
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Branching IR

• Control flow graphs

• Routines

• Real machines

• Wrapping up

Quadruple Intermediate Representation

• Assume an infinite number of temporary registers Ri

• Hence the term intermediate, these will have to be mapped onto a finite set
of physically available machine registers

• Special opcode called label (not an actual machine instruction)

• Results can include registers Ri, constant indices Ti and labels:

• Constant Ti refers to tuple i in sequence

• Symbolic label Lname will be resolved to a specific target tuple index later

(opcode, left, right, result)

Express machine instructions with their input
and output registers as 4-tuples

T1 (mul , A , B , R1) R1 ← A * B

T2 (add , C , D , R2) R2 ← C + D

T3 (lte , R1 , R2 , R3) R3 ← R1 ≤ R2

T4 (br , R3 , T??? , Lfalse) PC ← T??? if R3 else Lfalse

T5 (eq , P , Q , R4) R4 ← P == Q

T6 (br , R4 , Ltrue , T???) PC ← Ltrue if R4 else T???

T7 (neq , Q , R , R5) R5 ← Q != R

T8 (br , R5 , Ltrue , Lfalse) PC ← Ltrue if R5 else Lfalse

((A * B) <= (C + D)) and ((P == Q) or (Q != R))

Branching IR Example

T1 (mul , A , B , R1) R1 ← A * B

T2 (add , C , D , R2) R2 ← C + D

T3 (lte , R1 , R2 , R3) R3 ← R1 ≤ R2

T4 (br , R3 , T5 , Lfalse) PC ← T5 if R3 else Lfalse

T5 (eq , P , Q , R4) R4 ← P == Q

T6 (br , R4 , Ltrue , T7) PC ← T7 if R3 else Lfalse

T7 (neq , Q , R , R5) R5 ← Q != R

T8 (br , R5 , Ltrue , Lfalse) PC ← Ltrue if R5 else Lfalse

((A * B) <= (C + D)) and ((P == Q) or (Q != R))

Branching IR Example

Control Flow Graphs

BB 1

BB 2

BB 3

BB 4 BB 5

unconditional
true false

Boolean Conditional Expressions
 result = not P

genBB_BoolNot(node, result, bbT, bbF):
 bb = genBB(node.expr, result, bbF, bbT)
 return bb

Control flow graph
examples

CFG Examples
if expression? { statements… }

expression?

nextBB

statements…

true

false

CFG Examples
if expression? { s1… } else { s2… }

expression?

nextBB

s1… s2…

falsetrue

unconditional unconditional

CFG Examples
if e1? { s1… } else if e2? { s2… }

e1?

nextBB

s1…

s2…

e2?

false

false

true

true

unconditional unconditional

CFG Examples
while expression? { statements… }

expression?

nextBB

statements…

true

false

unconditional

CFG Examples
repeat { statements… } until expression?

expression?

nextBB

statements…

true

false unconditional

CFG Examples
for (init; cond?; step) statement

nextBB

init

step

cond?

statement

falsetrue

Contains both forwards and backwards jumps

unconditional

unconditional

unconditional

Mutually recursive
basic blocks

BB 3

BB 1

BB 2

true

true

false

false genBB_Rec(…):
 bb3 = genBB(…)

 # Uh oh…
 bb1 = genBB(…, bb2, bb3)
 bb2 = genBB(…, bb1, bb3)

 return bb3

genBB_Rec(…):
 bb3 = genBB(…)

 bb2ref = bbRef()
 bb1ref = bbRef()

 bb1 = genBB(…, bb2ref, bb3.ref)
 bb2 = genBB(…, bb1ref, bb3)

 bb2ref.ref = bb2
 bb1ref.ref = bb1

 return bb3
class BB:
 __init__:
 self.ref = self

Mutually recursive basic blocks

Control Flow Graphs
• A control flow graph of interconnected basic blocks can be assembled into a final

linear list of instructions and labels

• Many opportunities for optimization at the level of the intermediate representation:

• Block layout order can take advantage of branch fall-through instructions

• Remove unconditional jumps by merging two basic blocks into single sequence of
instructions (possibly with a label if second block was the target of >1 branches)

• When bbLeft=bbRight, transform conditional branch into unconditional jump (then
apply above)

• Delete instructions that produce values that are never used (requires more
elaborate usage analysis to prove)

• Propagate constant values, unroll short loops, hoist out common subexpressions,
convert expensive instructions to cheaper ones

Code generation
for routines

Routine declaration
code generation

• For each routine (procedure or function), lay out the
activation record offsets for all key data: parameters, local
variables, control

• When generating code for each routine, the code generated
should contain three pieces:

• Prologue: sets up the runtime environment for the routine,
such as allocating local storage and setting up the display

• Body scope code: generated statement by statement

• Epilogue: cleans up the runtime environment, restores the
display and jumps back to the caller return site

Routine call
code generation

• When calling a routine (function or procedure), the compiler should
statically know the address where the routine declared starts (the prologue)

• If not knowable statically (a virtual method table in C++ terms), at least
have a method for where to find the correct destination branch address

• A routine call involves 3 parts:

• Setup: evaluate arguments and make the results available as
parameters, deal with return site and return value allocation

• Make the jump: unconditionally branch to routine prologue

• Return site: placed immediately after the jump, performs any necessary
setup or return value extraction

Caller vs Callee
• The caller is the one making the call to the calle, and the callee is the

thing that is being called by the caller

• To effect a call, the caller and callee must agree on certain convention
and divisions of labour

• Who will handle each piece?

• Register save and restore

• Display manipulation

• Return value preparation

• Allocating local storage space

• Argument evaluation

Possible activation record layout
Temporary storage

…

Local storage…

Old Display Save

Argument N

…

Argument 1

Return site address

Return value

Callee Push

Caller Push

Callee Pop

Callee Pop

Returning
• Routine return calls can be implemented as a branch to

the local epilogue

• In the case of function return, first evaluate and save
the return value and then branch

• Typically the ISA allocates a specific register for returning
small scalar values (machine word sized)

• For larger return values (such as struct’s), the caller may
allocate storage and pass a pointer to the callee through
which it can write return values

Argument passing methods
• The caller passes in arguments which the callee receives as

formally named parameters

• What does it mean to pass a parameter? What does A[i]
actually mean?

• Call by value: pass value of A[i]

• Call by reference: pass the address of A[i]

• Call by name: pass something that calculates the address
of A[i]

• Call by value-result: pass the value of A[i] as the named
formal parameter on entrance, and copy the value of that
formal parameter back to the original parameter on exit

Argument passing methods
• By value: formal parameter can be treated like a local variable that is pre-

initialized with the value of the passed argument

• Some languages will dictate that all formal parameters are constant
read-only

• By result: the formal parameter acts like a kind of return value; it is
uninitialized at entrance, but its value is copied back out to argument at exit

• By value-result: like by result, but argument is initially passed by value into
formal parameter

• By reference (address): formal parameter is actually passed the address of
the argument, and any scalar assignment of that parameter name acts like
a pointer-dereferenced assignment

• By name: like by reference, except that address is recalculated on each use
(lazy evaluation)

Passing interpretations
func F(p integer) {
 p = p + 1
 print p
}
var x integer
x = 1
F(x)
print x

Output:

By value:
2 1

By reference,
value-result:
2 2

Passing interpretations
func F(i, E integer) {
 i = i + 1
 E = E + 1
}
var A [2]integer
var i integer
i = 0
A[0] = 0 A[1] = 1

F(i, A[i])
print i, A[0], A[1]

Output:

By value:
0 0 1

By reference,
value-result: 
1 1 1

By name:
1 0 2

Routine code layout

func F() {
 func A() {
 func P() { … }
 func Q() { … }
 }
 func B() { … }
}

Offset Code

0

 F
• Prologue

• Body

• Epilogue

+ A (F)

++ P (A F)

+++ Q (A F)

++++ B (F)

Quad IR vs Real Machines
• Not all instruction opcodes we want to use in the IR are available as actual

machine instructions

• The machine code specifics for real architectures sometimes offer
compound instructions that can express multiple steps in one instruction:

•mov rax, [rbx + 4*rcx] rax = *(rbx + 4*rcx)

• Templates can be used to identify and express multiple quad IR opcodes
as single machine instructions using these addressing modes

• The tuple-based IR assumed an infinite number of pseudo-registers Rk,
whereas real machines have a finite number

• Register allocation is the process of mapping the pseudo-registers onto real
machine registers, taking into account overlapping use and the finite limit

Register Allocation
• Perform a Live Variable Analysis on all pseudo registers used

• A register is live inclusively between the point where it is given a value
and where it is last used

• Build an interference graph:

• Register X interferes with register Y if X is live at the point of definition
for Y

• The graph contains registers Rk as nodes, and edges between nodes
Ra and Rb if the registers interfere with one another

• If there are N physical registers available, any node with less than N
edges can be assigned to a physical register

Register Allocation

load A, R1

add R1, D, R1

load B, R2 load C, R3

… uses of R2, R3 …

R1 live

R1R2

R3

Register Allocation
• Attempt to colour the interference graph with N unique colours (where

N is the number of available physical registers)

• Nodes connected in the graph cannot share the same colour
(because they are live at the same time)

• A successful graph colouring corresponds to a valid mapping of
pseudo registers to machine registers

• If colouring succeeds, all pseudo registers have been mapped

• If it fails, find the region with highest register pressure (most
registers live at same time) and spill some pseudo registers into
temporary storage memory

• Graph colouring is NP hard, although some linear approximations and
alternate approaches to allocation exist

In practise

• Libraries like LLVM provide users with a convenient,
higher level IR abstraction with complete optimizing code
generation backends targeting multiple machine
architectures

• Compiler suites like GCC support multiple frontend
languages (C, C++, Fortran, Java, Ada, Go) and provide
multiple intermediate tree representations for the
purposes of optimization and target machine abstraction

Conclusion

Recognize Analyze Transform

Frontend Backend

Thank you! 
 

Good luck!

