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Agenda
• Local storage


• Activation records


• Lexical level


• Displays


• Closures


• Code generation


• IR


• Expressions and statements


• Control flow graphs



Local storage
• Whereas a given program will have a fixed amount of required 

global storage (code, constants, variables, static data), the dynamic 
nature of procedural programming requires another level of local 
storage


• For most typical languages, this means some amount of memory is 
allocated on entry into a procedure/function, and deallocated on 
exit 

• Stack-like LIFO ordering: Last In, First Out


• A stack is an ideal structure for this because allocations & 
deallocations are very cheap operations (simple arithmetic on a 
stack pointer)


• These per-function-call allocations are laid out as activation records



Activation Records



Activation Records
• Organization of local storage for a particular function/procedure call (each call has its 

own copy of the record)


• Typical contents:


• Return address


• Parameters originally passed to function


• Control block (extra bookkeeping)


• Storage for all locally scoped variables (including enclosed minor scopes)


• Pointers to any dynamically allocated memory (arrays, variable length arguments)


• Temporary storage


• Use one hardware register to store address, and then use register+constant 
displacement instruction addressing to index into it



func F(P, Q int32) { 
  var x, y, z int32 
  var c [4]int8 

  if true { 
    var t [4]int32 
  } 

  while true { 
    var u, v int32 
  }  
}

Activation Record — Example 
Offset Record

76 v
72 u
68 t[3]
64 t[2]
60 t[1]
56 t[0]
52 c[0], c[1], c[2], c[3]
48 z
44 y
40 x
36 Q
32 P

0 Control (example 32B)



Activation Record — Compact 
Offset Record

68 t[3]       -

64 t[2]       -

60 t[1]       v

56 t[0]       u

52 c[0] c[1] c[2] c[3]

48 z

44 y

40 x

36 Q

32 P

0 Control

func F(P, Q int32) { 
  var x, y, z int32 
  var c [4]int8 

  if true { 
    var t [4]int32 
  } 

  while true { 
    var u, v int32 
  }  
}



Lexical Level
• The lexical level is the depth of static nested enclosing scopes 

within a program


• Usually counted in terms of major scopes (since minor scopes 
can be compacted into the parent enclosing major scope)


• Top level definitions at 0, top level defined routines at 1, 
nested routines at 2, etc.


• Each activation record is associated at the lexical level of the 
corresponding major scope


• For most languages, at most one activation record at each 
lexical level is in scope at each point in the program



Lexical Levels — Static Depth

func F() { 
  func A() { 
    func P() { … } 
    func Q() { … } 
  } 
  func B() { … } 
}

Activation Records

Q

A

B

Q

P

A

B

A

F

Call Sequence: F ➡ A ➡ B ➡ A ➡ P ➡ Q ➡ B ➡ A ➡ Q



Lexical Levels — Static Depth

                    // Lvl  Visible Scopes 
func F() {          //  0    F 
  func A() {        //  1    F, A 
    func P() { … }  //  2    F, A, P 
    func Q() { … }  //  2    F, A, Q 
  } 
  func B() { … }    //  1    F, B 
}



Displays
• The display is an array of activation record stack addresses, 

indexed by lexical level


• Combining a display entry with an offset lets you relatively address 
memory within the activation records


• Non-negative (≥0) offsets indexed into the activation record itself


• Negative offsets index below the activation record on the stack 
(this can be useful depending on when the activation frame is 
setup)


• Enables the access of activation records of enclosing parent 
scopes



Activation Records and Displays

func F() { 
  func A() { 
    func P() { … } 
    func Q() { … } 
  } 
  func B() { … } 
}

Frames

Q

A

B

Q

P

A

B

A

F

Call Sequence: F ➡ A ➡ B ➡ A ➡ P ➡ Q ➡ B ➡ A ➡ Q

Display LL

2

1

0



Display update
• The display must be updated whenever the list of visible 

scopes changes


• Updates happen at functions/procedures call and return 
boundaries 


• Activation records correspond with the major scopes of 
functions/procedures


• All minor scopes are encapsulated within parent major 
scope


• Semantic analysis controls visibility, even though the 
physical memory may overlap or be adjacent with the local 
storage of sibling minor scopes



Display update

LL 0 LL 1 LL 2
F

A
P
Q

B

Call type Relationship Example

Same level Caller and calle have same lexic level A calls B,

P calls Q

Up level Caller lexic level is less than callee level F calls A/B,

A calls P/Q

Down level Caller lexic level is greater than callee level P/Q calls F/A/B,

A/B calls F



Display update
Call Sequence: F0 ➡ A1 ➡ B2 ➡ A3 ➡ P4 ➡ Q5 ➡ B6 ➡ A7 ➡ Q8

LL 0 LL 1 LL 2
F

A
P
Q

B

Depth/

Record # Func Display LL 0 Display LL 1 Display LL 2

0 F F 0

1 A F 0 A 1

2 B F 0 B 2

3 A F 0 A 3

4 P F 0 A 3 P 4

5 Q F 0 A 3 Q 5

6 B F 0 B 6 Q 5

7 A F 0 A 7 Q 5

8 Q F 0 A 7 Q 8

Where F 0, A 1, etc. 
represent activation 

record stack address



Display update & restore
• Both entry to and exit from a major scope requires updating the 

display


• On entry at lexical level L:


• Save current display entry L to local storage


• Prepare new activation record


• Save record stack address to display entry L


• On exit at lexical level L:


• Tear down the activation record


• Restore previous value for display entry L



Problems with displays
• Only works with languages that have specific notion of 

nested functions that are only visible within the scope of 
the immediately enclosing parent scope


• Problems with languages that support passing function 
pointers:


• The activation records of enclosing parent scopes may 
have gone away by the time the function pointer is 
called (since they may have returned)


• Other activation frames may be currently in the display 
at a parents’ lexical level



Closures
• Modern languages allow passing of functional closures, 

whereby a kind of activation record is dynamically 
allocated (i.e. does not live on the stack) and thus can 
outlive the duration of the enclosing function


• Requires a strategy for dealing with dynamically allocated 
closures that are no longer needed/referenced


• Automatic garbage collection, or a form of lifetime 
analysis to determine when its safe to free



Closures
func F(p int) func() int { 
  var x int 
  var e int 

  func G() int { 
    var y int 
    e += 1 
    return e 
  } 

  e = p 

  return G 
} 

G := F(488) 
G() // returns 489 
G() // returns 490

• Activation frames (stack)

• Stack allocated (fixed lifetime)

• F: p, x

• G: y


• G closure

• Heap allocated (open ended lifetime)

• e (escaped F when G referenced it)


• F returns a function value

• A function value consists of a function 

pointer (code reference) and a pointer 
to the dynamically allocated closure

• Code reference known at compile 

time

• Closure pointer is runtime variable



Closures
typedef struct { 
  int (*G)(ClosureG *); 
  int e; 
} ClosureG; 

int F_G(ClosureG *cg) { 
  int y; 
  cg->e += 1; 
  return cg->e; 
} 

ClosureG *F(int p) { 
  int x; 
  int e; 
  e = p; 

  ClosureG *cg = malloc(…); 
  cg->e = e; 
  cg->G = F_G; 
  return cg; 
}

ClosureG *cg; 
cg = F(488); 

cg->G(cg);  // == 489 
cg->G(cg);  // == 490 

// Eventually??? 
free(cg);



Implementation details
• Each local variable has storage requirements in terms of units of the underlying 

memory model


• Parameters, local scalars, arrays


• Laying out activation records can be done at semantic analysis time (as you 
encounter major and minor scopes), or as another pass between semantic 
analysis and code generation


• Consider what information is specifically required for particulars of the 
language, and how to order the record fields for your convenience


• Determine and record total size of record by summing all variable storage within 
the major scope, plus the sizes of all enclosed minor scopes


• Sum of all minor scope sizes, or maximum size over all minor scopes in 
compacted case


• Each local name/identifier/symbol needs to be associated with its lexical level, its 
storage size and an offset into the record



Recognize Analyze Transform

Frontend Backend

We are here



Code Generation



Code Generation
• In the end, the user wants the compiler to transform their program 

sources into something the machine can actually execute (and 
hopefully quickly!)


• This transformation must be faithful to the particulars of the input 
language, and to the reasonable expectations of users


• During code generation, the compiler must translate each facet of 
the language into an appropriate sequence of machine instructions


• While the AST is a helpful abstraction for performing language-
focused semantic analyses like name resolution and type 
checking, it is also helpful to have a machine-focused intermediate 
representation



Quadruple Intermediate Representation

• Assume an infinite number of temporary registers Ri 

• Hence the term intermediate, these will have to be mapped onto a finite set 
of physically available machine registers


• Special opcode called label (not an actual machine instruction)


• Results can include registers Ri, constant indices Ti and labels:


• Constant Ti refers to tuple i in sequence


• Symbolic label Lname  will be resolved to a specific target tuple index later

( opcode, left, right, result )

Express machine instructions with their input 
and output registers as 4-tuples



IR — Example expression

( mul , B , C , R1 ) R1 ← B * C

( div , D , E , R2 ) R2 ← D / E

( add , A , R1 , R3 ) R3 ← A + R1

( sub , R3 , R2 , R4 ) R4 ← R3 - R2

A + B * C - D / E

Inputs: A, B, C, D, E 
Output: R4 

Temporaries: R1, R2, R3 



IR — Branching

( add , B , C , R1 ) R1 ← B + C
( lt , A , R1 , R2 ) R2 ← A < R1

( bf , R2 , Lfalse ) PC ← Lfalse if !R2

( mov , X , R3 ) R3 ← X
( jmp , Lend ) PC ← Lend

( label , Lfalse ) _Lfalse:
( mov , Y , R3 ) R3 ← Y
( label , Lend ) _Lend:

( X if (A < B + C) else Y )

Both of these are forward branch jumps



Resolving label addresses
• Given a list of quads, resolve away symbolic labels through a two pass 

procedure


• 1st pass:


• Iterate through list of quads, assigning an tuple index for each non-label 
opcode


• For each label opcode, record label→tuple index for the index of the first 
following non-label opcode, and discard the original label opcode


• 2nd pass:


• Iterate through list of quads, and for any symbolic label, lookup label→tuple 
index mapping, and replace with tuple index


• If no such mapping, error (instruction refers to a label that was never 
declared)



IR — Branching

( add , B , C , R1 ) R1 ← B + C
( lt , A , R1 , R2 ) R2 ← A < R1

( bf , R2 , Lfalse ) PC ← Lfalse if !R2

( mov , X , R3 ) R3 ← X
( jmp , Lend ) PC ← Lend
( label , Lfalse ) _Lfalse:
( mov , Y , R3 ) R3 ← Y
( label , Lend ) _Lend:

( X if (A < B + C) else Y )



IR — Branching

T1 ( add , B , C , R1 ) R1 ← B + C
T2 ( lt , A , R1 , R2 ) R2 ← A < R1

T3 ( bf , R2 , T6 Lfalse ) PC ← T6 if !R2

T4 ( mov , X , R3 ) R3 ← X
T5 ( jmp , T7 Lend ) PC ← T7

( label , Lfalse ) _Lfalse:
T6 ( mov , Y , R3 ) R3 ← Y

( label , Lend ) _Lend:
T7

( X if (A < B + C) else Y )



Generating Quadruples
• emit(opcode, left, right, result): generate an quad where 

opcode is an available machine instruction


• label(name): generates a uniquely identifiable symbolic 
label quad with optional prefix name


• tempReg(): generates a new unique temporary register


• resolveLabels(code): performs two pass label address 
resolution process, returning the resultant pure-opcode 
code list



From AST to Quadruples
• In order to generate code for a given type of AST node, there will 

be some number of input registers & labels, and output registers, 
labels and code lists


• General from: genCodeFoo(a_foo, inRegs, inLabels) → (outRegs, 
outLabels, outCode)


• More useful to pass in what we want and only return code, more 
on this later


• genCode(node, …) can be polymorphic in the type of node


• Calls genCode_Foo for node of type Foo, calls genCode_Bar for 
node of type Bar, etc.



Unary operators

genCode_UnaryExpr(node): 
  argCode, argOutput = genCode(node.operand) 

  result = tempReg() 
  code = argCode + [ 
     emit(node.operatorOpcode, 
          argOutput, result) 
     ] 

  return code, result



Binary operators
genCode_BinaryExpr(node): 
  leftCode, leftReg = genCode(node.left) 
  rightCode, rightReg = genCode(node.right) 

  result = tempReg() 
  code = leftCode + rightCode + [ 
     emit(node.operatorOpcode, 
          leftReg, rightReg, result) 
     ] 

  return code, result

Non-short circuiting



Assignment statement
genCode_AssignStmt(node): 
  addrCode, addrReg = genCode(node.lhs) 
  valCode, valReg = genCode(node.rhs) 

  code = addrCode + valCode + [ 
     #     *addrReg = valReg 
     emit(Store, valReg, addrReg) 
    ] 

  return code



Order of operations
Does it matter what order operations are executed in?

P() 
Q()

A[f()] = g()



Order of operations
Does it matter what order operations are executed in?

A[f()][g()] = h()

print f(g(), h())



Boolean Conditional Expressions

• Many languages feature Boolean conditional expressions 
that short circuit, that is, they evaluate only the operands 
they absolutely have in order to determine the final result


• Example: false and F() 

• F is never called, since there is no way that its’ return 
value could have any impact on the resultant false value


• Example: true or G()


• G is never called, since the result of the expression will 
already have been determined to be true



Boolean Conditional Expressions

result = P 
if result { 
    result = Q  
}

 result = (P and Q)



Boolean Conditional Expressions

result = P 
if !result { 
    result = Q  
}

 result = (P or Q)



Boolean Conditional Expressions

result = P 
if result { 
    result = Q  
}

 result = (P and Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lend ) PC ← Lend if !R1

/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Boolean Conditional Expressions

result = P 
if !result { 
    result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P

( bt , R1 , Lend ) PC ← Lend if R1

/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Boolean Conditional Expressions

result = P 
if !result { 
    result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lright ) PC ← Lright if !R1

( jmp    Lend ) PC ← Lend

( label   Lright ) _Lright:
/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Boolean Conditional Expressions

 result = (P or Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lright ) PC ← Lright if !R1

( jmp    Lend ) PC ← Lend

( label   Lright ) _Lright:
/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:

But genCode(Q) tells us what 
register it put its return value into…



Boolean Conditional Expressions

 result = (P or Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lright ) PC ← Lright if !R1

( jmp    Lend ) PC ← Lend

( label   Lright ) _Lright:
/* genCode(Q) */ R2 ← Q
( mov , R2 , R1 ) R1 ← R2

( label   Lend ) _Lend:



Binary operators
genCode_BinaryExpr(node): 
  leftCode, leftReg = genCode(node.left) 
  rightCode, rightReg = genCode(node.right) 

  result = tempReg() 
  code = leftCode + rightCode + [ 
     emit(node.operatorOpcode, 
          leftReg, rightReg, result) 
     ] 

  return code, result



Binary operators

genCode_BinaryExpr(node, result): 
  leftReg = tempReg() 
  leftCode = genCode(node.left, leftReg) 
  rightReg = tempReg() 
  rightCode = genCode(node.right, rightReg) 

  code = leftCode + rightCode + [ 
     emit(node.operatorOpcode, 
          leftReg, rightReg, result) 
     ] 

  return code

For expressions instead pass in the target result register



Assignment statement

genCode_AssignStmt(node): 
  addrCode, addrReg = genCode(node.lhs) 
  valCode, valReg = genCode(node.rhs) 

  code = addrCode + valCode + [ 
     emit(Store, valReg, addrReg) 
     ] 

  return code



Assignment statement
genCode_AssignStmt(node): 
  addrReg = tempReg() 
  addrCode = genCode(node.lhs, addrReg) 
  valReg = tempReg() 
  valCode = genCode(node.rhs, valReg) 

  code = addrCode + valCode + [ 
     emit(Store, valReg, addrReg) 
     ] 

  return code



Boolean Conditional Expressions

result = P 
if result { 
    result = Q  
}

 result = (P and Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lend ) PC ← Lend if !R1

/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Boolean Conditional Expressions
 result = (P and Q)

genCode_BoolAndExpr(node, result): 
 leftCode = genCode(node.left, result) 
  rightCode = genCode(node.right, result) 
  Lend = label(“end”) 
  code =  
     leftCode + 
     [ emit(Bf, result, Lend) ] + 
     rightCode + 
     [ Lend ] 
  return code



Boolean Conditional Expressions

result = P 
if !result { 
    result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lright ) PC ← Lright if !R1

( jmp    Lend ) PC ← Lend

( label   Lright ) _Lright:
/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Boolean Conditional Expressions
 result = (P or Q)

genCode_BoolOrExpr(node): 
  # result, leftCode, rightCode, Lend … 
  Lright = label(“right”) 
  code =  
     leftCode + 
     [    emit(Bf, result, Lright), 
          emit(Jmp, Lend), 
          Lright ] + 
     rightCode + 
     [ Lend ] 
  return code



What about also 
passing in labels?



Control Flow and 
Boolean Expressions

• Boolean expressions (both conditional and 
relational equality/inequality) always appear as the 
condition expression in if statements, while and 
repeat…until loops


• Instead of thinking of them solely as Boolean 
valued, it’s useful to think of them in terms of how 
they affect control flow



Control Flow Graphs



Control Flow Graphs
• A basic block is a sequence of instructions with exactly one 

entry point and one exit point


• No branching or jump instructions


• Execution will always run top to bottom uninterrupted


• Nothing will ever jump into the middle of a basic block

BB
R1 ← B * C 
R2 ← D / E 
R3 ← A + R1 
R4 ← R3 - R2

entry

exit



Control Flow Graphs

• Two basic blocks can be connected through either an 
unconditional or a conditional branch

BB 1

BB 2

BB 3

BB 4 BB 5

unconditional
true false



Control Flow Graphs

• The control flow graph for a program is the collection of 
basic blocks and all their interconnection edges


• It describes all possible flows of control through the 
program



Control Flow Graphs

unconditional

BB 1 R1 ← B * C 
R2 ← D / E 

jmp _BB2

BB 2 _BB2: 
  R3 ← A + R1 
  R4 ← R3 - R2



( br , Rresult , Ttrue , Tfalse ) PC ← Ttrue if Rresult else Tfalse

Assume a branch (br) opcode that specifies both 
an if-true branching target, as well as if-false one

Two-sided branch opcode

Question: why can we just add whatever is convenient to the IR?



Control Flow Graphs
BB 3

R1 ← … 

PC ← _entry4 if R1 else _entry5

BB 4
_entry4: 
  …

BB 5
_entry5: 
  …

R1 ≡ true R1 ≡ false



Boolean Conditional Expressions

result = P 
if !result { 
    result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
( bf , R1 , Lright ) PC ← Lright if !R1

( jmp    Lend ) PC ← Lend

( label   Lright ) _Lright:
/* genCode(Q) */ R1 ← Q
( label   Lend ) _Lend:



Basic Blocks — Boolean or

BBleft
R1 ← …P… 
PC ← BBtrue if R1 else BBright

BBtrue

BBright
R1 ← …Q… 
PC ← BBtrue if R1 else BBfalse

R1 ≡ true R1 ≡ false

BBfalse

R1 ≡ true R1 ≡ false

 (P or Q)



Boolean Conditional Expressions
 result = (P or Q)

genBB_BoolOrExpr(node, result, bbT, bbF): 
  bbR = genBB(node.right, result, bbT, bbF) 
  bbL = genBB(node.left, result, bbT, bbR) 
  return bbL 



Boolean Conditional Expressions
 result = (P or Q)

genBB_BoolOrExpr(node, result, bbT, bbF): 
  bbR = genBB(node.right, result, bbT, bbF) 
  bbL = genBB(node.left, result, bbT, bbR) 
  return bbL

 result = (P and Q)

genBB_BoolAndExpr(node, result, bbT, bbF): 
  bbR = genBB(node.right, result, bbT, bbF) 
  bbL = genBB(node.left, result, bbR, bbF) 
  return bbL



Value of Boolean or

BBor
R1 ← …P or Q… 
PC ← BBstore if R1 else BBstore

BBstore
*x ← R1 
…

R1 ≡ true R1 ≡ false

 x = (P or Q)



Assignment in basic blocks
genBB_AssignStmt(node, nextBB): 
  addrReg, valReg = tempReg(), tempReg() 

  bb = newUnconditionalBB( 
     code=[ emit(Store, valReg, addrReg) ], 
     jump=nextBB) 

  bbR = genCode(node.rhs, valReg, bb, bb) 

  bbL = genBB(node.lhs, addrReg, bbR, bbR) 

  return bbL



Control Flow Graphs
• A control flow graph of interconnected basic blocks can be assembled into a final 

linear list of instructions and labels


• Many opportunities for optimization at the level of the intermediate representation:


• Block layout order can take advantage of branch fall-through instructions


• Remove unconditional jumps by merging two basic blocks into single sequence of 
instructions (possibly with a label if second block was the target of >1 branches)


• When bbLeft=bbRight, transform conditional branch into unconditional jump (then 
apply above)


• Delete instructions that produce values that are never used (requires more 
elaborate usage analysis to prove)


• Propagate constant values, unroll short loops, hoist out common subexpressions, 
convert expensive instructions to cheaper ones



Control flow graph 
examples



CFG Examples
if expression? { statements… }

expression?

nextBB

statements…

true

false



CFG Examples
if expression? { s1… } else { s2… }

expression?

nextBB

s1… s2…

falsetrue

unconditional unconditional



CFG Examples
if e1? { s1… } else if e2? { s2… }

e1?

nextBB

s1…

s2…

e2?

false

false

true

true

unconditional unconditional



CFG Examples
while expression? { statements… }

expression?

nextBB

statements…

true

false

unconditional



CFG Examples
repeat { statements… } until expression?

expression?

nextBB

statements…

true

false unconditional



CFG Examples
for (init; cond?; step) statement

nextBB

init

step

cond?

statement

falsetrue

Contains both forwards and backwards jumps

unconditional

unconditional

unconditional



Mutually recursive 
basic blocks

BB 3

BB 1

BB 2

true

true

false

false genBB_Rec(…): 
  bb3 = genBB(…) 

  # Uh oh… 
  bb1 = genBB(…, bb2, bb3) 
  bb2 = genBB(…, bb1, bb3) 

  return bb3



genBB_Rec(…): 
  bb3 = genBB(…) 

  bb2ref = bbRef() 
  bb1ref = bbRef() 

  bb1 = genBB(…, bb2ref, bb3.ref) 
  bb2 = genBB(…, bb1ref, bb3) 

  bb2ref.ref = bb2 
  bb1ref.ref = bb1 

  return bb3
class BB: 
  __init__: 
    self.ref = self

Mutually recursive basic blocks




