begin{array}{cccc} X & \rightarrow & \gamma_1 \\ & \rightarrow & \gamma_2 \\ & & \cdots \\ & \rightarrow & \gamma_m \end{array}$ The predict set for each production $X \rightarrow \gamma_i$ is defined as $\begin{array}{cccc} Predict(X \rightarrow \gamma_i) &= & First(\gamma_i) & (\text{if } \gamma_i \text{ is not nullable}) \\ &= & First(\gamma_i) \cup Follow(X) & (\text{if } \gamma_i \text{ is nullable}) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Predict Sets for LL(1) Grammars

• To be an *LL*(1) grammar, the Predict sets for all productions for a given non-terminal *X* must be mutually disjoint

$$X \rightarrow Y \alpha$$

 $\rightarrow Y \beta$

is not LL(1) because the Predict sets for the productions of X are not mutually disjoint:

$$\begin{aligned} Predict (X \to Y \alpha) &= First (Y \alpha) \text{ (if } Y \text{ is } not \text{ nullable}) \\ &= First (Y) \\ &= First (Y \beta) \\ &= Predict (X \to Y \beta) \end{aligned}$$
$$\begin{aligned} Predict (X \to Y \alpha) &= First (Y \alpha) \cup Follow (X) \text{ (if } Y \text{ is nullable}) \\ Predict (X \to Y \beta) &= First (Y \beta) \cup Follow (X) \text{ (if } Y \text{ is nullable}) \end{aligned}$$

Factoring Out Common Prefix

Left Recursion

Factoring Out Left Recursion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

Next Week

- More on practical parser construction
- Bottom up parsing
- LR(1) grammars