CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

e Recognize, Analyze, Transform
e | exical analysis

e Building lexical analyzers

Recognize Analyze Transform

Gr— {—
Frontend Backend

Recognize

e | exical structure
e Syntactic structure

e Highly language/syntax specific

e Data flow:
Stream of Characters
w Stream of Tokens
w Parse Tree (Concrete Syntax)

Analyze

e Semantic meaning

e | ess language specific

e Data flow:
Parse Tree
w Abstract Syntax Tree (possibly with

annotations and/or associated symbol tables)

Transform (Lower)

e Memory layout
e Optimization (optional)
e Code generation

e \/ery target specific

e Data flow:
Abstract Syntax Tree
w /ntermediate Languages/Representations (optional)
w Jarget Machine Code

Source Code

Lexical Analysis
Characters = e ——— —

: > Tokens

Intermediate

>|_anguage

Machine code / Bytecode Object Code

Syntax Analysis
Parse tree

Semantic Analysis

Code Generation

C pre-processor

Pre-processed:

#1nclude <stdio.h>

Post-processed:

/* complete contents of stdio.h */

Pre-processed:

#define PI 3.1415
float p1 = PI;

Post-processed:

float p1 = 3.1415;

Source Code

Lexical Analysis
Characters = e ——— —

: > Tokens

Intermediate

>|_anguage

Machine code / Bytecode Object Code

Syntax Analysis
Parse tree

Semantic Analysis

Code Generation

Source Code

Pre-processor |
Lexical Analysis

Characters
o - Tokens
Pre-processor
Syntax Analysis
Parse tree T S ——
Pre-processor Engine Characters

C Lexical Analysis
Tokens

Parse tree

~ C Syntax Analysis

Lexical Analysis

Recognizing the
textual building blocks
of source code

A scanner or lexer converts
a stream of characters
Into
a stream of lexical tokens

Characters

e Visual representation (human):

o ASCII characters or Unicode code points
e Physical byte representation:

e Fixed length: 7 bit ASCII, UCS-4

e Variable length: UTF-8/16/32

e Integers to the compiler

Lexical Token

* One of a fixed set of distinguishing categories:
* |dentifiers
* Reserved identifiers / keywords
e | iteral constants: numeric, string
e Special punctuaction (braces, symbols, etc.)
e Comments

e | anguage specific

Scanner/Lexer

e Consumes character input

e|dentifies lexical boundaries

e Emits a stream of tokens

 |dentifies malformed input and emits errors

* Chooses what to ignore (comments, whitespace)

e Manages additional bookkeeping like source
coordinates (input filenames, line and column
numbers)

1T x<y{v=1}

1T x <y {v=11]

IF
IDENT x

IDENT y

IDENT v

INTEGER 1

Careful language
design choices can
enable fast scanners

Building lexical
analyzers

struct Token {
enum {
IF, LT, IDENT, LITERAL,
; type;
union {

char *ident;
int literal;
!
// more bookkeeping

'

data Token
If
Lt

|

| Ident String

| Literal Integer
|

|dea: Use finite automata (state
machines) to recognize tokens
out of a stream of characters

Example:
Addition expressions

Example expressions

1
123+456
1+2+3+456

Lexical structure

e 2 token types
* Plus
* Positive integer literal

* No whitespace handling

2. — Vocabulary

>={0,1,2,3,4,5,6,7,8,9, +}

Represent finite automata
(state machines) using a
state transition diagrams

State transition diagram: Plus

= R
~

State transition diagram:

Positive integer literals

o

...else...

~

\/

Non-deterministic finite automata
(NFA)

el \
/

<4

\

1...9
X)
0...9

Deterministic finite automata
(DFA)

LR

0...9

Table driven DFA

S T error U U U U U U U U U

T S+ Emit Plus

U T U+ U+ U+ U+ U+ U+ U+ U+ U+ U+ Emit Literal

Notation: V to change state, V+ to change while consuming 1 input character

while True:
c = curlnput()
if state i1s START:
1if ¢ == "+':
emitPlus ()
nextInput ()
elif ¢ in digitsl9:
save(c)
state = LITERAL

nextInput ()
else:

error ()
elif state 1s LITERAL:
if ¢ in digits09:
save(c)
nextInput ()
else:

emitLiteral (getSaved())
resetSaved ()
state = START

if ¢ 1is EOF: break

Regular Expressions

* A regular expression is a rigorous mathematic statement
defining the members of a regular set

e Very compact means of specifying the structure of lexical
tokens

Notation & Definitions

Let @ be the empty set

Let 2 be a finite set of
distinguished characters
(the vocabulary)

May use quote marks to avoid confusion:

Z —_ { E{E, i}!, E,!

A string is defined inductively by cases:
1. The empty or null string, denoted A
cJ+A
2. A character from 2 is itself a string
3. The concatenation of two strings is a string

* Forany stringsSand T, bothSTand T S
are strings

* Forany string S,AS=SA=S

@ is also a reqgular expression
denoting the empty set

Any string S is a regular expression,
denoting the set containing that
string

Forming regular expressions

For any two regular expressions A and B, the following are also
regular expressions:

1. Alternation: A | B
e Set union
2. Concatenation: AB

e Set of all strings formed by the concatenation of any
string from A and any string from B

3. Kleene Closure: A*
e /ero or more concatenations of A
4. Parenthesis: (A)

* Disambiguation

Useful shorthands

. Positive Closure: A+

e A A* (one or more concatenations)

. Optional: A?

e A|A(zero or one A)

. Complement: Not(A)

e Match anything from 2 that does not match A
. Character ranges: [“A” ... “Z”]
° uAu | ccBu | | uYu | uzu

e When it’s clear what the “...” ranges over

Examples

Addition expressions tokens
as regular expressions

2={0,1,2,8,4,5,6,7,8,9, +}

Digits19=(1|2|3|4|5|6|7|8]|9)
Digits = (0 | Digits19)

Plus = (+)

Literal = (Digits19 Digits™)

Token = Plus | Literal

More examples (1)

Digit = “0” ... “9”
Letter _ uau o “Z” | uAu o uzu
Identifier = (Letter | “_”) (Letter | Digit | “_”)*

More examples (2)

Digit1 = “1” ... “9”

Digit = “0” | Digit1

HexDigit = Digit | “a” ... “f” | “A” ... “F”
DecLiteral = Digit1 Digit*

HexLiteral = “0” (“x” | “X”) HexDigit*
Literal = (“-“)? DeclLiteral | HexLiteral

More examples (3)

EOL =\r' | \n’ | \r \n’
PythonComment = ‘#’ Not(EOL)* EOL
CComment — ¢/c T3 Not(c*! ‘/‘)* T3 ‘/5

Great... but can we
use them in a lexer?

By Thompson’s construction, a
regular expression can always
be converted into an NFA

NFA’s are equivalent to DFA’s

It’s always possible to convert an NFA into a DFA

DFA scanners can be
Implemented extremely
efficiently

See re2c for an even faster, code generation approach

http://re2c.org/

Scanner development options

e Write by hand
* Use scanner generator tools

e Provide a specially formatted definition file containing
regular expressions and code fragments

 (Generates source code implementing the scanner

e GNU Flex, ANTLR, PLY (Python Lex-Yacc), Ragel, re2c

e Use built-in language support for regular expressions

scanner.py

1T x <y {v=11]

IF
IDENT x

IDENT y

IDENT v

INTEGER 1

import re

SPEC = r' "
(?P<IDENT> [_a-zA-Z] [_a-zA-Z0-9]*
(?P<NUMBER> [-]1? [1-9] [0-9]*
(7P<LT> <
(7P<EQ> =
(?P<LBRACE> {
(?P<RBRACE> }
(7P<WS> \'s+

lex = re.compile(SPEC, re.VERBOSE) .match

Next Week

e Syntax analysis & parsing

No tutorial on
Tuesday Jan 22

