CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick
pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

Branching IR
Control flow graphs
Routines

Real machines

Wrapping up

Quadruple Intermediate Representation

Express machine instructions with their input
and output registers as 4-tuples

(opcode, left, right, result)

 Assume an infinite number of temporary registers R;

 Hence the term intermediate, these will have to be mapped onto a finite set
of physically available machine registers

e Special opcode called label (not an actual machine instruction)
* Results can include registers R;, constant indices T; and labels:
e Constant T; refers to tuple /i in sequence

e Symbolic label Lrame Will be resolved to a specific target tuple index later

Branching IR Example

(c + D)) and ((P ==10Q) or (Q !=R))

T+ (mul ,A ,B ,Ri) Ri - A™B
T (add ,C ,D ,Re) Re = G+ D
Ta (te ,Ri1 ,R2 ,R3s) Rs < Ri <R
T. (br "Rz, T222 , Lfasse) PC « T2 if R3 else Ltase
Ts (eq ,P ,Q ,Rs4) Re - P==0Q
Te (br Rs4 ., Lirue , T22) PC « Line if Rs else T777
T- (neg ,Q ,R ,Rs) Rs < Q=R
Ta (br "Rs , Lirue , Ltasse) PC « Liue if Rs else Liase

Branching IR Example

(c + D)) and ((P ==10Q) or (Q !=R))

(mul ,A ,B , R1) Ri < A*B

(, R2) Ro—~C+D

(Ite ,Rs3) Rs « R1 < Ro
Yl ~Ts , Laise) PC « Tsif Rs else Lase
Ts eq ,P ,Q ,Ra4) Ry~ P==Q
(
(

Lirge > T7) PC « Tz if Rs else Lise
neq !Q !R 5R5) RS‘_Q'=R

br , R5 , Ltrue , Lfalse) PC « Liue if Rs else Lrase

Control Flow Graphs

unconditional

Boolean Conditional Expressions

result = not P

genBB BoolNot(node, result, bbT, bbF):
bb = genBB(node.expr, result, bbF, bbT)
return bb

Control flow graph
examples

CFG Examples

1f expression? { statements.. }

expression?

statements...

CFG Examples

1f expression? { sl.. } else { s2..

expression? [

unconditiona "~ " unconditional

]
AN
e ~
T
>
v s
Bl
4 hN
AR,
B O e
.
)
"

nextBB

CFG Examples

1T el? { sl.. } else 1f e2? { s2.. }

unconditional '\, unconditional

nextBB

CFG Examples

while expression? { statements.. }

% expression? [

J unconditional

false | statements... |

CFG Examples

repeat { statements.. } until expression?

 statements...

t unconditional

false {

expression?

true

CFG Examples

for (init; cond?; step) statement

unconditional

%\ false

unconditional {

§ unconditional

¢
! !
X !
e,)
ke D
N -
) o)
N N
s VO P\
. £ . 4 e
. > nl
e y R
- = Gt)
R . L3 "< g
Vs
S e

Contains both forwards and backwards jumps

Mutually recursive
basic blocks

true false genBB_Rec (..):

bb3 = genBB(..)
Uh oh..
bbl genBB (.., bbZ2, bb3)

ﬁﬂbewg D

b genBB (.., bbl, bb3)

return bb3

Mutually recursive basic blocks

genBB Rec(..):
bb3 = genBB(...)

bb2ref bbRef ()
pbblref bbRef ()

bbl genBB (.., bb2ref, bb3.ref)
o]o genBB (.., bblref, bb3)

bb2ref.ref b2
bblref.ref
class BB:

return bb3 __init__:
self.ref = self

Control Flow Graphs

* A control flow graph of interconnected basic blocks can be assembled into a final
linear list of instructions and labels

e Many opportunities for optimization at the level of the intermediate representation:
* Block layout order can take advantage of branch fall-through instructions

e Remove unconditional jumps by merging two basic blocks into single sequence of
instructions (possibly with a label if second block was the target of >1 branches)

 When bbLeft=bbRight, transform conditional branch into unconditional jump (then
apply above)

e Delete instructions that produce values that are never used (requires more
elaborate usage analysis to prove)

e Propagate constant values, unroll short loops, hoist out common subexpressions,
convert expensive instructions to cheaper ones

Code generation
for routines

Routine declaration
code generation

* For each routine (procedure or function), lay out the
activation record offsets for all key data: parameters, local
variables, control

* When generating code for each routine, the code generated
should contain three pieces:

* Prologue: sets up the runtime environment for the routine,
such as allocating local storage and setting up the display

* Body scope code: generated statement by statement

* Epilogue: cleans up the runtime environment, restores the
display and jumps back to the caller return site

Routine call
code generation

 When calling a routine (function or procedure), the compiler should
statically know the address where the routine declared starts (the prologue)

e |f not knowable statically (a virtual method table in C++ terms), at least
have a method for where to find the correct destination branch address

* A routine call involves 3 parts:

e Setup: evaluate arguments and make the results available as
parameters, deal with return site and return value allocation

* Make the jump: unconditionally branch to routine prologue

* Return site: placed immediately after the jump, performs any necessary
setup or return value extraction

Caller vs Callee

* The caller is the one making the call to the calle, and the callee is the
thing that is being called by the caller

e To effect a call, the caller and callee must agree on certain convention
and divisions of labour

 Who will handle each piece?
* Register save and restore
e Display manipulation
e Return value preparation
e Allocating local storage space

* Argument evaluation

Possible activation record layout

Temporary storage

Callee Push
Local storage...
Old Display Save
Callee Pop
Argument N
Caller Push Argument 1

Return site address

Return value I Callee Pop

Returning

e Routine return calls can be implemented as a branch to
the local epilogue

e |n the case of function return, first evaluate and save
the return value and then branch

e Typically the ISA allocates a specific register for returning
small scalar values (machine word sized)

* For larger return values (such as struct’s), the caller may
allocate storage and pass a pointer to the callee through
which it can write return values

Argument passing methods

* The caller passes in arguments which the callee receives as
formally named parameters

* What does it mean to pass a parameter? What does Afi]
actually mean?

e Call by value: pass value of Afi]

e Call by reference: pass the address of Afi]

e Call by name: pass something that calculates the address
of Afi]

e (Call by value-result: pass the value of Ai] as the named
formal parameter on entrance, and copy the value of that
formal parameter back to the original parameter on exit

Argument passing methods

By value: formal parameter can be treated like a local variable that is pre-
initialized with the value of the passed argument

e Some languages will dictate that all formal parameters are constant
read-only

By result: the formal parameter acts like a kind of return value; it is
uninitialized at entrance, but its value is copied back out to argument at exit

By value-result: like by result, but argument is initially passed by value into
formal parameter

By reference (address): formal parameter is actually passed the address of
the argument, and any scalar assignment of that parameter name acts like
a pointer-dereferenced assignment

By name: like by reference, except that address is recalculated on each use
(lazy evaluation)

Passing interpretations

func F(p 1nteger) {

var X 1nteger
X =1

F(X)

print x

Output:

By value:
2 1

By reference,
value-result:
22

Passing interpretations

func F (1, Output:

]]
E E By value:
) 0 01

var A [2]1nteger
var 1 integer By reference,

1T =0 value-result:
A[O] = 0 A[l] = 1 11

integer) {

E
1
1

+
+

FC1, ALT]D) By hame:
print 1, A[O], A[1l] 1 002

Routine code layout

func F() { .
func A() { o | proiaue
func P() { .. } " Epllogue
func Q() { .. } ; A (F)
} ++ P(AF)
func B() { .. } - QA
} B (F)

Quad IR vs Real Machines

Not all instruction opcodes we want to use in the IR are available as actual
machine instructions

The machine code specifics for real architectures sometimes offer
compound instructions that can express multiple steps in one instruction:

® mov rax, [rbx + 47rcx] rax = *(rbx + 47rcx)

 Templates can be used to identify and express multiple quad IR opcodes
as single machine instructions using these addressing modes

The tuple-based IR assumed an infinite number of pseudo-registers R,
whereas real machines have a finite number

Reqister allocation is the process of mapping the pseudo-registers onto real
machine registers, taking into account overlapping use and the finite limit

Register Allocation

 Perform a Live Variable Analysis on all pseudo registers used

e A reqister is live inclusively between the point where it is given a value
and where it is last used

e Build an interference graph:

* Register X interferes with register Y if X is live at the point of definition
forY

e The graph contains registers Rk as nodes, and edges between nodes
Ra and Ry if the registers interfere with one another

* If there are N physical registers available, any node with less than N
edges can be assigned to a physical register

Register Allocation

... uses of Ry, Rs...

R1 live

Register Allocation

e Attempt to colour the interference graph with N unique colours (where
N is the number of available physical registers)

* Nodes connected in the graph cannot share the same colour
(because they are live at the same time)

* A successful graph colouring corresponds to a valid mapping of
pseudo registers to machine registers

* |f colouring succeeds, all pseudo registers have been mapped

e [f it fails, find the region with highest register pressure (most
registers live at same time) and spill some pseudo registers into
temporary storage memory

e Graph colouring is NP hard, although some linear approximations and
alternate approaches to allocation exist

In practise

e Libraries like LLVM provide users with a convenient,
higher level IR abstraction with complete optimizing code
generation backends targeting multiple machine
architectures

e Compiler suites like GCC support multiple frontend
languages (C, C++, Fortran, Java, Ada, Go) and provide
multiple intermediate tree representations for the
purposes of optimization and target machine abstraction

Conclusion

Recognize Analyze Transform

Gr— {—
Frontend Backend

Thank you!

Good luck!

