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Agenda
• Branching IR


• Control flow graphs


• Routines


• Real machines


• Wrapping up



Quadruple Intermediate Representation

• Assume an infinite number of temporary registers Ri 

• Hence the term intermediate, these will have to be mapped onto a finite set 
of physically available machine registers


• Special opcode called label (not an actual machine instruction)


• Results can include registers Ri, constant indices Ti and labels:


• Constant Ti refers to tuple i in sequence


• Symbolic label Lname  will be resolved to a specific target tuple index later

( opcode, left, right, result )

Express machine instructions with their input 
and output registers as 4-tuples



T1 ( mul , A , B , R1 ) R1 ← A * B

T2 ( add , C , D , R2 ) R2 ← C + D

T3 ( lte , R1 , R2 , R3 ) R3 ← R1 ≤ R2

T4 ( br , R3 , T??? , Lfalse ) PC ← T??? if R3 else Lfalse

T5 ( eq , P , Q , R4 ) R4 ← P == Q

T6 ( br , R4 , Ltrue , T??? ) PC ← Ltrue if R4 else T???

T7 ( neq , Q , R , R5 ) R5 ← Q != R

T8 ( br , R5 , Ltrue , Lfalse ) PC ← Ltrue if R5 else Lfalse

((A * B) <= (C + D)) and ((P == Q) or (Q != R))

Branching IR Example



T1 ( mul , A , B , R1 ) R1 ← A * B

T2 ( add , C , D , R2 ) R2 ← C + D

T3 ( lte , R1 , R2 , R3 ) R3 ← R1 ≤ R2

T4 ( br , R3 , T5 , Lfalse ) PC ← T5 if R3 else Lfalse

T5 ( eq , P , Q , R4 ) R4 ← P == Q

T6 ( br , R4 , Ltrue , T7 ) PC ← T7 if R3 else Lfalse

T7 ( neq , Q , R , R5 ) R5 ← Q != R

T8 ( br , R5 , Ltrue , Lfalse ) PC ← Ltrue if R5 else Lfalse

((A * B) <= (C + D)) and ((P == Q) or (Q != R))

Branching IR Example



Control Flow Graphs

BB 1

BB 2

BB 3

BB 4 BB 5

unconditional
true false



Boolean Conditional Expressions
 result = not P

genBB_BoolNot(node, result, bbT, bbF): 
  bb = genBB(node.expr, result, bbF, bbT) 
  return bb



Control flow graph 
examples



CFG Examples
if expression? { statements… }

expression?

nextBB

statements…

true

false



CFG Examples
if expression? { s1… } else { s2… }

expression?

nextBB

s1… s2…

falsetrue

unconditional unconditional



CFG Examples
if e1? { s1… } else if e2? { s2… }

e1?

nextBB

s1…

s2…

e2?

false

false

true

true

unconditional unconditional



CFG Examples
while expression? { statements… }

expression?

nextBB

statements…

true

false

unconditional



CFG Examples
repeat { statements… } until expression?

expression?

nextBB

statements…

true

false unconditional



CFG Examples
for (init; cond?; step) statement

nextBB

init

step

cond?

statement

falsetrue

Contains both forwards and backwards jumps

unconditional

unconditional

unconditional



Mutually recursive 
basic blocks

BB 3

BB 1

BB 2

true

true

false

false genBB_Rec(…): 
  bb3 = genBB(…) 

  # Uh oh… 
  bb1 = genBB(…, bb2, bb3) 
  bb2 = genBB(…, bb1, bb3) 

  return bb3



genBB_Rec(…): 
  bb3 = genBB(…) 

  bb2ref = bbRef() 
  bb1ref = bbRef() 

  bb1 = genBB(…, bb2ref, bb3.ref) 
  bb2 = genBB(…, bb1ref, bb3) 

  bb2ref.ref = bb2 
  bb1ref.ref = bb1 

  return bb3
class BB: 
  __init__: 
    self.ref = self

Mutually recursive basic blocks



Control Flow Graphs
• A control flow graph of interconnected basic blocks can be assembled into a final 

linear list of instructions and labels


• Many opportunities for optimization at the level of the intermediate representation:


• Block layout order can take advantage of branch fall-through instructions


• Remove unconditional jumps by merging two basic blocks into single sequence of 
instructions (possibly with a label if second block was the target of >1 branches)


• When bbLeft=bbRight, transform conditional branch into unconditional jump (then 
apply above)


• Delete instructions that produce values that are never used (requires more 
elaborate usage analysis to prove)


• Propagate constant values, unroll short loops, hoist out common subexpressions, 
convert expensive instructions to cheaper ones



Code generation 
for routines



Routine declaration 
code generation

• For each routine (procedure or function), lay out the 
activation record offsets for all key data: parameters, local 
variables, control


• When generating code for each routine, the code generated 
should contain three pieces:


• Prologue: sets up the runtime environment for the routine, 
such as allocating local storage and setting up the display


• Body scope code: generated statement by statement


• Epilogue: cleans up the runtime environment, restores the 
display and jumps back to the caller return site



Routine call 
code generation

• When calling a routine (function or procedure), the compiler should 
statically know the address where the routine declared starts (the prologue)


• If not knowable statically (a virtual method table in C++ terms), at least 
have a method for where to find the correct destination branch address


• A routine call involves 3 parts:


• Setup: evaluate arguments and make the results available as 
parameters, deal with return site and return value allocation


• Make the jump: unconditionally branch to routine prologue


• Return site: placed immediately after the jump, performs any necessary 
setup or return value extraction



Caller vs Callee
• The caller is the one making the call to the calle, and the callee is the 

thing that is being called by the caller


• To effect a call, the caller and callee must agree on certain convention 
and divisions of labour


• Who will handle each piece?


• Register save and restore


• Display manipulation


• Return value preparation


• Allocating local storage space


• Argument evaluation



Possible activation record layout
Temporary storage

…

Local storage…

Old Display Save

Argument N

…

Argument 1

Return site address

Return value

Callee Push

Caller Push

Callee Pop

Callee Pop



Returning
• Routine return calls can be implemented as a branch to 

the local epilogue


• In the case of function return, first evaluate and save 
the return value and then branch


• Typically the ISA allocates a specific register for returning 
small scalar values (machine word sized)


• For larger return values (such as struct’s), the caller may 
allocate storage and pass a pointer to the callee through 
which it can write return values



Argument passing methods
• The caller passes in arguments which the callee receives as 

formally named parameters


• What does it mean to pass a parameter? What does A[i] 
actually mean?


• Call by value: pass value of A[i]


• Call by reference: pass the address of A[i]


• Call by name: pass something that calculates the address 
of A[i]


• Call by value-result: pass the value of A[i] as the named 
formal parameter on entrance, and copy the value of that 
formal parameter back to the original parameter on exit



Argument passing methods
• By value: formal parameter can be treated like a local variable that is pre-

initialized with the value of the passed argument


• Some languages will dictate that all formal parameters are constant 
read-only


• By result: the formal parameter acts like a kind of return value; it is 
uninitialized at entrance, but its value is copied back out to argument at exit


• By value-result: like by result, but argument is initially passed by value into 
formal parameter


• By reference (address): formal parameter is actually passed the address of 
the argument, and any scalar assignment of that parameter name acts like 
a pointer-dereferenced assignment


• By name: like by reference, except that address is recalculated on each use 
(lazy evaluation)



Passing interpretations
func F(p integer) { 
  p = p + 1 
  print p 
} 
var x integer 
x = 1 
F(x) 
print x

Output: 

By value: 
2 1 

By reference, 
value-result: 
2 2



Passing interpretations
func F(i, E integer) { 
  i = i + 1 
  E = E + 1 
} 
var A [2]integer 
var i integer 
i = 0 
A[0] = 0  A[1] = 1 

F(i, A[i]) 
print i, A[0], A[1]

Output: 

By value: 
0   0 1


By reference, 
value-result: 
1   1 1


By name: 
1   0 2



Routine code layout

func F() { 
  func A() { 
    func P() { … } 
    func Q() { … } 
  } 
  func B() { … } 
}

Offset Code

0

               F 
• Prologue

• Body

• Epilogue

+ A (F)

++ P (A F)

+++ Q (A F)

++++ B (F)



Quad IR vs Real Machines
• Not all instruction opcodes we want to use in the IR are available as actual 

machine instructions


• The machine code specifics for real architectures sometimes offer 
compound instructions that can express multiple steps in one instruction:


•mov rax, [rbx + 4*rcx]         rax = *(rbx + 4*rcx) 

• Templates can be used to identify and express multiple quad IR opcodes 
as single machine instructions using these addressing modes


• The tuple-based IR assumed an infinite number of pseudo-registers Rk, 
whereas real machines have a finite number


• Register allocation is the process of mapping the pseudo-registers onto real 
machine registers, taking into account overlapping use and the finite limit



Register Allocation
• Perform a Live Variable Analysis on all pseudo registers used


• A register is live inclusively between the point where it is given a value 
and where it is last used


• Build an interference graph:


• Register X interferes with register Y if X is live at the point of definition 
for Y


• The graph contains registers Rk as nodes, and edges between nodes 
Ra and Rb if the registers interfere with one another


• If there are N physical registers available, any node with less than N 
edges can be assigned to a physical register



Register Allocation

load A, R1

add R1, D, R1

load B, R2 load C, R3

… uses of R2, R3 …

R1 live

R1R2

R3



Register Allocation
• Attempt to colour the interference graph with N unique colours (where 

N is the number of available physical registers)


• Nodes connected in the graph cannot share the same colour 
(because they are live at the same time)


• A successful graph colouring corresponds to a valid mapping of 
pseudo registers to machine registers


• If colouring succeeds, all pseudo registers have been mapped


• If it fails, find the region with highest register pressure (most 
registers live at same time) and spill some pseudo registers into 
temporary storage memory


• Graph colouring is NP hard, although some linear approximations and 
alternate approaches to allocation exist



In practise

• Libraries like LLVM provide users with a convenient, 
higher level IR abstraction with complete optimizing code 
generation backends targeting multiple machine 
architectures


• Compiler suites like GCC support multiple frontend 
languages (C, C++, Fortran, Java, Ada, Go) and provide 
multiple intermediate tree representations for the 
purposes of optimization and target machine abstraction



Conclusion



Recognize Analyze Transform

Frontend Backend



Thank you! 
 

Good luck!


