
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Recognize, Analyze, Transform

• Lexical analysis

• Building lexical analyzers

Recognize Analyze Transform

Frontend Backend

Syntax Analysis
• The syntax of a language defines the rules by which a

sequence of tokens can be recognized as a legal
construction in that language.

• Recognize and distinguish legal and illegal sentences of
the language

Addition expressions

Addition expressions tokens
as regular expressions

Digits = ‘0’ … ‘9’

Plus = ‘+’

Literal = Digits+ 

Token = Plus | Literal

Addition expressions
as regular expressions

Digits = (‘0’ … ‘9’)+

Expr = (Digits ‘+’)* Digits

Digits = (‘0’ … ‘9’)+

Expr = (Digits ‘+’)* Digits

Expr = ((‘0’ … ‘9’)+ ‘+’)* (‘0’ … ‘9’)+

Digits = (‘0’ … ‘9’)+

Add = Expr ‘+’ Expr

Expr = Digits | ‘(’ Add ‘)’

Expressions with parentheses

488
(400+88)
(400+(44+44))
((400+4)+(42+42))

Digits = (‘0’ … ‘9’)+

Add = Expr ‘+’ Expr

Expr = Digits | ‘(‘ Add ‘)’

Expr = Digits | (Expr ‘+’ Expr)

Expr = Digits | (

 (Digits | (Expr ‘+’ Expr)) ’+’

 (Digits | (Expr ‘+’ Expr)))

Abbreviations in regular
expressions are just
syntactic sugar…

They add no additional
expressive power

Recursion adds expressive power

Recursive abbreviations?
• Simplifies regular expressions

• Alternation within expressions is no longer required

• Alternation pipe | is no longer required

• Kleene closure is no longer required

Recursive abbreviations

prod = α β (γ | δ) ε

helper = γ | δ

prod = α β helper ε

Recursive abbreviations
helper = γ | δ

prod = α β helper ε

helper = γ

helper = δ

prod = α β helper ε

Recursive abbreviations

prod = (α β γ)*

prod = (α β γ) prod

prod = λ

This simple but powerful
notation of recursive

abbreviations is referred to as

context-free grammars (CFG)

Context-free grammars
• CFGs can describe richer languages than regular

expressions

• Thus need something more powerful than finite automata
to recognize them (key is having memory)

• A language is a set of strings over an alphabet Σ

• Alphabet Σ ranges over tokens, not characters

• Example: Σ = { IF, IDENT, PLUS, LBRACE, EQ, … }

• A CFG consists of a set of productions

Context-free grammars

symbol ⟶ symbol symbol … symbol

A production is of the form:

• Right hand side has 0 or more symbols (0 means λ)

• A symbol is either:

• Terminal: a token from alphabet Σ

• Non-terminal: appears on the left hand side of a

production

• Left hand side symbol is always a non-terminal

• Distinguished start production (typically the first)

S ⟶ S ‘;’ S
S ⟶ id ‘=‘ E
S ⟶ ‘print’ E

E ⟶ id
E ⟶ num
E ⟶ E ‘+’ E
E ⟶ ‘(‘ E ‘)’

x = 400;
y = 42;
print x + (y + 46)

id = num ;
id = num ;
print id + (id + num)

Derivations
• Derive a sentence from the grammar to show that it is in

the language

• Begin with the start symbol, and repeatedly replace right
hand side non-terminals with symbols from productions

• Many possible derivation orders

• Left-most derivation: always expand the left-most non-
terminal first, working towards the right

• Right-most derivation

S ⟶ S ‘;’ S
S ⟶ id ‘=‘ E
S ⟶ ‘print’ E

E ⟶ id
E ⟶ num
E ⟶ E ‘+’ E
E ⟶ ‘(‘ E ‘)’

id = num ;
id = num ;
print id + (id + num)

S
S ; S
S ; S ; S
S ; id = E ; S
S ; id = num ; S
id = E ; id = num ; S
id = num ; id = num ; S
id = num ; id = num ; print E
id = num ; id = num ; print E + E
id = num ; id = num ; print E + (E)
id = num ; id = num ; print E + (E + E)
id = num ; id = num ; print id + (E + E)
id = num ; id = num ; print id + (id + E)
id = num ; id = num ; print id + (id + num)

Parse trees
S

S S;

S;S

id = E

num

id = E

num

print E

E E+

id E()

+ EE

id num

For each symbol in the derivation,
connect up to its originating symbol

Ambiguous grammars

x = 1 + 2 + 3

Two possible parse trees for the same sentence

S

id E=

E+E

E + E

num

num

num

(1 + 2) + 3

S

id E=

E + E

E + E

num

num

num

1 + (2 + 3)

S ⟶ E
E ⟶ id
E ⟶ num
E ⟶ E + E
E ⟶ (E)

Removing ambiguity
S ⟶ E
E ⟶ T
E ⟶ E + T

T ⟶ id
T ⟶ num
T ⟶ (E)

T for terms because they are added together

We want left-associativity

Removing ambiguity
S ⟶ E
E ⟶ T
E ⟶ E + T

T ⟶ id
T ⟶ num
T ⟶ (E)

1 + 2 + 3

E

T+E

E + T

num

num

T

num

S

S ⟶ E
E ⟶ id
E ⟶ num
E ⟶ E * E
E ⟶ E / E
E ⟶ E + E
E ⟶ E - E
E ⟶ (E)

More ambiguity
S ⟶ E
E ⟶ T
E ⟶ E + T
E ⟶ E - T

T ⟶ T * F
T ⟶ T / F
T ⟶ F

F for factors because they are multiplied together

F ⟶ id
F ⟶ num
F ⟶ (E)

We want multiplication & division to be higher-precedence, or to bind more tightly

Impossible to derive
S ⟶ E
E ⟶ T
E ⟶ E + T
E ⟶ E - T

T ⟶ T * F
T ⟶ T / F
T ⟶ F

F ⟶ id
F ⟶ num
F ⟶ (E)

(1 + 2) * 3

???

T*E

E + T

num

num

F

T

num

F

F

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) —
ALGOL 60 Report

<expression> ::= <term>
 | <expression> “+” <term>
 | <expression> “-” <term>

<term> ::= <factor>
 | <term> “*” <factor>
 | <term> “/” <factor>

<factor> ::= <identifier>
 | <number>
 | “(” <expression> “)”

PLY (Python Lex-Yacc)
expression : term
 | expression PLUS term
 | expression MINUS term

term : factor
 | term STAR factor
 | term SLASH factor

factor : identifier
 | number
 | LPAREN expression RPAREN

https://www.dabeaz.com/ply/

Parsing Top Down
vs

Bottom Up

Top Down Parsing
• Starting from the start symbol S, find the correct

sequence of production expansions that will transform
S into the input token stream (if possible)

• Called a derivation

• Build the parse tree from the root (S) to the leaves
(terminals)

• Top down techniques: LL(k), Recursive Descent

Bottom Up Parsing
• Given a stream of input tokens, find the correct

sequence of production contractions that take the
input back to the start symbol

• Called a reduction or reverse derivation

• Build the parse tree from the leaves (terminals) to the
root (S)

• Bottom up techniques: LR(k), LALR(k), SLR(k)

LL(1) Grammars

Peter McCormick

January 24, 2018

Context-free Grammars

Define a context-free grammar G = (N,⌃,S,P) where
I ⌃ is the set of terminals (the alphabet), each represented as lower case

Roman letters (t,x ,y ,z)
I N is the set of non-terminals, each represented by capitalized Roman

letters (A,B,X ,Y)
I S 2 N is the distinguished start symbol
I P is a finite set of productions
I V = ⌃[N is the vocabulary of the grammar. Strings ranging over V ,

such as Aw X t, are each represented by Greek letters (a,b ,g)
X)+ a means that there is a valid sequence of derivations starting
from the non-terminal X to the string a
Let $ be a special end-of-input marker

Productions

A production is a rewriting rule of the form:

X ! a1a2 · · ·am

where X 2 N, ai 2 V ⇤ for each i , and m � 0. If m = 0, then

X !

That is, X can be replaced by l , the empty string.

Rewriting is the act of replacing a non-terminal X with the right hand
of a production for X , so a1 · · ·am replacing X
X)+ a means that there is a valid sequence of derivations starting
from the non-terminal X to the vocabulary string a

Definitions

A vocabulary string is in sentential form if it is in the set of all strings that
can be derived from the start symbol:

{w : S)⇤ w}
A language is the set of all terminal strings that can be derived from the
start symbol:

{w : S)⇤ w}\⌃⇤

Definitions

Given a production X ! g and a sentenial form aXb , then

aXb) agb is a derivation in one step
aXb)⇤ agb is a derivation in zero or more steps
aXb)+ agb is a derivation in one or more steps

A left-most derivation expands non-terminals left to right, while a
right-most derivation expands right to left

LL(1) Grammars

LL is a set of all languages that can be parser by an LL parser
An LL parser consumes its input Left-to-right, producing a
Leftmost-derivation
LL(k) means LL with k tokens worth of input look ahead
LL(1) means 1 input token lookahead

Nullable

a 2 V+ is nullable i� a)⇤ l

Nullable

Given the productions:

X ! Y Z W
Y ! l
Z ! z |Y

W ! w |Y Z

Then X is nullable since:

X) Y Z W
) Z W (since Y is nullable)
) Y W
) W (again since Y is nullable)
) Y Z
) Z (again)
) Y) l

First Sets

First (z b) = {z} z is a terminal symbol
First (l) = {} (the empty set)

First (Bg) = First (B) (if B is not nullable)
= First (B)[First (g) (if B is nullable)

Follow Sets

Follow (X) =
�

t 2 ⌃ : S)+ a X t b

Follow Set Construction Rules

Starting from initially empty follow sets, iteratively apply these rules until
the sets no longer change.
#1. If S is the goal symbol Add {$} to Follow (S)
#2. If S)+ a X Add {$} to Follow (X)
#3. If S)+ a X tb Add {t} to Follow (X)
#4. If S)+ a X Yb If Y is not nullable:

· Add First (Y) to Follow (X)
Else if Y is nullable:
· Add First (Y)[First (b) to Follow (X)

#5. If X ! a Y Add Follow (X) to Follow (Y)

Predict Sets for LL(1) Grammars

Given a non-terminal X defined with several alternate productions:
X ! g1

! g2
. . .

! gm
The predict set for each production X ! gi is defined as
Predict (X ! gi) = First (gi) (if gi is not nullable)

= First (gi)[Follow (X) (if gi is nullable)

Predict Sets for LL(1) Grammars

To be an LL(1) grammar, the Predict sets for all productions for a
given non-terminal X must be mutually disjoint

X ! Y a
! Y b

is not LL(1) because the Predict sets for the productions of X are not
mutually disjoint:

Predict (X ! Y a) = First (Y a) (if Y is not nullable)
= First (Y)

= First (Y b)
= Predict (X ! Y b)

Predict (X ! Y a) = First (Y a)[Follow (X) (if Y is nullable)
Predict (X ! Y b) = First (Y b)[Follow (X) (if Y is nullable)

Factoring Out Common Prefix

Transform:

X ! Y a
! Y b

into:

X ! Y Xtail
Xtail ! a

! b

Left Recursion

LL(1) grammars cannot handle left recursion:

X ! X a
! b

If b is not nullable:

Predict (X ! X a) = First (X a)

= First (X)

= b
Predict (X ! b) = First (b)

= b

Similarly argument for existence of an intersection if b is nullable.

Factoring Out Left Recursion

Transform:

X ! X a
! b

into:

X ! b Xtail
Xtail ! a Xtail

! l

Next Week
•More on practical parser construction

• Bottom up parsing

• LR(1) grammars

