
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Local storage

• Activation records

• Lexical level

• Displays

• Closures

• Code generation

• IR

• Expressions and statements

• Control flow graphs

Local storage
• Whereas a given program will have a fixed amount of required

global storage (code, constants, variables, static data), the dynamic
nature of procedural programming requires another level of local
storage

• For most typical languages, this means some amount of memory is
allocated on entry into a procedure/function, and deallocated on
exit

• Stack-like LIFO ordering: Last In, First Out

• A stack is an ideal structure for this because allocations &
deallocations are very cheap operations (simple arithmetic on a
stack pointer)

• These per-function-call allocations are laid out as activation records

Activation Records

Activation Records
• Organization of local storage for a particular function/procedure call (each call has its

own copy of the record)

• Typical contents:

• Return address

• Parameters originally passed to function

• Control block (extra bookkeeping)

• Storage for all locally scoped variables (including enclosed minor scopes)

• Pointers to any dynamically allocated memory (arrays, variable length arguments)

• Temporary storage

• Use one hardware register to store address, and then use register+constant
displacement instruction addressing to index into it

func F(P, Q int32) {
 var x, y, z int32
 var c [4]int8

 if true {
 var t [4]int32
 }

 while true {
 var u, v int32
 }
}

Activation Record — Example
Offset Record

76 v
72 u
68 t[3]
64 t[2]
60 t[1]
56 t[0]
52 c[0], c[1], c[2], c[3]
48 z
44 y
40 x
36 Q
32 P

0 Control (example 32B)

Activation Record — Compact
Offset Record

68 t[3] -

64 t[2] -

60 t[1] v

56 t[0] u

52 c[0] c[1] c[2] c[3]

48 z

44 y

40 x

36 Q

32 P

0 Control

func F(P, Q int32) {
 var x, y, z int32
 var c [4]int8

 if true {
 var t [4]int32
 }

 while true {
 var u, v int32
 }
}

Lexical Level
• The lexical level is the depth of static nested enclosing scopes

within a program

• Usually counted in terms of major scopes (since minor scopes
can be compacted into the parent enclosing major scope)

• Top level definitions at 0, top level defined routines at 1,
nested routines at 2, etc.

• Each activation record is associated at the lexical level of the
corresponding major scope

• For most languages, at most one activation record at each
lexical level is in scope at each point in the program

Lexical Levels — Static Depth

func F() {
 func A() {
 func P() { … }
 func Q() { … }
 }
 func B() { … }
}

Activation Records

Q

A

B

Q

P

A

B

A

F

Call Sequence: F ➡ A ➡ B ➡ A ➡ P ➡ Q ➡ B ➡ A ➡ Q

Lexical Levels — Static Depth

 // Lvl Visible Scopes
func F() { // 0 F
 func A() { // 1 F, A
 func P() { … } // 2 F, A, P
 func Q() { … } // 2 F, A, Q
 }
 func B() { … } // 1 F, B
}

Displays
• The display is an array of activation record stack addresses,

indexed by lexical level

• Combining a display entry with an offset lets you relatively address
memory within the activation records

• Non-negative (≥0) offsets indexed into the activation record itself

• Negative offsets index below the activation record on the stack
(this can be useful depending on when the activation frame is
setup)

• Enables the access of activation records of enclosing parent
scopes

Activation Records and Displays

func F() {
 func A() {
 func P() { … }
 func Q() { … }
 }
 func B() { … }
}

Frames

Q

A

B

Q

P

A

B

A

F

Call Sequence: F ➡ A ➡ B ➡ A ➡ P ➡ Q ➡ B ➡ A ➡ Q

Display LL

2

1

0

Display update
• The display must be updated whenever the list of visible

scopes changes

• Updates happen at functions/procedures call and return
boundaries

• Activation records correspond with the major scopes of
functions/procedures

• All minor scopes are encapsulated within parent major
scope

• Semantic analysis controls visibility, even though the
physical memory may overlap or be adjacent with the local
storage of sibling minor scopes

Display update

LL 0 LL 1 LL 2
F

A
P
Q

B

Call type Relationship Example

Same level Caller and calle have same lexic level A calls B,

P calls Q

Up level Caller lexic level is less than callee level F calls A/B,

A calls P/Q

Down level Caller lexic level is greater than callee level P/Q calls F/A/B,

A/B calls F

Display update
Call Sequence: F0 ➡ A1 ➡ B2 ➡ A3 ➡ P4 ➡ Q5 ➡ B6 ➡ A7 ➡ Q8

LL 0 LL 1 LL 2
F

A
P
Q

B

Depth/

Record # Func Display LL 0 Display LL 1 Display LL 2

0 F F 0

1 A F 0 A 1

2 B F 0 B 2

3 A F 0 A 3

4 P F 0 A 3 P 4

5 Q F 0 A 3 Q 5

6 B F 0 B 6 Q 5

7 A F 0 A 7 Q 5

8 Q F 0 A 7 Q 8

Where F 0, A 1, etc.
represent activation

record stack address

Display update & restore
• Both entry to and exit from a major scope requires updating the

display

• On entry at lexical level L:

• Save current display entry L to local storage

• Prepare new activation record

• Save record stack address to display entry L

• On exit at lexical level L:

• Tear down the activation record

• Restore previous value for display entry L

Problems with displays
• Only works with languages that have specific notion of

nested functions that are only visible within the scope of
the immediately enclosing parent scope

• Problems with languages that support passing function
pointers:

• The activation records of enclosing parent scopes may
have gone away by the time the function pointer is
called (since they may have returned)

• Other activation frames may be currently in the display
at a parents’ lexical level

Closures
• Modern languages allow passing of functional closures,

whereby a kind of activation record is dynamically
allocated (i.e. does not live on the stack) and thus can
outlive the duration of the enclosing function

• Requires a strategy for dealing with dynamically allocated
closures that are no longer needed/referenced

• Automatic garbage collection, or a form of lifetime
analysis to determine when its safe to free

Closures
func F(p int) func() int {
 var x int
 var e int

 func G() int {
 var y int
 e += 1
 return e
 }

 e = p

 return G
}

G := F(488)
G() // returns 489
G() // returns 490

• Activation frames (stack)

• Stack allocated (fixed lifetime)

• F: p, x

• G: y

• G closure

• Heap allocated (open ended lifetime)

• e (escaped F when G referenced it)

• F returns a function value

• A function value consists of a function

pointer (code reference) and a pointer
to the dynamically allocated closure

• Code reference known at compile

time

• Closure pointer is runtime variable

Closures
typedef struct {
 int (*G)(ClosureG *);
 int e;
} ClosureG;

int F_G(ClosureG *cg) {
 int y;
 cg->e += 1;
 return cg->e;
}

ClosureG *F(int p) {
 int x;
 int e;
 e = p;

 ClosureG *cg = malloc(…);
 cg->e = e;
 cg->G = F_G;
 return cg;
}

ClosureG *cg;
cg = F(488);

cg->G(cg); // == 489
cg->G(cg); // == 490

// Eventually???
free(cg);

Implementation details
• Each local variable has storage requirements in terms of units of the underlying

memory model

• Parameters, local scalars, arrays

• Laying out activation records can be done at semantic analysis time (as you
encounter major and minor scopes), or as another pass between semantic
analysis and code generation

• Consider what information is specifically required for particulars of the
language, and how to order the record fields for your convenience

• Determine and record total size of record by summing all variable storage within
the major scope, plus the sizes of all enclosed minor scopes

• Sum of all minor scope sizes, or maximum size over all minor scopes in
compacted case

• Each local name/identifier/symbol needs to be associated with its lexical level, its
storage size and an offset into the record

Recognize Analyze Transform

Frontend Backend

We are here

Code Generation

Code Generation
• In the end, the user wants the compiler to transform their program

sources into something the machine can actually execute (and
hopefully quickly!)

• This transformation must be faithful to the particulars of the input
language, and to the reasonable expectations of users

• During code generation, the compiler must translate each facet of
the language into an appropriate sequence of machine instructions

• While the AST is a helpful abstraction for performing language-
focused semantic analyses like name resolution and type
checking, it is also helpful to have a machine-focused intermediate
representation

Quadruple Intermediate Representation

• Assume an infinite number of temporary registers Ri

• Hence the term intermediate, these will have to be mapped onto a finite set
of physically available machine registers

• Special opcode called label (not an actual machine instruction)

• Results can include registers Ri, constant indices Ti and labels:

• Constant Ti refers to tuple i in sequence

• Symbolic label Lname will be resolved to a specific target tuple index later

(opcode, left, right, result)

Express machine instructions with their input
and output registers as 4-tuples

IR — Example expression

(mul , B , C , R1) R1 ← B * C

(div , D , E , R2) R2 ← D / E

(add , A , R1 , R3) R3 ← A + R1

(sub , R3 , R2 , R4) R4 ← R3 - R2

A + B * C - D / E

Inputs: A, B, C, D, E
Output: R4

Temporaries: R1, R2, R3

IR — Branching

(add , B , C , R1) R1 ← B + C
(lt , A , R1 , R2) R2 ← A < R1

(bf , R2 , Lfalse) PC ← Lfalse if !R2

(mov , X , R3) R3 ← X
(jmp , Lend) PC ← Lend

(label , Lfalse) _Lfalse:
(mov , Y , R3) R3 ← Y
(label , Lend) _Lend:

(X if (A < B + C) else Y)

Both of these are forward branch jumps

Resolving label addresses
• Given a list of quads, resolve away symbolic labels through a two pass

procedure

• 1st pass:

• Iterate through list of quads, assigning an tuple index for each non-label
opcode

• For each label opcode, record label→tuple index for the index of the first
following non-label opcode, and discard the original label opcode

• 2nd pass:

• Iterate through list of quads, and for any symbolic label, lookup label→tuple
index mapping, and replace with tuple index

• If no such mapping, error (instruction refers to a label that was never
declared)

IR — Branching

(add , B , C , R1) R1 ← B + C
(lt , A , R1 , R2) R2 ← A < R1

(bf , R2 , Lfalse) PC ← Lfalse if !R2

(mov , X , R3) R3 ← X
(jmp , Lend) PC ← Lend
(label , Lfalse) _Lfalse:
(mov , Y , R3) R3 ← Y
(label , Lend) _Lend:

(X if (A < B + C) else Y)

IR — Branching

T1 (add , B , C , R1) R1 ← B + C
T2 (lt , A , R1 , R2) R2 ← A < R1

T3 (bf , R2 , T6 Lfalse) PC ← T6 if !R2

T4 (mov , X , R3) R3 ← X
T5 (jmp , T7 Lend) PC ← T7

(label , Lfalse) _Lfalse:
T6 (mov , Y , R3) R3 ← Y

(label , Lend) _Lend:
T7

(X if (A < B + C) else Y)

Generating Quadruples
• emit(opcode, left, right, result): generate an quad where

opcode is an available machine instruction

• label(name): generates a uniquely identifiable symbolic
label quad with optional prefix name

• tempReg(): generates a new unique temporary register

• resolveLabels(code): performs two pass label address
resolution process, returning the resultant pure-opcode
code list

From AST to Quadruples
• In order to generate code for a given type of AST node, there will

be some number of input registers & labels, and output registers,
labels and code lists

• General from: genCodeFoo(a_foo, inRegs, inLabels) → (outRegs,
outLabels, outCode)

• More useful to pass in what we want and only return code, more
on this later

• genCode(node, …) can be polymorphic in the type of node

• Calls genCode_Foo for node of type Foo, calls genCode_Bar for
node of type Bar, etc.

Unary operators

genCode_UnaryExpr(node):
 argCode, argOutput = genCode(node.operand)

 result = tempReg()
 code = argCode + [
 emit(node.operatorOpcode,
 argOutput, result)
]

 return code, result

Binary operators
genCode_BinaryExpr(node):
 leftCode, leftReg = genCode(node.left)
 rightCode, rightReg = genCode(node.right)

 result = tempReg()
 code = leftCode + rightCode + [
 emit(node.operatorOpcode,
 leftReg, rightReg, result)
]

 return code, result

Non-short circuiting

Assignment statement
genCode_AssignStmt(node):
 addrCode, addrReg = genCode(node.lhs)
 valCode, valReg = genCode(node.rhs)

 code = addrCode + valCode + [
 # *addrReg = valReg
 emit(Store, valReg, addrReg)
]

 return code

Order of operations
Does it matter what order operations are executed in?

P()
Q()

A[f()] = g()

Order of operations
Does it matter what order operations are executed in?

A[f()][g()] = h()

print f(g(), h())

Boolean Conditional Expressions

• Many languages feature Boolean conditional expressions
that short circuit, that is, they evaluate only the operands
they absolutely have in order to determine the final result

• Example: false and F()

• F is never called, since there is no way that its’ return
value could have any impact on the resultant false value

• Example: true or G()

• G is never called, since the result of the expression will
already have been determined to be true

Boolean Conditional Expressions

result = P
if result {
 result = Q  
}

 result = (P and Q)

Boolean Conditional Expressions

result = P
if !result {
 result = Q  
}

 result = (P or Q)

Boolean Conditional Expressions

result = P
if result {
 result = Q  
}

 result = (P and Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lend) PC ← Lend if !R1

/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Boolean Conditional Expressions

result = P
if !result {
 result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P

(bt , R1 , Lend) PC ← Lend if R1

/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Boolean Conditional Expressions

result = P
if !result {
 result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lright) PC ← Lright if !R1

(jmp Lend) PC ← Lend

(label Lright) _Lright:
/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Boolean Conditional Expressions

 result = (P or Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lright) PC ← Lright if !R1

(jmp Lend) PC ← Lend

(label Lright) _Lright:
/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

But genCode(Q) tells us what
register it put its return value into…

Boolean Conditional Expressions

 result = (P or Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lright) PC ← Lright if !R1

(jmp Lend) PC ← Lend

(label Lright) _Lright:
/* genCode(Q) */ R2 ← Q
(mov , R2 , R1) R1 ← R2

(label Lend) _Lend:

Binary operators
genCode_BinaryExpr(node):
 leftCode, leftReg = genCode(node.left)
 rightCode, rightReg = genCode(node.right)

 result = tempReg()
 code = leftCode + rightCode + [
 emit(node.operatorOpcode,
 leftReg, rightReg, result)
]

 return code, result

Binary operators

genCode_BinaryExpr(node, result):
 leftReg = tempReg()
 leftCode = genCode(node.left, leftReg)
 rightReg = tempReg()
 rightCode = genCode(node.right, rightReg)

 code = leftCode + rightCode + [
 emit(node.operatorOpcode,
 leftReg, rightReg, result)
]

 return code

For expressions instead pass in the target result register

Assignment statement

genCode_AssignStmt(node):
 addrCode, addrReg = genCode(node.lhs)
 valCode, valReg = genCode(node.rhs)

 code = addrCode + valCode + [
 emit(Store, valReg, addrReg)
]

 return code

Assignment statement
genCode_AssignStmt(node):
 addrReg = tempReg()
 addrCode = genCode(node.lhs, addrReg)
 valReg = tempReg()
 valCode = genCode(node.rhs, valReg)

 code = addrCode + valCode + [
 emit(Store, valReg, addrReg)
]

 return code

Boolean Conditional Expressions

result = P
if result {
 result = Q  
}

 result = (P and Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lend) PC ← Lend if !R1

/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Boolean Conditional Expressions
 result = (P and Q)

genCode_BoolAndExpr(node, result):
 leftCode = genCode(node.left, result)
 rightCode = genCode(node.right, result)
 Lend = label(“end”)
 code =
 leftCode +
 [emit(Bf, result, Lend)] +
 rightCode +
 [Lend]
 return code

Boolean Conditional Expressions

result = P
if !result {
 result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lright) PC ← Lright if !R1

(jmp Lend) PC ← Lend

(label Lright) _Lright:
/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Boolean Conditional Expressions
 result = (P or Q)

genCode_BoolOrExpr(node):
 # result, leftCode, rightCode, Lend …
 Lright = label(“right”)
 code =
 leftCode +
 [emit(Bf, result, Lright),
 emit(Jmp, Lend),
 Lright] +
 rightCode +
 [Lend]
 return code

What about also
passing in labels?

Control Flow and
Boolean Expressions

• Boolean expressions (both conditional and
relational equality/inequality) always appear as the
condition expression in if statements, while and
repeat…until loops

• Instead of thinking of them solely as Boolean
valued, it’s useful to think of them in terms of how
they affect control flow

Control Flow Graphs

Control Flow Graphs
• A basic block is a sequence of instructions with exactly one

entry point and one exit point

• No branching or jump instructions

• Execution will always run top to bottom uninterrupted

• Nothing will ever jump into the middle of a basic block

BB
R1 ← B * C
R2 ← D / E
R3 ← A + R1
R4 ← R3 - R2

entry

exit

Control Flow Graphs

• Two basic blocks can be connected through either an
unconditional or a conditional branch

BB 1

BB 2

BB 3

BB 4 BB 5

unconditional
true false

Control Flow Graphs

• The control flow graph for a program is the collection of
basic blocks and all their interconnection edges

• It describes all possible flows of control through the
program

Control Flow Graphs

unconditional

BB 1 R1 ← B * C
R2 ← D / E

jmp _BB2

BB 2 _BB2:
 R3 ← A + R1
 R4 ← R3 - R2

(br , Rresult , Ttrue , Tfalse) PC ← Ttrue if Rresult else Tfalse

Assume a branch (br) opcode that specifies both
an if-true branching target, as well as if-false one

Two-sided branch opcode

Question: why can we just add whatever is convenient to the IR?

Control Flow Graphs
BB 3

R1 ← …

PC ← _entry4 if R1 else _entry5

BB 4
_entry4:
 …

BB 5
_entry5:
 …

R1 ≡ true R1 ≡ false

Boolean Conditional Expressions

result = P
if !result {
 result = Q  
}

 result = (P or Q)

/* genCode(P) */ R1 ← P
(bf , R1 , Lright) PC ← Lright if !R1

(jmp Lend) PC ← Lend

(label Lright) _Lright:
/* genCode(Q) */ R1 ← Q
(label Lend) _Lend:

Basic Blocks — Boolean or

BBleft
R1 ← …P…
PC ← BBtrue if R1 else BBright

BBtrue

BBright
R1 ← …Q…
PC ← BBtrue if R1 else BBfalse

R1 ≡ true R1 ≡ false

BBfalse

R1 ≡ true R1 ≡ false

 (P or Q)

Boolean Conditional Expressions
 result = (P or Q)

genBB_BoolOrExpr(node, result, bbT, bbF):
 bbR = genBB(node.right, result, bbT, bbF)
 bbL = genBB(node.left, result, bbT, bbR)
 return bbL

Boolean Conditional Expressions
 result = (P or Q)

genBB_BoolOrExpr(node, result, bbT, bbF):
 bbR = genBB(node.right, result, bbT, bbF)
 bbL = genBB(node.left, result, bbT, bbR)
 return bbL

 result = (P and Q)

genBB_BoolAndExpr(node, result, bbT, bbF):
 bbR = genBB(node.right, result, bbT, bbF)
 bbL = genBB(node.left, result, bbR, bbF)
 return bbL

Value of Boolean or

BBor
R1 ← …P or Q…
PC ← BBstore if R1 else BBstore

BBstore
*x ← R1
…

R1 ≡ true R1 ≡ false

 x = (P or Q)

Assignment in basic blocks
genBB_AssignStmt(node, nextBB):
 addrReg, valReg = tempReg(), tempReg()

 bb = newUnconditionalBB(
 code=[emit(Store, valReg, addrReg)],
 jump=nextBB)

 bbR = genCode(node.rhs, valReg, bb, bb)

 bbL = genBB(node.lhs, addrReg, bbR, bbR)

 return bbL

Control Flow Graphs
• A control flow graph of interconnected basic blocks can be assembled into a final

linear list of instructions and labels

• Many opportunities for optimization at the level of the intermediate representation:

• Block layout order can take advantage of branch fall-through instructions

• Remove unconditional jumps by merging two basic blocks into single sequence of
instructions (possibly with a label if second block was the target of >1 branches)

• When bbLeft=bbRight, transform conditional branch into unconditional jump (then
apply above)

• Delete instructions that produce values that are never used (requires more
elaborate usage analysis to prove)

• Propagate constant values, unroll short loops, hoist out common subexpressions,
convert expensive instructions to cheaper ones

Control flow graph
examples

CFG Examples
if expression? { statements… }

expression?

nextBB

statements…

true

false

CFG Examples
if expression? { s1… } else { s2… }

expression?

nextBB

s1… s2…

falsetrue

unconditional unconditional

CFG Examples
if e1? { s1… } else if e2? { s2… }

e1?

nextBB

s1…

s2…

e2?

false

false

true

true

unconditional unconditional

CFG Examples
while expression? { statements… }

expression?

nextBB

statements…

true

false

unconditional

CFG Examples
repeat { statements… } until expression?

expression?

nextBB

statements…

true

false unconditional

CFG Examples
for (init; cond?; step) statement

nextBB

init

step

cond?

statement

falsetrue

Contains both forwards and backwards jumps

unconditional

unconditional

unconditional

Mutually recursive
basic blocks

BB 3

BB 1

BB 2

true

true

false

false genBB_Rec(…):
 bb3 = genBB(…)

 # Uh oh…
 bb1 = genBB(…, bb2, bb3)
 bb2 = genBB(…, bb1, bb3)

 return bb3

genBB_Rec(…):
 bb3 = genBB(…)

 bb2ref = bbRef()
 bb1ref = bbRef()

 bb1 = genBB(…, bb2ref, bb3.ref)
 bb2 = genBB(…, bb1ref, bb3)

 bb2ref.ref = bb2
 bb1ref.ref = bb1

 return bb3
class BB:
 __init__:
 self.ref = self

Mutually recursive basic blocks

