
Dictionary Wars

CSC 190

March 14, 2013

Contents

1 Learning Objectives 2

2 Swiper no swiping! . . . and pre-Introduction 2

3 Introduction 2
3.1 The Dictionaries . 2

4 Dictionary Runner 3
4.1 Advice . 4

5 Justification 4

6 Milestone 1: Lab 7 (due March 18/19) 5

7 Milestone 2: Lab 8 (due March 25/26) 5

8 Final Submission (due March 28) 5
8.1 Deliverables . 6

9 Bonus task/competition (recommended, but optional!) 6

A Appendix: Marking Scheme 7

Online PDF of this document

See dictwars.pdf.

Changelog

Any changes to this document since it was released will be described here.

1

dictwars.pdf

A4 CSC190

1 Learning Objectives

• Learn, on your own, about a variety of data structures used to implement the dictionary
(or set) ADT (abstract data structure)

• Learn about tradeoffs between different implementations of ADTs (i.e. in a given situation,
which works “best”, whatever that may mean)

• Further familiarization with running times and other values measured using asymptotic
notation

2 Swiper no swiping! . . . and pre-Introduction

Silly Context: Oh no! Swiper has stolen the dictionary implementations’ names! Can you help
Dora find the names? Say “Swiper, no swiping!” and then help Dora figure out which is which.

It doesn’t matter for the project, but if you don’t know who Dora and Swiper are, ask Naomi
Wolfman, or see: http://www.nickjr.com/dora-the-explorer/.

P.S. If you are familiar with Dora, get frustrated with the project, and need inspiration, try:
https://i.chzbgr.com/maxW500/4180888832/h84697171/.

The background story and other useful help information can be found by running the dic-
tionary runner (see below) with no arguments.

3 Introduction

As per the story, your goal is to, given the mystery implementations of the dictionary ADT, per-
form sequences of timed operations on them using a provided program known as the dictionary
runner (dict runner), and use the outputted timing data from the program to identify which of
the mysXX corresponds to which dictionary implementation. We guarantee there’ll be a unique
bijection between the mystery dictionaries you’re given and the list below!

Note: you could refer to these data structures as either sets OR dictionaries because we’re
ignoring the values stored inside the dictionaries and only using the keys, in effect treating them
as sets. For the purposes of this project, we’ll simply refer to them as “dictionaries”.

All of the dictionaries will store 64-bit unsigned integers. You will be able to insert, remove,
and find entries in each dictionary by issuing commands to the dictionary runner via a file or
standard input, described later.

And for the dictionaries you’ll be needing to identify. . . (drumroll please!)

3.1 The Dictionaries

• bstT: Binary search tree with tombstones

• hlp: Hashtable with linear probing (resizing)

• hqp: Hashtable with quadratic probing (resizing)

• hch: Hashtable with chaining (resizing)

• usl: Unsorted doubly linked list

Page 2

http://www.nickjr.com/dora-the-explorer/
https://i.chzbgr.com/maxW500/4180888832/h84697171/

A4 CSC190

• arr: Sorted vector (this is an array that resizes automatically whenever full, expanding to
two times the previous size. Java calls these “arrayLists”; C++ calls them vectors.)

• heap: Min-heap

• avl: AVL Tree

They will each uniquely correspond to one of {mys01, mys02, mys03, . . . }, and this is the
correspondence that you have to determine.

A note about the hash tables: the hash tables will automatically ressize as they exceed 50%
load, using this sequence of sizes: 101, 211, 421, 673, 1361, 2729, 5471, 10949, 21893, 43787,
87583, 175211, 350293, 700591, 1401187, 2802377, 5604763, 11209591, 22419239, 44838491,
89677037, 179354081, 358708241, 717416501, 1434833009. The program may crash if you try to
exceed that last size.

Perhaps some of these data structures were not covered in class? In that case, you’ll have to
look them up yourself: try consulting your favourite data structures textbook, Wikipedia, or a
search engine.

Just be sure to mention your sources in your assignment, following the Academic Conduct
policy!

4 Dictionary Runner

Every group will get a custom executable. You can download it like so:

wget www.cs.toronto.edu/~patitsas/cs190/a4/0999 (replace last number with your group num)

chmod u+x 0999

./0999

Running the executable will print out helpful information for how to use it. Note you’ll need
the chmod command in order to run your executable the first time.

As this was compiled on the ECF machines,1 you’ll likely need to work from (or perhaps
SSH into) one of the ECF machines. This program will perform operations on the dictionaries
using the following commands, which must be placed one per line in the input:

I <number>

F <number>

R <number>

The I, F, and R commands insert, find, and remove/delete the specified number, respectively.
The number must be a POSITIVE integer. Inserting, finding, or removing 0 has un-
specified behaviour! Inserting a key already present in the dictionary will typically overwrite
the old entry, but different dictionaries are free to make different choices, including undefined
behaviour. Removing a key not present in the dictionary will have no effect.

The mapping of the dictionary runner you’re provided is unique (or nearly so) to your
program, so each person will have a different mapping. Therefore, only solve and submit a
solution for your program, not someone else’s!

1Technically, any machine with a sufficiently similar architecture will work, but no guarantees!

Page 3

A4 CSC190

4.1 Advice

Think about the examples of inputs from your studies that cause data structures to perform dif-
ferently. In particular, think about best-case and worst-case inputs and performance differences
on different operations for the various dictionaries.

Note that you’ll need to write programs to generate enough input commands to get good
data, rather than typing the input in manually. The executable you have can take in data from
files, rather than from you typing it in manually.

This means you can write programs to generate the files you would like: you can write a
program that will, for instance, insert the numbers 1 through 100,000 in sorted order. Or reverse
sorted order.2

You can, if you’re feeling advanced, learn how to write programs that will not only generate
test files for you, but also to run the executable for you on all of your test files. To do this in C,
see page 689 of your textbook (or search “C system function”).

The output of the executable – the performance of the data structure given your input –
will appear in a folder that you specify (by default, dataDir.) Your advanced program can even
open up your output files and process them for you too (e.g. loading them into Matlab).

5 Justification

The main deliverable for this assignment will come in the form of a PDF document giving
a mapping of mystery dictionaries to implementations and justifying how you identified that
mapping. Your justification should present a (concise) argument that lays out the approach
to testing (which styles of input and why), the data itself (e.g., as a graph or easy-to-read
table), and analysis of the data clearly distinguishes the chosen implementation from all other
posssibilities.

Examples of unacceptable or insufficient justification include:

• A runtime plot that fits a function that is Θ(lg n) alone: This may be useful, but won’t be
sufficient evidence unless you can explain for each other possible data structure why it will
not have that runtime for the same sequence of operations (or address the data structures
that could have this behavior with separate arguments).

• Elimination (i.e. identifying all dictionaries but one, then concluding it must be the
remaining one): This is a great way to lead yourself toward the right answer, but is not
acceptable justification alone.

• A long table of runtime data: These are difficult to visually interpret unless plotted, and
“these numbers obviously look like they fit a curve of the shape c1x + c2 lg x + c3”-type
reasoning is unacceptable.

Reasoning deemed irrelevant or needlessly verbose will be subject to mark deduction as per the
marking scheme (in Section A below). So, please proofread.

2While I always advocate getting practice in C, I will in no way begrudge it if you wrote this in Python (or
Ruby, or Perl, or even LOLCODE). Short scripts for producing text is something Python does a lot nicer than
C! An important step in your programming education is realizing which tool is best for the job, and being able
to integrate several tools together.

Page 4

A4 CSC190

One tool that may be useful is Matlab (or Gnuplot or other plotting/curve-fitting tools),
which is described at ../hints/pp3-hint-plotting.html. If you’d prefer to use Gnuplot, you
may find this tutorial (or another) useful: http://www.duke.edu/~hpgavin/gnuplot.html.

If you’d like to use a LATEX template for your writeup, here is one that may be useful:
http://www.cs.toronto.edu/~patitsas/cs190/code/dictwars-template.tex.

6 Milestone 1: Lab 7 (due March 18/19)

For this milestone, you have two goals. One: to find which of the mysXX dictionaries is the
binary search tree. Two: to find one of the sorted vector (resizing array), unsorted linked-list,
or the min-heap (you don’t have to find all three for the lab, but you will by the final deadline).

We expect everybody to have one of the two goals done before arriving in lab. If everybody
arrives with both goals done, then marking will go much faster for the TAs!

In lab, the TAs will be marking like so:

• 4 Points for identifying BST

• 4 Points for identifying 1 of unsorted doubly linked list/sorted resizing array/binary min-
heap

• 2 Points for effort

Note the TAs will be asking you how you identified the two data structures you found. Also
note that since this is not a coding lab, this lab is out of 10.

7 Milestone 2: Lab 8 (due March 25/26)

For this milestone, your goal is to identify which of the three mysXX dictionaries are hash tables.
Furthermore, you’ll need to identify which uses linear probing, which uses quadratic probing,
and which uses chaining, and justify your answer.

In lab, the TAs will be marking like so:

• 2 Points for identifying which three are the hash tables

• 2 Points for identifying the linear probing hash table

• 2 Points for identifying the quadratic probing hash table

• 2 Points for identifying the chaining probing hash table

• 2 Points for effort

Note the TAs will be asking you how you identified the data structures you found. Also note
that since this is not a coding lab, this lab is out of 10.

8 Final Submission (due March 28)

Now you must provide a complete mapping of mystery dictionaries to their implementations.

Page 5

../hints/pp3-hint-plotting.html
http://www.duke.edu/~hpgavin/gnuplot.html
http://www.cs.toronto.edu/~patitsas/cs190/code/dictwars-template.tex

A4 CSC190

8.1 Deliverables

Again, please include the following:

• README.txt — plain text file with names and group number

• justification.pdf — justification of your answers. Be sure to include key title information
such as your names and ugrad IDs.

• mapping.txt — a simple comma-separated text file containing a line for each mapping,
precisely in the format this example: (not the same mapping, of course)

bstT,mys02

hqp,mys07

avl,mys05

heap,mys06

hlp,mys08

hch,mys04

usl,mys03

arr,mys01

This is just so we can easily see what your choices were at a glance and automatically
assign the mapping correctness portion of the marks.

9 Bonus task/competition (recommended, but optional!)

Want to go further and maybe earn some extra points? Want to compete in real time with your
classmates? Want to see pretty colors (and who doesn’t)? Check out the bonus part on the
course website!

Page 6

A4 CSC190

A Appendix: Marking Scheme

Whenever we judge your mapping of a mystery dictionary to its implementation, we will use
roughly the following marking scheme:

• EXCELLENT: The mapping is correct. The (concise) argument lays out the approach to
testing (which styles of input and why) and the data itself (e.g., as a graph or easy-to-read
table), and analysis of the data clearly distinguishes the chosen implementation from all
other posssibilities.

• GOOD: The mapping is correct, and the argument is sensible but not complete. For
example, may be missing one or more of:

– what styles of input were used for testing,

– why those styles of input are useful for distinguishing this particular implementation,

– a summary of the data used in the argument (e.g. a graph or an easy-to-read table,
not hundreds or thousands of numbers),

– what about the data (i.e. graph/table) supports the mapping to a particular dictio-
nary implementation when compared to others.

We may also use this category for unnecessarily verbose answers that are otherwise excel-
lent.

• GOOD [WRONG MAPPING]: The mapping is incorrect, but the argument for the
mapping is solid (see above), presumably missing some factor that if considered would
have yielded the correct mapping. (Worth roughly the same as POOR below.)

• POOR: The mapping is correct but the explanation makes little or no case for how the
particular implementation was reliably distinguished from all other implementations.

• POOR [WRONG MAPPING]: The mapping is incorrect and the explanation makes
little or no case for how the particular implementation was reliably distinguished from all
other implementations. (Worth roughly the same as NONE below.)

• NONE: No submission or submission is unreadable or irrelevant.

Page 7

	Learning Objectives
	Swiper no swiping! …and pre-Introduction
	Introduction
	The Dictionaries

	Dictionary Runner
	Advice

	Justification
	Milestone 1: Lab 7 (due March 18/19)
	Milestone 2: Lab 8 (due March 25/26)
	Final Submission (due March 28)
	Deliverables

	Bonus task/competition (recommended, but optional!)
	Appendix: Marking Scheme

