
CSC488/2107 Winter 2019 —
Compilers & Interpreters

https://www.cs.toronto.edu/~csc488h/

Peter McCormick

pdm@cs.toronto.edu

https://www.cs.toronto.edu/~csc488h/
mailto:pdm@cs.toronto.edu

Agenda

• What is a compiler? Why study compilers?

• Compiler techniques

• Traditional compilers vs the modern dynamic world

• What does a compiler do?

• Syllabus

What is a compiler?

“A compiler is a program that
converts instructions into a

machine-code or lower-level
form so that they can be read
and executed by a computer”

Source: Google

“A compiler is a program that
converts instructions into a

machine-code or lower-level
form so that they can be read
and executed by a computer”

A compiler is program that recognizes
program code written in a source

language, analyzes it and ultimately
transforms it into a target representation.

Typically the transformation moves from
a higher level to a lower level of

abstraction.

1. Recognize

2. Analyze

3. Transform / Lower

Why study
compilers?

Unwrapping
abstractions

Developing new
languages

A mature toolbox of
technology

Compiled languages
vs

Scripting languages

Compiled language

Source Code

Compiler

Executable Binary

reads file

writes file

hello.c

gcc hello.c -o hello

./hello
writes file

reads file

“Scripting” language

hello.py

python hello.py

“Hello World!”

reads file

produces output

Real vs virtual/
pseudo machines

Perspective on
programming languages

Machine-centric
Harnessing the power of the machine

Application-centric
Enabling users to solve their problems

• Perl

• Python

• Ruby

• JavaScript*

• C

• C++

• Java*

•Go

• Haskell

Compiler techniques

Editors / IDEs

struct {
 int x;
} S;
S.x = 488;

if (S.x > 400) {

struct {
 int x;
} S;
S.x = 488;

if (S.x > 400) {

struct {
 int x;
} S;
S.x = 488;

if (S.☐

Web

html

head

meta meta title

Databases

SELECT *
FROM students
WHERE
 loves488=1

EXPLAIN SELECT sum(i) FROM
foo WHERE i < 10;

QUERY PLAN
—————

Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo
 (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)

PDF and PostScript

Compiler techniques

• Processing of highly structured text

• Structural analysis

• Source-to-source transformation

• Test coverage

• Execution optimization

What does a
compiler do?

Recognize

• Recognizes correct lexical composition

• Correctly utilizes spaces, identifiers, operators, etc.

• Recognizes correct syntax

• Obeys the rules for variable/function definitions,
statements, expressions, etc.

if g:
y = 488
else:
y = 2107

b = x >>> 100;

b = x >>> 100;

v = 488x;

v = 488x;

if (b) x = 1;
else x = 2;
else x = 3;

if (b) x = 1;
else x = 2;
else x = 3;

x =
 if (b) y = 2;

x =
 if (b) y = 2;

Recognize

• Recognizes correct lexical composition

• Correctly utilizes spaces, identifiers, operators, etc.

• Recognizes correct syntax

• Obeys the rules for variable/function definitions,
statements, expressions, etc.

Analyze

• Analyzes programs for sensibility

• All definitions are valid

• All uses correspond to matching definitions

• Keep track of what relates to what

int x;
itn y;

int x;
itn y;

typedef itn int;

int x;
itn y;

typedef int itn;

int x;
itn y;

int x;

if (x[488] > 0) …

int x;

if (x[488] > 0) …

int y[488];

if (y > 0) …

int y[488];

if (y☐ > 0) …

int y[488];

if (y[0] > 0) …

int zs[488];

// zs uninitialized
if (zs[0] > 0) …

int x = 488;
{
 int x = 2107;
}
printf(“%d”, x);

int x = 488;
{
 int x = 2107;
}
printf(“%d”, x);

Analyze

• Analyzes programs for sensibility

• All definitions are valid

• All uses correspond to matching definitions

• Keep track of what relates to what

Transform / Lower

• Transform tree/graph structures into other kinds of tree/
graph structures

• Produce equivalent* machine code or virtual machine
bytecode

• Apply legal* transformations to optimize performance

int x = 400 + 88;
printf(“%d”, x);

int x = 488;
printf(“%d”, x);

Constant Folding

int x = 488;
printf(“%d”, 488);

Constant Propagation

int x = 488;
printf(“%d”, 488);

Dead Definition Elimination

printf(“%d”, 488);

Final

Transform / Lower

• Transform tree/graph structures into other kinds of tree/
graph structures

• Produce equivalent* machine code or virtual machine
bytecode

• Apply legal* transformations to optimize performance

Compiler pipeline

Lexical Analysis

Syntax Analysis

Semantic Analysis

Code Generation

Source Code

Executable Binary

Characters
Tokens

Parse tree

Intermediate
Language

Machine code / bytecode

if x < y { v = 1 }

if x < y { v = 1 }

reserved if
identifier x
operator <
identifier y
left brace
identifier v
operator =
integer 1

right brace

if x < y { v = 1 }

if
<

comparison
expression

x
variable

y
variable

assignment
statement

x
variable

1
integer

constant

if x < y { v = 1 }

 load r1, xl
 load r2, y
 lt r1, r2, r3
 jneq _end
 const r1, 1
 loadaddr r2, v
 store r2, r1
_end:

Syllabus

Office Hours
3-5pm in BA2283 immediately after lecture

Is CSC488/2107
for you?

Next Week

•More on the compiler pipeline

• Lexical analysis

No tutorial on Tuesday Jan 15

Website correction:
Tutorials _are_ 2-3pm

