How Robust is the Wisdom of the Crowd?

Noga Alon, Michal Feldman, Omer Lev & Moshe Tennenholtz

> IJCAI 2015 Buenos Aires

Is this new movie any good? the world

Is this new movie any good? film critics' influence

Is this new movie any good? experts' influence

Is this new movie any good? aggregate

Is this new movie any good? aggregate

Red: 5+ Blue: 4-

Our model social graph

Our model experts' opinions

Our model experts' opinions

We assume underlying truth is Red

Regular people can mistake truth for **Blue** with probability ¹/₂

But experts will mistake truth for **Blue** with probability $\frac{1}{2}$ - δ

Our model outcome

We don't know who the experts are: we only see the aggregate number of **Blue**s and **Red**s

Adversary types

Weak Adversary

A *weak adversary* is one that can choose the set of experts, but has no other power on the experts' ultimate choice.

means **Blue** wins with probability $\frac{1}{2}-\delta$

of majority **Blue** within experts $-\binom{n}{\frac{n}{2}}(\frac{1}{2})$

Theorem I

If experts' size is μn , for $\varepsilon < \mu$, for large enough n, there is an absolute constant csuch that if highest degree Δ satisfies: $\Delta < c \frac{\epsilon \delta^4 \mu n}{\log(\frac{1}{\epsilon})}$

Then majority over vertices gives truth with probability at least $1-\varepsilon$

Strong Adversary

A *strong adversary* is one that can choose the set of experts as well as what each experts says (but at the appropriate ratio).

Expander

An expander (n,d,λ) is a *d*-regular graph on *n* vertices, in which the absolute value of every eigenvalue besides the first is at most λ .

Let G be a (n,d, λ) -graph, and $\frac{d^2}{\lambda^2} > \frac{1}{\delta^2 \mu (1 - \mu + 2\delta \mu)}$ Then for strong adversaries the majority answers truthfully.

A known theorem states that in a (n,d, λ) -graph:

$$\sum_{v \in V} (|N(v) \cap A| - \frac{d|A|}{n})^2 \le \lambda^2 |A| (1 - \frac{|A|}{n})$$

(where N(v) is the set of neighbors of vertex v)

Using this when A is the set of **Red** experts, and for B, the set of **Blue** ones, we add the equations, getting:

$$\sum_{v \in V} (|N(v) \cap A| - \frac{d|A|}{n})^2 + (|N(v) \cap B| - \frac{d|B|}{n})^2 \le \lambda^2 [|A|(1 - \frac{|A|}{n}) + |B|(1 - \frac{|B|}{n})].$$

We are interested in vertices which turn **Blue**, so have more **Blue** neighbors than **Red**. These are set X.

$$\sum_{v \in X} (|N(v) \cap A| - \frac{d|A|}{n})^2 + (|N(v) \cap B| - \frac{d|B|}{n})^2$$

However, for a > b, $x \ge y$: $(x-b)^2 + (y-a)^2 \ge (a-b)^2/2$, so:

$$\sum_{v \in X} (|N(v) \cap A| - \frac{d|A|}{n})^2 + (|N(v) \cap B| - \frac{d|B|}{n})^2 \ge |X| \frac{d^2(|A| - |B|)^2}{2}$$

Hence

$$|X|\frac{d^2(|A| - |B|)^2}{2} \le \lambda^2 [|A|(1 - \frac{|A|}{n}) + |B|(1 - \frac{|B|}{n})]n^2$$

And we need X to be less than
$$(\frac{1-\mu}{2} + \delta\mu)n$$

Random Graphs

A random graph G(n,p) is one which contains *n* vertices and each edge has a probability *p* of existing.

Theorem 3

There exist a constant *c* such that if $\mu < \frac{1}{2}$, in a random graph G(n,p), if $d = np \ge c \cdot \max\{\frac{\log(\frac{1}{\mu})}{\delta^2}, \frac{1}{\mu\delta}\}$ The majority will show the truth with high probability even with a strong adversary

Iterative Propagation

Iterative Propagation

Allowing propagation to be a multi-step process rather than a "one-off" step can be both harmful and beneficial for some adversaries

Probability of only a single expert as center (out of 10 stars) is fixed, as is it being **Blue** – it is >0.1

Now, regardless of location, a **Red** in a star colors the star **Red**

Future Research

Other ways to aggregate social graph information may result in different bounds

Hybrid capabilities of adversaries

More specific types of graphs

Multiple adversaries

Thanks for listening!