
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda
• Runtime storage requirements

• Array storage

• CSC488 Machine

Recognize Analyze Transform

Frontend Backend

We are here

Transform (Lower)
•Memory layout

•Optimization (optional)

• Code generation

• Very target specific 

• Data flow: 
➥ Abstract Syntax Tree 
➥ Intermediate Languages/Representations (optional) 
➥ Target Machine Code

Lexical Analysis

Syntax Analysis

Semantic Analysis

Code Generation

Source Code

Object Code

Characters
Tokens

Parse tree

Intermediate
Language

Machine code / Bytecode

Runtime storage
requirements

• At runtime a program requires several kinds of storage:

• Executable program text (machine code)

• Global and static variables

• Stack

• Heap

Program text
• The linker will collect all function object code from all

translation units

• Each *.c file is a translation unit, generating a *.o

• Linker will resolve all cross-references

• Machine code placed together in a memory section
marked as executable (and typically read-only)

• Any unresolved references may be satisfied by shared
libraries

Global and static variables
• The linker will collect all global and static variables from

all translation units

• Variables will be packed together in large contiguous
block of memory

• Global constants will typically be placed into a separate
read-only constant pool

Global and static variables

// Global variable and constant
char *course = “CSC488”;

// Elsewhere…
course[0] = ‘.’; // fault  
 // (constant RO)

course = “…”; // okay

Global and static variables

/*
 * Global, but only visible
 * within this translation unit
 */

static int G = 488;

Global and static variables
int incr()  
{
 /*
 * Global, but only visible
 * within this function scope.
 *
 * Not thread safe.
 */
 static int count = 0;

 return count++;
}

Stack

• Stack used for all local variables of functions and
procedures

• Typically starts at high memory address and grows
downwards (towards 0)

• Grows and shrinks dynamically based on function calls
and returns

• Laid out in activation frames

Heap
• A dynamically sized region that programs can request an

allocation of memory from (think malloc)

• Runtime works with operating system kernel to satisfy a given
request for the running process

• A memory allocator may manage the specific layout of the heap,
subdividing it into smaller regions based on allocation request
sizes

• A program may choose to return unused memory to the heap via
manual deallocation (think free), or a runtime system may
automatically find and return unused memory via garbage
collection

Array storage

1D Arrays

typ A[10];

0 1 2 3 4 5 6 7 8 9

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

ADDR(A[i]) = ADDR(A) + (i * sizeof typ)
 = ADDR(A[0]) + (i * sizeof A[0])

M[0][0] M[0][1] M[0][2]

M[1][0] M[1][1] M[1][2]

M[2][0] M[2][1] M[2][2]

2D Arrays: Row vs Column Major Order

typ M[3][3];

Row Major
Column
Major

M[row][column]

0 1 2 3 4 5 6 7 8

M[0][0] M[0][1] M[0][2] M[1][0] M[1][2] M[1][2] M[2][0] M[2][1] M[2][2]

0 1 2 3 4 5 6 7 8

M[0][0] M[1][0] M[2][0] M[0][1] M[1][1] M[2][1] M[0][2] M[1][2] M[2][2]

typ M[3][3];

Row Major Order

Column Major Order

2D Arrays: Row vs Column Major Order

typ M[3][3];

2D Arrays: Row vs Column Major Order

ADDR(M[i][j])
 = ADDR(M) + (offs * sizeof typ)

offs = (i * stride0) + (j * stride1)

Stride: how large a step in a given direction

0 1 2 3 4 5 6 7 8

M[0][0] M[0][1] M[0][2] M[1][0] M[1][2] M[1][2] M[2][0] M[2][1] M[2][2]

typ M[3][3];

Row Major Order: M[i][j]

2D Arrays: Row vs Column Major Order

offs = (i * stride0) + (j * stride1)

stride0=3, stride1=1

typ M[3][3];

Column Major Order: M[i][j]

2D Arrays: Row vs Column Major Order

offs = (i * stride0) + (j * stride1)

stride0=1, stride1=3

0 1 2 3 4 5 6 7 8

M[0][0] M[1][0] M[2][0] M[0][1] M[1][1] M[2][1] M[0][2] M[1][2] M[2][2]

typ M[m][n];

2D Arrays: Row vs Column Major Order

ADDR(M[i][j])
 = ADDR(M) + (offs * sizeof typ)

offs = (i * stride0) + (j * stride1)

Row Major Order

stride0=n, stride1=1
Column Major Order

stride0=1, stride1=m

typ M[d0][d1]…[d_n];

Multidimensional Arrays

ADDR(M[i0][i1]…[in])
 = ADDR(M) + (offs * sizeof typ)

offs = i0*s0 + i1*s1 + … + i_n*s_n

Row Major Order

s0 = d1*d2*d3*…*d_n
s1 = d2*d3*…*d_n
s_j = d(j+1)*d(j+2)*…*d_n
s_n = 1

typ M[d0][d1]…[d_n];

Multidimensional Arrays

ADDR(M[i0][i1]…[in])
 = ADDR(M) + (offs * sizeof typ)

offs = i0*s0 + i1*s1 + … + i_n*s_n

Column Major Order

s0 = 1
s1 = d0
s2 = d0*d1
s_j = d0*d1*…*d(j-1)
s_n = d0*d1*…*d(n-1)

Compile time constants

ADDR(M[i0][i1]…[in])
 = ADDR(M) + (offs * sizeof typ)

offs = i0*s0 + i1*s1 + … + i_n*s_n

Compute multiplier (memory offset) from stride (element index)

ADDR(M[i0][i1]…[in]) = ADDR(M) + offs

offs = i0*mult0 + i1*mult1 + … + in*mult_n

mult_j = sizeof typ * s_j

Calculating addresses

R_a ← base

R_b ← i_0
R_b ← R_b * mult_0
R_a ← R_a + R_b

R_b ← i_1
…

Compute ADDR(M[…]) using two registers

Array storage
• Most languages default to row major ordering, while column major

ordering is often found in graphics and scientific computing

• Row major: rightmost subscript of consecutive array elements
varies most rapidly

• Column major: leftmost subscript varies most rapidly

• Addressing an array element requires knowing the declared
dimensions of the array

• While array elements are indexed sequentially, the address of
consecutive elements will vary in multiples of the size of the
underlying unit storage

CSC488 Machine

CSC488 Machine
• Stack-based bytecode virtual machine

• No registers, all operations interact with the stack

• Fundamental data unit is a 32 bit signed integer word

• Memory contains of 8 mebiwords (mebi=220) or 256 mebibits
(Mib) of storage

• von Neumann architecture: single unified address space for
code, constants and stack

• Stack starts at top address (223-1), grows downwards towards 0

CSC488 Machine
• Each machine instruction is a single word

• Special MACHINE_TRUE and MACHINE_FALSE integer constants

• Internal registers:

• PC: current program counter (address of current instruction)

• MSP: machine stack pointer (address where next push will write to, one less
than address of last pushed value)

• PC will be incremented by 1 after each successful instruction execution

• With the possible exception of the control flow instructions

• Machine also has a special array called a display, containing 256 machine words

Stack
• Any push of a value to the stack performs the following:

• Write the value to the memory address pointed to by MSP

• Decrement MSP by 1 (msp’=msp-1)

• And pop of an value from the stack performs the following:

• Increment MSP by 1 (msp’=msp+1)

• Read the value from the memory address pointed to by MSP

• The top value of the stack is at memory address MSP+1

Instruction Set
I/O
 
PRINTC

PRINTI 
PRINTB

 
READI

Arithmetic
 
ADD 
SUB 
MUL

DIV 
NEG

Logical
 
EQ

GT 
OR

Stack
 
PUSH <const>

POP

POPN

DUP 
DUPN

SWAP

Control Flow
 
BR 
BF

Memory
 
LOAD 
STORE

PUSHMSP

Display
 
SETD <LL> 
ADDR <LL> <Offs>

General
 
NOP 
HALT

Instruction Set — General
• NOP: do nothing

• HALT: stop the machine from running

Instruction Set — Stack
• PUSH <const>: push a 24 bit signed constant onto the

stack

• Cannot directly push a full 32 bit constant, i.e. push
2147483647 is not valid

• POP: pop and discard the top value from the stack

• POPN: repeatedly pop values from the stack

• Pop a value N, then pop and discard N more times

Instruction Set — Stack
• DUP: duplicate the top value on the stack

• Pop the top value, and then push it back twice

• DUPN: repeatedly duplicate a value

• Pop a value N, then pop a value V, then push V onto the
stack N times

• SWAP: swap the top 2 values of the stack

• Pop a value X, pop a value Y, then push X, followed by
pushing Y

Instruction Set — Arithmetic
• ADD: pop top 2 values, add them and push the result

• Pop a value R, pop a value L, compute L + R and push
the result

• SUB: pop top 2 values, subtract them and push the result

• Pop a value R, pop a value L, compute L - R and push
the result

Instruction Set — Arithmetic
• MUL: pop top 2 values, multiply them and push the result

• Pop a value R, pop a value L, compute L * R and push the
result

• DIV: pop top 2 values, integer divide them and push the result

• Pop a value R, pop a value L, compute L / R and push the
result

• NEG: pop a value, negate it, push the result

• Pop a value X, compute -X and push the result

Instruction Set — Logical
• EQ: compare top 2 values for equality

• Pop top 2, if equal push MACHINE_TRUE, else push
MACHINE_FALSE

• GT: perform greater-than comparison on top 2 values

• Pop value R, pop value L, compute L > R and push
corresponding machine boolean constant

Instruction Set — Logical
• OR: logical or of top 2 values

• Pop top 2, push MACHINE_TRUE if at least one of
them is equal to MACHINE_TRUE

Instruction Set — Logical
• No instructions for AND, or NEQ, or LT, LTE, GTE…

• How can you synthesize these using the others?

Instruction Set — I/O
• PRINTC: pop from the stack and print as an ASCII

character

• PRINTI: pop from the stack and print as a signed 32 bit
integer

• PRINTB: pop from the stack, and print “t” if equal to
MACHINE_TRUE, “f” is equal to MACHINE_FALSE,
otherwise “?”

Instruction Set — I/O
• READI: read an integer from the user and push to stack

• Decimal: 488, 2107, 2019

• Hexadecimal: 0x1e8, 0x83b, 0x7e3

• Binary: 0b111101000, 0b100000111011, …

• Malformed input will push 0

Instruction Set — Control Flow
• BR: unconditional branch (jump)

• Pop an address from the stack, and set the PC to that
address

• BF: branch if condition false

• Pop an address, pop a value, and if value is
MACHINE_FALSE, and set the PC to that address;
otherwise do nothing

Instruction Set — Control Flow
• No BT instruction

• How could you synthesize this?

• Do you actually need it?

Instruction Set — Memory
• LOAD: read a value from memory

• Pop an address from the stack, read a value from that
memory address, and push the value to the stack

• STORE: write a value to memory

• Pop a value, pop an address, and write that value to
that memory address

Instruction Set — Memory
• PUSHMSP: push the current value of MSP to the stack

• After executing this instruction, the top value on the
stack is a value that corresponds to the memory
address of that same value on the stack

Instruction Set — Display
• The display is a special array of 256 machine words

• SETD <LL>: pop a value from the stack, and save it to
Display[LL]

• LL stands for lexic level, and is an unsigned 8 bit value
(0 <= LL <= 255)

Instruction Set — Display
• ADDR <LL> <Offs>: compute Display[LL]+Offs, and push

it to the stack

• Offs is a signed 16 bit value

• ADDR <LL> 0 pushes the value of Display[LL], the
same valued that SETD popped

