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Abstract. The practical importance of automata on infinite objects has motivated
a re-examination of the complexity of automata-theoretic constructions. One such
construction is the translation, when possible, of nondeterministic Büchi word
automata (NBW) to nondeterministic co-Büchi word automata (NCW). Among
other applications, it is used in the translation (when possible) of LTL to the
alternation-free µ-calculus. The best known upper bound for the translation of
NBW to NCW is exponential (given an NBW with n states, the best translation
yields an equivalent NCW with 2

O(n log n) states). On the other hand, the best
known lower bound is trivial (no NBW with n states whose equivalent NCW
requires even n+1 states is known). In fact, only recently was it shown that there
is an NBW whose equivalent NCW requires a different structure.
In this paper we improve the lower bound by showing that for every integer k ≥ 1

there is a language Lk over a two-letter alphabet, such that Lk can be recognized
by an NBW with 2k+1 states, whereas the minimal NCW that recognizes Lk has
3k states. Even though this gap is not asymptotically very significant, it nonethe-
less demonstrates for the first time that NBWs are more succinct than NCWs. In
addition, our proof points to a conceptual advantage of the Büchi condition: an
NBW can abstract precise counting by counting to infinity with two states. To
complete the picture, we consider also the reverse NCW to NBW translation, and
show that the known upper bound, which duplicates the state space, is tight.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key to
the solution of several fundamental decision problems in mathematics and logic [3, 13,
16]. Today, automata on infinite objects are used for specification and verification of
nonterminating systems. The automata-theoretic approach to verification views ques-
tions about systems and their specifications as questions about languages, and reduces
them to automata-theoretic problems like containment and emptiness [11, 21]. Recent
industrial-strength property-specification languages such as Sugar [2], ForSpec [1], and
the recent standard PSL 1.01 [5] include regular expressions and/or automata, making
specification and verification tools that are based on automata even more essential and
popular.

There are many ways to classify an automaton on infinite words. One is the type of
its acceptance condition. For example, in Büchi automata, some of the states are desig-
nated as accepting states, and a run is accepting iff it visits states from the accepting set



infinitely often [3]. Dually, in co-Büchi automata, a run is accepting iff it visits states
from the accepting set only finitely often. Another way to classify an automaton is by
the type of its branching mode. In a deterministic automaton, the transition function
maps the current state and input letter to a single successor state. When the branching
mode is nondeterministic, the transition function maps the current state and letter to a
set of possible successor states. Thus, while a deterministic automaton has at most a
single run on an input word, a nondeterministic automaton may have several runs on
an input word, and the word is accepted by the automaton if at least one of the runs is
accepting.

Early automata-based algorithms aimed at showing decidability. The complexity of
the algorithm was not of much interest. Things have changed in the early 80’s, when
decidability of highly expressive logics became of practical importance in areas such as
artificial intelligence and formal reasoning about systems. The change was reflected in
the development of two research directions: (1) direct and efficient translations of logics
to automata [23, 19, 20], and (2) improved algorithms and constructions for automata
on infinite objects [18, 4, 15]. For many problems and constructions, our community
was able to come up with satisfactory solutions, in the sense that the upper bound (the
complexity of the best algorithm or the blow-up in the best known construction) coin-
cides with the lower bound (the complexity class in which the problem is hard, or the
blow-up that is known to be unavoidable). For some problems and constructions, how-
ever, the gap between the upper bound and the lower bound is significant. This situation
is especially frustrating, as it implies that not only we may be using algorithms that can
be significantly improved, but also that something is missing in our understanding of
automata on infinite objects.

One such problem, which this article studies, is the problem of translating, when
possible, a nondeterministic Büchi word automaton (NBW) to an equivalent nondeter-
ministic co-Büchi word automaton (NCW). NCWs are less expressive than NBWs. For
example, the language {w : w has infinitely many a’s} over the alphabet {a, b} cannot
be recognized by an NCW. The best translation of an NBW to an NCW (when possible)
that is currently known actually results in a deterministic co-Büchi automaton (DCW),
and it goes via an intermediate deterministic Streett automaton. The determinization
step involves an exponential blowup in the number of states [18]. Hence, starting with
an NBW with n states, we end up with a DCW with 2O(n log n) states.

The exponential upper bound is particularly annoying, since the best known lower
bound is trivial. That is, no NBW with n states whose equivalent NCW requires even
n+ 1 states is known. In fact, only recently was it shown that there is an NBW whose
equivalent NCW requires a different structure [8]. Beyond the theoretical challenge in
closing the exponential gap, and the fact it is related to other exponential gaps in our
knowledge [7], the translation of NBW to NCW has immediate applications in symbolic
LTL model checking. We elaborate on this point below.

It is shown in [9] that given an LTL formula ψ, there is an alternation-free µ-
calculus (AFMC) formula equivalent to ∀ψ iff ψ can be recognized by a determinis-
tic Büchi automaton (DBW). Evaluating specifications in the alternation-free fragment
of µ-calculus can be done with linearly many symbolic steps. In contrast, direct LTL
model checking reduces to a search for bad-cycles, whose symbolic implementation in-



volves nested fixed-points, and is typically quadratic [17]. The best known translations
of LTL to AFMC first translates the LTL formula ψ to a DBW, which is then linearly
translated to an AFMC formula for ∀ψ. The translation of LTL to DBW, however, is
doubly-exponential, thus the overall translation is doubly-exponential, with only an ex-
ponential matching lower bound [9]. A promising direction for coping with this situa-
tion was suggested in [9]: Instead of translating the LTL formula ψ to a DBW, one can
translate ¬ψ to an NCW. This can be done either directly, or by translating the NBW
for ¬ψ to an equivalent NCW. Then, the NCW can be linearly translated to an AFMC
formula for ∃¬ψ, whose negation is equivalent to ∀ψ. Thus, a polynomial translation
of NBW to NCW would imply a singly-exponential translation of LTL to AFMC.1

The main challenge in proving a non-trivial lower bound for the translation of NBW
to NCW is the expressiveness superiority of NBW with respect to NCW. Indeed, a lan-
guage that is a candidate for proving a lower bound for this translation has to strike a
delicate balance: the languages has to somehow take advantage of the Büchi acceptance
condition, and still be recognizable by a co-Büchi automaton. In particular, attempts to
use the main feature of the Büchi condition, namely its ability to easily track infinitely
many occurrences of an event, are almost guaranteed to fail, as a co-Büchi automaton
cannot recognize languages that are based on such a tracking. Thus, a candidate lan-
guage has to use the ability of the Büchi condition to easily track the infinity in some
subtle way.

In this paper we point to such a subtle way and provide the first non-trivial lower
bound for the translation of NBW to NCW. We show that for every integer k ≥ 1, there
is a languageLk over a two-letter alphabet, such that Lk can be recognized by an NBW
with 2k + 1 states, whereas the minimal NCW that recognizes Lk has 3k states. Even
though this gap is not asymptotically very significant, it demonstrates for the first time
that NBWs are more succinct than NCWs. In addition, our proof points to a conceptual
advantage of the Büchi condition: an NBW can abstract precise counting by counting to
infinity with two states. To complete the picture, we also study the reverse translation,
of NCWs to NBWs. We show that the known upper bound for this translation, which
doubles the state space of the NCW, is tight.

2 Preliminaries

2.1 Automata on Infinite Words

Given an alphabet Σ, a word overΣ is an infinite sequence w = σ1 · σ2 · · · of letters in
Σ. An automaton is a tuple A = 〈Σ,Q, δ,Q0, α〉, where Σ is the input alphabet, Q is
a finite set of states, δ : Q×Σ → 2Q is a transition function,Q0 ⊆ Q is a set of initial
states, and α ⊆ Q is an acceptance condition. We define several acceptance conditions
below. Intuitively, δ(q, σ) is the set of states that A may move into when it is in the
state q and it reads the letter σ. The automaton A may have several initial states and

1 Wilke [22] proved an exponential lower-bound for the translation of an NBW for an LTL
formula ψ to and AFMC formula equivalent to ∀ψ. This lower-bound does not preclude a
polynomial upper-bound for the translation of an NBW for¬ψ to an AFMC formula equivalent
to ∃¬ψ, which is our goal.



the transition function may specify many possible transitions for each state and letter,
and hence we say that A is nondeterministic. In the case where |Q0| = 1 and for every
q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| ≤ 1, we say that A is deterministic.

Given two states p, q ∈ Q, a path of length m from p to q is a finite sequence of
states π = π0, π1, · · · , πm−1 such that π0 = p, πm−1 = q, and for every 0 ≤ i < m−1,
we have that πi+1 ∈

⋃
σ∈Σ δ(πi, σ). If π0 ∈

⋃
σ∈Σ δ(πm−1, σ) then π is a cycle. We

say that π is simple if all the states of π are different. I.e., if for every 1 ≤ i < j < m,
we have that πi 6= πj . Let π = π0, π1, · · · , πm−1 be a simple path of length m ≥ k.
The k-tail of π is the set {πm−k, . . . , πm−1} of the last k states of π. Note that since π
is simple the size of its k-tail is k.

A run r = r0, r1, · · · of A on w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of
states such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1). We
sometimes refer to runs as words in Qω. Note that while a deterministic automaton has
at most a single run on an input word, a nondeterministic automaton may have several
runs on an input word. Acceptance is defined with respect to the set of states inf (r) that
the run r visits infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈
IN, we have ri = q}. As Q is finite, it is guaranteed that inf (r) 6= ∅. The run r is
accepting iff the set inf (r) satisfies the acceptance condition α. We consider here the
Büchi and the co-Büchi acceptance conditions. A set S ⊆ Q satisfies a Büchi acceptance
condition α ⊆ Q if and only if S ∩ α 6= ∅. Dually, S satisfies a co-Büchi acceptance
condition α ⊆ Q if and only if S ∩ α = ∅. We say that S is α-free if S ∩ α = ∅. An
automaton accepts a word iff it has an accepting run on it. The language of an automaton
A, denoted L(A), is the set of words that A accepts. We also say that A recognizes the
language L(A). For two automata A and A′, we say that A and A′ are equivalent if
L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in {D,N} ×
{B, C} × {W}. The first letter stands for the branching mode of the automaton (deter-
ministic or nondeterministic); the second letter stands for the acceptance-condition type
(Büchi, or co-Büchi); the third letter indicates that the automaton runs on words.

Different classes of automata have different expressive power. In particular, while
NBWs recognize all ω-regular language [13], DBWs are strictly less expressive than
NBWs, and so are DCWs [12]. In fact, a language L can be recognized by a DBW iff
its complement can be recognized by a DCW. Indeed, by viewing a DBW as a DCW, we
get an automaton for the complementing language, and vice versa. The expressiveness
superiority of the nondeterministic model over the deterministic one does not apply to
the co-Büchi acceptance condition. There, every NCW has an equivalent DCW.2

3 From NBW to NCW

In this section we describe our main result and point to a family of languagesL1, L2, . . .

such that for all k ≥ 2, an NBW for Lk requires strictly fewer states than an NCW for
Lk.

2 When applied to universal Büchi automata, the translation in [14], of alternating Büchi au-
tomata into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.



3.1 The Languages Lk

We define an infinite family of languages L1, L2, . . . over the alphabet Σ = {a, b}. For
every k ≥ 1, the language Lk is defined as follows:

Lk = {w ∈ Σω | both a and b appear at least k times in w}.

Since an automaton recognizing Lk must accept every word in which there are at
least k a’s and k b’s, regardless of how the letters are ordered, it may appear as if
the automaton must have two k-counters operating in parallel, which requires O(k2)
states. This would indeed be the case if a and b were not the only letters in Σ, or if
the automaton was deterministic. However, since we are interested in nondeterministic
automata, and a and b are the only letters inΣ, we can do much better. SinceΣ contains
only the letters a and b, one of these letters must appear infinitely often in every word in
Σω. Hence, w ∈ Lk iff w has at least k b’s and infinitely many a’s, or at least k a’s and
infinitely many b’s. An NBW can simply guess which of the two cases above holds, and
proceed to validate its guess (if w has infinitely many a’s as well as b’s, both guesses
would succeed). The validation of each of these guesses requires only one k-counter,
and a gadget with two states for verifying that there are infinitely many occurrences of
the guessed letter. As we later show, implementing this idea results in an NBW with
2k + 1 states.

Observe that the reason we were able to come up with a very succinct NBW for Lk

is that NBW can abstract precise counting by “counting to infinity” with two states. The
fact that NCW do not share this ability [12] is what ultimately allows us to prove that
NBW are more succinct than NCW. However, it is interesting to note that also NCW
for Lk can do much better than O(k2) states. Even though an NCW cannot validate a
guess that a certain letter appears infinitely many times, it does not mean that such a
guess is useless. If an NCW guesses that a certain letter appears infinitely many times,
then it can postpone counting occurrences of that letter until after it finishes counting
k occurrences of the other letter. In other words, w ∈ Lk iff w has either at least k b’s
after the first k a’s, or k a’s after the first k b’s. Following this characterization yields an
NCW with two components (corresponding to the two possible guesses) each with two
k-counters running sequentially. Since the counters are independent of each other, the
resulting NCW has about 4k states instead ofO(k2) states. But this is not the end of the
story; a more careful look reveals that Lk can also be characterized as follows: w ∈ Lk

iff w has at least k b’s after the first k a’s (this characterizes words in Lk with infinitely
many b’s), or a finite number of b’s that is not smaller than k (this characterizes words
in Lk with finitely many b’s). Obviously the roles of a and b can also be reversed. As
we later show, implementing this idea results in an NCW with 3k + 1 states. We also
show that up to one state this is indeed the best one can do.

3.2 Upper Bounds for Lk

In this section we describe, for every k ≥ 1, an NBW with 2k + 1 states and an NCW
with 3k + 1 states that recognize Lk.

Theorem 1. There is an NBW with 2k + 1 states that recognizes the language Lk.



Proof: Consider the automaton in Figure 1. Recall that w ∈ Lk iff w has at least k b’s
and infinitely many a’s, or at least k a’s and infinitely many b’s. The lower branch of
the automaton checks the first option, and the upper branch checks the second option.
Let’s focus on the upper branch (a symmetric analysis works for the lower branch). The
automaton can reach the state marked tk−1 iff it can read k− 1 a’s. From the state tk−1

the automaton can continue and accept w, iff w has at least one more a (for a total of
at least k a’s) and infinitely many b’s. Note that from tk the automaton can only read b.
Hence, it moves from tk to tk−1 when it guesses that the current b it reads is the last b
in a block of consecutive b’s (and thus the next letter in the input is a). Similarly, from
tk−1 the automaton moves to tk if it reads an a and guesses that it is the last a in a block
of consecutive a’s.

a, b

a a a a

t0

t′2 t′kt′k−1t′k−2t′1

a

b

t2 tktk−1tk−2t1

b b b ba, b

a

b b b

a a a

b

a

b

a, b

· · ·

· · ·

Fig. 1. An NBW for Lk with 2k + 1 states.

Theorem 2. There is an NCW with 3k + 1 states that recognizes the language Lk.

Proof: Consider the automaton in Figure 2. Recall thatw ∈ Lk iffw contains at least k
b’s after the first k a’s, or a finite number of b’s not smaller than k. The upper branch of
the automaton checks the first option, and the lower branch checks the second option.
It is easy to see that an accepting run using the upper branch first counts k a’s, then
counts k b’s, and finally enters an accepting sink. To see that the lower branch accepts
the set of words that have at least k b’s, but only finitely many b’s, observe that every
accepting run using the lower branch proceeds as follows: It stays in the initial state
until it guesses that only k b’s remain in the input, and then it validates this guess by
counting k b’s and entering a state from which only aω can be accepted.

Before we turn to study lower bounds for the language Lk, let us note that the
strategies used in the NBW and NCW in Figures 1 and 2 are very different. Indeed,
the first uses the ability of the Büchi condition to track that an event occurs infinitely
often, and the second uses the ability of the co-Büchi condition to track that an event
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Fig. 2. An NCW for Lk with 3k + 1 states.

occurs only finitely often. Thus, it is not going to be easy to come up with a general
linear translation of NBWs to NCWs that given the NBW in Figure 1 would generate
the NCW in Figure 2.

3.3 Lower Bounds for Lk

In this section we prove that the constructions in Section 3.2 are optimal. In particular,
this section contains our main technical contribution – a lower bound on the number of
states of an NCW that recognizes Lk.

Let A = 〈Σ,Q, δ,Q0, α〉 be an NBW or an NCW that recognizes the language
Lk. Let qa

0q
a
1q

a
2 · · · be an accepting run of A on the word akbω, and let qb

0q
b
1q

b
2 · · · be

an accepting run of A on the word bkaω. Also, let Qa = {qa
1 , q

a
2 , . . . , q

a
k}, and Qb =

{qb
1, q

b
2, . . . , q

b
k}. Note that A may have several accepting runs on akbω and bkaω, thus

there may be several possible choices of Qa andQb. The analysis below is independent
of this choice. Observe that for every 1 ≤ i ≤ k, the state qa

i can be reached from Q0

by reading ai, and from it the automaton can accept the word ak−ibω. Similarly, the
state qb

i can be reached fromQ0 by reading bi, and from it the automaton can accept the
word bk−iaω. A consequence of the above observation is the following lemma.

Lemma 1. The sets Qa and Qb are disjoint, of size k each, and do not intersect Q0.

Proof: In order to see that |Qa| = k, observe that if qa
i = qa

j for some 1 ≤ i < j ≤ k,
then A accepts the word aiak−jbω, which is impossible since it has less than k a’s. A
symmetric argument shows that |Qb| = k. In order to see that Qa ∩Qb = ∅, note that if
qa
i = qb

j for some 1 ≤ i, j ≤ k, then A accepts the word aibk−jaω, which is impossible
since it has less than k b’s. Finally, if qa

i ∈ Q0 for some 1 ≤ i ≤ k, then A accepts the
word ak−ibω, which is impossible since it has less than k a’s. A symmetric argument
shows that Qb ∩Q0 = ∅.

Since obviously |Q0| ≥ 1, we have the following.

Theorem 3. Every NCW or NBW that recognizes Lk has at least 2k + 1 states.



Theorem 3 implies that the upper bound in Theorem 1 is tight, thus the case for
NBW is closed. In order to show that every NCW A = 〈Σ,Q, δ,Q0, α〉 that recognizes
the language Lk has at least 3k states, we prove the next two lemmas.

Lemma 2. If A = 〈Σ,Q, δ,Q0, α〉 is an NCW that recognizes the language Lk, then
there are two (not necessarily different) states qa, qb 6∈ α, such that qa and qb are
reachable from each other using α-free paths, and satisfy that A can accept the word
aω from qa, and the word bω from qb.

Proof: Let n be the number of states in A, and let r = r0, r1, · · · be an accepting run
of A on the word (anbn)ω. Observe that since r is an accepting run then inf (r)∩α = ∅.
Since A has a finite number of states, there exists l ≥ 0 such that all the states visited
after reading (anbn)l are in inf (r). Furthermore, there must be a state qa that appears
twice among the n+1 states r2nl, · · · , r2nl+n that r visits while reading the (l+1)− th
block of a’s. It follows that there is 1 ≤ ma ≤ n such that qa can be reached from qa

by reading ama while going only through states not in α. Similarly, there is a state
qb ∈ inf (r) and 1 ≤ mb ≤ n such that qb can be reached from qb by reading bmb while
going only through states not in α. Hence, A can accept the word (ama)ω = aω from
qa, and the word (bmb)ω = bω from qb. Since qa and qb appear infinitely often on the
α-free tail r2nl, · · · of r, they are reachable from each other using α-free paths.

Note that a similar lemma for NBW does not hold. For example, the NBW in Fig-
ure 1 is such that there is no state from which aω can be accepted, and that can be
reached from a state from which bω can be accepted. Also note that there may be sev-
eral possible choices for qa and qb, and that our analysis is independent of such a choice.

Lemma 3. Every simple path from Q0 to qa is of length at least k + 1 and its k-tail is
disjoint from Q0 ∪ Qa. Similarly, every simple path from Q0 to qb is of length at least
k + 1 and its k-tail is disjoint from Q0 ∪Qb.

Proof: We prove the lemma for a path π from Q0 to qa (a symmetric argument works
for a path to qb). By Lemma 2, A can accept the word aω from qa. Hence, A must read
at least k b’s before reaching qa. This not only implies that π is of length at least k+ 1,
but also that no state in the k-tail of π can be reached (in zero or more steps) from Q0

without reading b’s. Since all states in Q0 ∪ Qa violate this requirement, we are done.

Lemmas 1 and 3 together imply that if there exists a simple path π from Q0 to qa
whose k-tail is disjoint fromQb (alternatively, a simple path fromQ0 to qb whose k-tail
is disjoint from Qa), then A has at least 3k + 1 states: Q0, Qa, Qb, and the k-tail of
π. The NCW used to establish the upper bound in Theorem 2 indeed has such a path.
Unfortunately, this is not the case for every NCW recognizingLk. However, as the next
two lemmas show, if the k-tail of π is α-free we can “compensate” for each state (except
for qb

k) common to π and Qb, which gives us the desired 3k lower bound. The proof of
the main theorem then proceeds by showing that if we fail to find a simple path from
Q0 to qa whose k-tail is disjoint from Qb, and we also fail to find a simple path from
Q0 to qb whose k-tail is disjoint fromQa, then we can find a simple path fromQ0 to qa
whose k-tail is α-free.



Lemma 4. There is a one-to-one function fa : Qa \ ({qa
k}∪α) → α\ (Q0∪Qa∪Qb).

Similarly, there is a one-to-one function fb : Qb \ ({qb
k} ∪ α) → α \ (Q0 ∪Qa ∪Qb).

Proof: We prove the lemma for fb (a symmetric argument works for fa). Let n be
the number of states in A. Consider some qb

i ∈ Qb \ ({qb
k} ∪ α). In order to define

fb(q
b
i ), take an accepting run r = r0, r1, · · · of A on the word bianbk−iaω. Among the

n+ 1 states ri, · · · , ri+n that r visits while reading the sub-word an there must be two
equal states ri+m = ri+m′ , where 0 ≤ m < m′ ≤ n. Since the word biam(am′−m)ω

has less than k b’s it must be rejected. Hence, there has to be a state si ∈ α along the
path ri+m, · · · , ri+m′ . We define fb(q

b
i ) = si. Note that si can be reached from Q0 by

reading a word with only i b’s, and that A can accept from si a word with only k − i

b’s. We prove that si 6∈ Q0 ∪Qa ∪Qb.

– si 6∈ Q0 ∪ Qa ∪ {qb
1, . . . q

b
i−1} because all states in Q0 ∪ Qa ∪ {qb

1, . . . q
b
i−1} can

be reached (in zero or more steps) from Q0 by reading less than i b’s, and from si

the automaton can accept a word with only k − i b’s.
– si 6= qb

i since si ∈ α and qb
i 6∈ α.

– si 6∈ {qb
i+1, . . . q

b
k} because si can be reached fromQ0 by reading a word with only

i b’s, and from all states in {qb
i+1, . . . q

b
k} the automaton can accept a word with less

than k − i b’s.

It is left to prove that fb is one-to-one. To see that, observe that if for some 1 ≤
i < j ≤ k we have that si = sj , then the automaton would accept a word with only
i+ (k − j) b’s, which is impossible since i+ (k − j) < k.

The following lemma formalizes our counting argument.

Lemma 5. If there is a simple path π from Q0 to qa, or from Q0 to qb, such that the
k-tail of π is α-free, then A has at least 3k states.

Proof: We prove the lemma for a path π from Q0 to qa (a symmetric argument works
for a path to qb). By Lemma 1, it is enough to find k−1 states disjoint fromQ0∪Qa∪Qb.
Let P ⊆ Qb be the subset of states of Qb that appear on the k-tail of π, and let R be
the remaining k− |P | states of this k-tail. By Lemma 3 we have that R is disjoint from
Q0 ∪ Qa, and by definition it is disjoint from Qb. We have thus found k − |P | states
disjoint from Q0 ∪ Qa ∪ Qb. It remains to find a set of states S which is disjoint from
Q0∪Qa∪Qb∪R, and is of size at least |P |−1. Since the k-tail of π is α-free, it follows
from Lemma 4 that for every state qb

i in P , except maybe qb
k, there is a “compensating”

state fb(q
b
i ) ∈ α\(Q0∪Qa∪Qb). We defineS to be the set S =

⋃
{qb

i
∈P,qb

i
6=qb

k
}{fb(q

b
i )}

of all these compensating states. Since fb is one-to-oneS is of size at least |P |−1. Since
R is α-free and S ⊆ α it must be that S is also disjoint from R, and we are done.

We are now ready to prove our main theorem.

Theorem 4. Every NCW that recognizes the language Lk has at least 3k states.



Proof: As noted earlier, by Lemmas 1 and 3, if there exists a simple path from Q0 to
qa whose k-tail is disjoint fromQb, or if there exists a simple path fromQ0 to qb whose
k-tail is disjoint from Qa, then A has at least 3k + 1 states: Q0, Qa, Qb, and the k-tail
of this path. We thus assume that on the k-tail of every simple path from Q0 to qa there
is a state from Qb, and that on the k-tail of every simple path from Q0 to qb there is a
state from Qa. Note that since by Lemma 3 the k-tail of every simple path from Q0 to
qb is disjoint from Qb, it follows from our assumption that qa 6= qb.

Another consequence of our assumption is that qa is reachable from Qb. Take an
arbitrary simple path from Qb to qa, let qb

i be the last state in Qb on this path, and let
qb
i = v0, · · · , vh = qa be the tail of this path starting at qb

i . Note that if qa ∈ Qb then
h = 0. Define πa to be the path qb

0, · · · , q
b
i , v1, · · · , vh. Observe that by Lemma 1, and

the fact that v1, ..., vh are not in Qb, the path πa is simple. Hence, by our assumption,
the k-tail of πa intersects Qb. Since v1, ..., vh are not in Qb, it must be that h < k.

By Lemma 2, qb is reachable from qa without using states in α. Thus, there exists a
simple α-free path qa = u0, ..., um = qb. Since u0 = qa ∈ πa, we can take 0 ≤ j ≤ m

to be the maximal index such that uj appears on πa. Define the path πb, from Q0 to
qb, to be the prefix of πa until (but not including) uj , followed by the path uj , ..., um.
Note that πb is a simple path since by our choice of uj it is the concatenation of two
disjoint simple paths. Hence, by our assumption, there is some state qa

j ∈ Qa on the
k-tail of πb. We claim that qa

j must be on the α-free tail uj , ..., um of πb. Recall that all
the states in πb before uj are also in πa, so it is enough to prove that qa

j is not in πa. By
Lemma 1, qa

j cannot be equal to any of the first i+1 states of πa. By Lemma 3, and the
fact that h < k, it cannot be equal to any of the remaining h states of πa. We can thus
conclude that the tail of πb starting at qa

j is α-free.
We are now in a position to build a new simple path π from Q0 to qa, whose k-tail

is α-free. By Lemma 5, this completes the proof. We first define a path π′ from Q0 to
qa by concatenating to the path qa

0 , q
a
1 , · · · q

a
j−1 the tail of πb starting at qa

j , followed by
some α-free path from qb to qa (by Lemma 2 such a path exists). Since π′ may have
repeating states, we derive from it the required simple path π by eliminating repetitions
in an arbitrary way. Observe that the only states in π′ (and thus also in π) that may be in
α are the states {qa

0 , q
a
1 , . . . q

a
j−1}. By Lemma 3, the k-tail of π is disjoint fromQ0∪Qa.

Hence, it must be α-free.

Combining the upper bound in Theorem 1 with the lower bound in Theorem 4, we
get the following corollary.

Corollary 1. For every integer k ≥ 1, there is a language Lk over a two-letter alpha-
bet, such thatLk can be recognized by an NBW with 2k+1 states, whereas the minimal
NCW that recognizes Lk has 3k states.

4 From NCW to NBW

As shown in Section 3, NBWs are more succinct than NCWs. In this section we study
the translation of NCW to NBW and show that the converse is also true. That is, we
show that the known construction that translates an NCW with n states and acceptance



condition α, to an equivalent NBW with 2n− |α| states, is tight. For reference, we first
briefly recall this translation. The translation we present follows [10], which comple-
ments deterministic Büchi automata.

Theorem 5. [10] Given an NCW A = 〈Σ,Q, δ,Q0, α〉 with n states, one can build an
equivalent NBW A′ with 2n− |α| states.

Proof: The NBW A′ is built by taking two copies of A, deleting all the states in α
from the second copy, and making all the remaining states of the second copy accepting.
Transitions are also added to enable the automaton to move from the first copy to the
second copy, but not back. The idea is that since an accepting run of A visits states in α
only finitely many times, it can be simulated by a run of A′ that switches to the second
copy when states in α are no longer needed. More formally, A′ = 〈Σ, (Q × {0}) ∪
((Q \ α) × {1}), δ′, Q0 × {0}, (Q \ α) × {1}〉, where for every q ∈ Q and σ ∈ Σ we
have δ′(〈q, 0〉, σ) = (δ(q, σ) × {0}) ∪ ((δ(q, σ) \ α) × {1}, and for every q ∈ Q \ α
and σ ∈ Σ we have δ′(〈q, 1〉, σ) = (δ(q, σ) \ α) × {1}.

Observe that if α = ∅, then L(A) = Σ∗, and the translation is trivial. Hence, the
maximal possible blowup is when |α| = 1. In the remainder of this section we prove
that there are NCWs (in fact, DCWs with |α| = 1) for which the 2n − |α| blowup
cannot be avoided.

4.1 The Languages L
′

k

We define a family of languages L′
2, L

′
3, . . . over the alphabet Σ = {a, b}. For every

k ≥ 2 we let L′
k = (akbk + akbk−1)∗(akbk−1)ω . Thus, a word w ∈ {a, b}ω is in L′

k

iff w begins with an a, all the blocks of consecutive a’s in w are of length k, all the
blocks of consecutive b’s in w are of length k or k − 1, and only finitely many blocks
of consecutive b’s in w are of length k. Intuitively, an automaton for L′

k must be able
to count finitely many times up to 2k, and infinitely many times up to 2k − 1. The key
point is that while a co-Büchi automaton can share the states of the 2k− 1 counter with
those of the 2k counter, a Büchi automaton cannot.

4.2 Upper bounds for L
′

k

We first describe an NCW (in fact, a DCW) with 2k states that recognizes the language
L′

k. By Theorem 5, one can derive from it an equivalent NBW with 4k − 1 states.

Theorem 6. There is a DCW with 2k states that recognizes the language L′
k.

Proof: Consider the automaton in Figure 3. It is obviously deterministic, and it is easy
to see that it accepts the language akbk−1(akbk−1 + bakbk−1)∗(akbk−1)ω = (akbk +
akbk−1)∗(akbk−1)ω = L′

k.

Note that the NCW in Figure 3 is really a DCW, thus the lower bound we are going
to prove is for the DCW to NBW translation. It is worth noting that the dual translation,
of DBW to NCW (when exists), involves no blowup. Indeed, if a DBW A recognizes a
language that is recognizable by an NCW, then this language is also recognizable by a
DCW, and there is a DCW on the same structure as A for it [6, 8].
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Fig. 3. A DCW for L′

k with 2k states.

4.3 Lower bounds for L
′

k

In this section we prove that the NBW obtained by applying the construction in The-
orem 5 to the automaton in Figure 3, is optimal. Thus, every NBW for L′

k has at least
4k− 1 states. Note that this also implies that the upper bound in Theorem 6 is tight too.

We first show that an automaton for L′
k must have a cycle along which it can count

to 2k, for the purpose of keeping track of occurrences of akbk in the input.

Lemma 6. If A = 〈Σ,Q, δ,Q0, α〉 is an NCW or an NBW that recognizes the language
L′

k, then there is a cycle C, reachable from Q0, with at least 2k different states, along
which A can traverse a finite word containing the substring akbk.

Proof: Let n be the number of states in A, and let r = r0, r1, · · · be an accepting run
of A on the word w = (akbk)n+1(akbk−1)ω. Since A has only n states, there must be
1 ≤ i < j ≤ n + 1, such that ri2k = rj2k . Consider the cycle C = ri2k, · · · , rj2k−1.
Note that r0 ∈ Q0 and thus C is reachable from Q0. Also note that j − i ≥ 1, and that
A can traverse (akbk)j−i along C.

We now prove that the states ri2k , · · · , r(i+1)2k−1 are all different, thus C has at
least 2k different states. Assume by way of contradiction that this is not the case, and
let 0 ≤ h < l ≤ 2k − 1 be such that ri2k+h = ri2k+l. Define u = akbk, and let
u = xyz, where x = u1 · · ·uh, y = uh+1 · · ·ul, and z = ul+1 · · ·u2k. Observe
that x and z may be empty, and that since 0 ≤ h < l ≤ 2k − 1, it must be that
0 < |y| < 2k. Also note that A can traverse x along ri2k · · · ri2k+h, and traverse y
along the cycle Ĉ = ri2k+h, · · · , ri2k+l−1. By adding k more traversals of the cycle Ĉ
we can derive from r a run r′ = r0 · · · ri2k+h · (ri2k+h+1 · · · ri2k+l)

k+1 · ri2k+l+1 · · ·
on the word w′ = (akbk)ixyk+1z(akbk)n−i(akbk−1)ω . Similarly, by removing from
r a traversal of Ĉ , we can derive a run r′′ = r0 · · · ri2k+hri2k+l+1 · · · on the word
w′′ = (akbk)ixz(akbk)n−i(akbk−1)ω . Since inf (r) = inf (r′) = inf (r′′), and r is
accepting, so are r′ and r′′. Hence, w′ and w′′ are accepted by A.

To derive a contradiction, we show that w′ 6∈ L′
k or w′′ 6∈ L′

k. Recall that xyz =
akbk and that 0 < |y| < 2k. Hence, there are two cases to consider: either y ∈ a+ +b+,
or y ∈ a+b+. In the first case we get that yk+1 contains either ak+1 or bk+1, which
implies that w′ 6∈ L′

k. Consider now the case y ∈ a+b+. Let y = ambt. Since i > 0, the
prefix (akbk)ixzak ofw′′ ends with bkak−mbk−tak. Since all the consecutive blocks of
a’s in w must be of length k, andm > 0, it must be that k−m = 0. Hence,w′′ contains
the substring bkbk−t. Recall that k = m, and that m + t < 2k. Thus, k − t > 0, and



bkbk−t is a string of more than k consecutive b’s. Since no word in L′
k contains such a

substring, we are done.

The following lemma shows that an NBW recognizing L′
k must have a cycle go-

ing through an accepting state along which it can count to 2k − 1, for the purpose of
recognizing the (akbk−1)ω tail of words in L′

k.

Lemma 7. If A = 〈Σ,Q, δ,Q0, α〉 is an NBW that recognizes the language L′
k, then

A has a cycle C, with at least 2k − 1 different states, such that C ∩ α 6= ∅.

Proof: Since L(A) is not empty, there must be a state c0 ∈ α that is reachable from
Q0, and a simple cycle C = c0, · · · , cm−1 going through c0. Since C is simple, all its
states are different. It remains to show that m ≥ 2k− 1. Let u ∈ Σ∗ be such that A can
reach c0 from Q0 while reading u, and let v = σ1 · · ·σm be such that A can traverse v
alongC. It follows thatw = uvω is accepted by A. Since all words inL′

k have infinitely
many a’s and b’s, it follows that a and b both appear in v. We can thus let 1 ≤ j < m

be such that σj 6= σj+1. Let x be the substring x = σj · · ·σmσ1 · · ·σj+1 of vv. Since
σj 6= σj+1, it must be that x contains one block of consecutive letters all equal to σj+1

that starts at the second letter of x, and another block of consecutive letters all equal to
σj that ends at the letter before last of x. Since |x| = m + 2 we have that x contains
at least one block of consecutive a’s and one block of consecutive b’s that start and end
within the span ofm letters. Recall that since w ∈ L′

k then all the blocks of consecutive
a’s in vω must be of length k, and all the blocks of consecutive b’s in vω must be of
length at least k − 1. Hence, m ≥ k + k − 1.

Theorem 7. Every NBW A = 〈Σ,Q, δ,Q0, α〉 that recognizes the language L′
k has at

least 4k − 1 states.

Proof: By Lemma 6, there is a cycle C = c0, · · · , cn−1, reachable from Q0, with
at least 2k different states, along which A can read some word z = z1 · · · zn con-
taining akbk. By Lemma 7, there is a cycle C ′ = c′0, · · · , c

′
m−1, with at least 2k − 1

different states, going through an accepting state c′0 ∈ α. In order to prove that A has
at least 4k − 1 states, we show that C and C ′ are disjoint. Assume by way of con-
tradiction that there is a state q ∈ C ∩ C ′. By using q as a pivot we can construct
a run r that alternates infinitely many times between the cycles C and C ′. Since C ′

contains an accepting state, the run r is accepting. To reach a contradiction, we show
that r is a run on a word containing infinitely many occurrences of bk, and thus it
must be rejecting. Let 0 ≤ l < n and 0 ≤ h < m be such that q = cl = c′h, and
let q0, · · · , qt be a path from Q0 to q (recall that C is reachable from Q0). Consider
the run r = q0 · · · qt−1(c

′
h · · · c′m−1c

′
0 · · · c

′
h−1cl · · · cn−1c0 · · · cn−1c0 · · · cl−1)

ω . Let
x, y ∈ Σ∗ be such that A can read x along the path q0, · · · qt, and read y while going
from c′h back to itself along the cycle C ′. Observe that r is a run of A on the word
w = x · (y · zl+1 · · · zn · z · z1 · · · zl)

ω. Since c′0 ∈ α and r goes through c′0 infinitely
many times, r is an accepting run of A on w. Since w contains infinitely many occur-
rences of z it contains infinitely many occurrences of bk, and thus w 6∈ L′

k, which is a
contradiction.



Combining the upper bound in Theorem 6 with the lower bound in Theorem 7 we
get the following corollary:

Corollary 2. For every integer k ≥ 2, there is a language L′
k over a two-letter alpha-

bet, such that L′
k can be recognized by a DCW with 2k states, whereas the minimal

NBW that recognizes L′
k has 4k − 1 states.

5 Discussion

We have shown that NBWs are more succinct than NCWs. The advantage of NBWs
that we used is their ability to save states by counting to infinity with two states instead
of counting to k, for some parameter k. The bigger k is, the bigger is the saving. In
our lower bound proof, k is linear in the size of the state space. Increasing k to be
exponential in the size of the state space would lead to an exponential lower bound for
the NBW to NCW translation. Once we realized this advantage of the Büchi condition,
we tried to find an NBW that uses a network of nested counters in a way that would
enable us to increase the relative size of k. We did not find such an NBW, and we
conjecture that the succinctness of the Büchi condition cannot go beyond saving one
copy of the state space. Let us elaborate on this.

The best known upper bound for the NBW to NCW translation is still exponential,
and the upper bound for the NCW to NBW translation is linear. Still, it was much
easier to prove the succinctness of NCWs with respect to NBWs (Section 4) than the
succinctness of NBWs with respect to NCWs (Section 3). Likewise, DCWs are more
succinct than NBWs (Section 4), whereas DBWs are not more succinct than NCWs [6].
The explanation for this quite counterintuitive “ease of succinctness” of the co-Büchi
condition is the expressiveness superiority of the Büchi condition. Since every NCW has
an equivalent NBW, all NCWs are candidates for proving the succinctness of NCW. On
the other hand, only NBWs that have an equivalent NCW are candidates for proving the
succinctness of NBWs. Thus, the candidates have to take an advantage of the strength
of the Büchi condition, but at the same time be restricted to the co-Büchi condition. This
restriction has caused researchers to believe that NBWs are actually co-Büchi-type (that
is, if an NBW has an equivalent NCW, then it also has an equivalent NCW on the same
structure). The results in [8] refuted this hope, and our results here show that NBWs can
actually use their expressiveness superiority for succinctness. While the results are the
first to show such a succinctness, our fruitless efforts to improve the lower bound further
have led us to believe that NBWs cannot do much more than abstracting counting up to
the size of the state space. Intuitively, as soon as the abstracted counting goes beyond
the size of the state space, the language has a real “infinitely often” nature, and it is
not recognizable by an NCW. Therefore, our future research focuses on improving the
upper bound. The very different structure and strategy behind the NBW and NCW in
Figures 1 and 2 hint that this is not going to be an easy journey either.
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