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Abstract

In multiagent systems, social choice functions can help aggregate the distinct prefer-
ences that agents have over alternatives, enabling them to settle on a single choice. Despite
the basic manipulability of all reasonable voting systems, it would still be desirable to
find ways to reach plausible outcomes, which are stable states, i.e., a situation where no
agent would wish to change its vote. One possibility is an iterative process in which, after
everyone initially votes, participants may change their votes, one voter at a time. This
technique, explored in previous work, converges to a Nash equilibrium when Plurality vot-
ing is used, along with a tie-breaking rule that chooses a winner according to a linear order
of preferences over candidates.

In this paper, we both consider limitations of the iterative voting method, as well as
expanding upon it. We demonstrate the significance of tie-breaking rules, showing that
no iterative scoring rule converges for all tie-breaking. However, using a restricted tie-
breaking rule (such as the linear order rule used in previous work) does not by itself ensure
convergence. We prove that in addition to plurality, the veto voting rule converges as well
using a linear order tie-breaking rule. However, we show that these two voting rules are
the only scoring rules that converge, regardless of tie-breaking mechanism.

1. Introduction

Any system—mechanical or human—that is composed of different elements, employs some
mechanism of aggregating the opinions of its components in order to reach a joint decision
or action. These mechanisms can be thought of as elections, in which each participant
ranks several options; after receiving each agent’s preference order over these options, the
mechanism picks a specific option as its result.

People have long been aware that sometimes, by misreporting their preference order,
the outcome may become more favorable to them (“strategic/tactical voting”). Such phe-
nomena have bothered social choice theorists, such as Condorcet and Borda, as democracy
and voting became more common in the late 18th century. However, efforts to develop
voting methods that would encourage voters to be truthful were revealed to be futile, once
the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) showed that no
non-dictatorial “reasonable” voting rule can be strategyproof. This result led to a line of
research commenced by Bartholdi, Tovey, and Trick (1989), Bartholdi and Orlin (1991),
and expanded further by many researchers (Conitzer, Sandholm, & Lang, 2007; Procaccia,
Rosenschein, & Zohar, 2007; Procaccia & Rosenschein, 2007; Xia, Zuckerman, Procaccia,
Conitzer, & Rosenschein, 2009; Zuckerman, Procaccia, & Rosenschein, 2008; Zuckerman,
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Lev, & Rosenschein, 2011), which assess the complexity of finding a beneficial manipulation
for voters in various settings. See also overviews in the work of Rothe (2015) and Brandt,
Conitzer, Endriss, Lang, and Procaccia (2016).

Despite significant results from this line of research, it has not helped us in analyzing
election results. When many voters are strategic and manipulating, we are still at a loss
to understand which election results are possible and which are not, not to mention try-
ing to understand underlying truthful preferences when presented with election results.1

Furthermore, while game theory is often a powerful tool when analyzing situations where
participants manipulate, voting scenarios have some properties that make them more dif-
ficult to analyze: participants only supply a ranking of their preferences, rather than the
utility value of each option (as is typical in monetary settings), and the assumption that
participants have a good perception of others’ preferences is not true. Looking at equilib-
ria in voting games results in an enormous number of equilibria (hundreds of thousands
even in small games, such as one with 10 voters and 5 candidates; see Thompson, Lev,
Leyton-Brown, & Rosenschein, 2013). Much worse from the viewpoint of analysis, many
Nash equilibria are practically useless for any analytic purpose, not representing a realistic
possible end-state of an election. For example, even if all voters rank the same candidate
in last place, there are Nash equilibria where it wins (e.g., in plurality, if all voters vote for
this candidate, this is a Nash equilibrium). This renders standard Nash equilibria virtually
useless as an analytic tool, despite their fundamental relevance in showing stable states that
incorporate voters’ manipulations.

One approach to trying to model the election process and outcome is iterative voting,
suggested by Meir, Polukarov, Rosenschein, and Jennings (2010). This work views decision-
making as a process by which voters change their vote according to what they know of the
result; for example, if by changing their vote they can alter the outcome to one that is
more preferable for them, they will do so. This process not only happens in smaller groups
(e.g., a group of friends choosing a restaurant, or using event coordination sites, such as
Doodle), but can also be used to model larger-scale elections, where people’s knowledge of
the state of the election comes from polls, according to which they adapt their vote (some
simulation-based support for such a view, in a slightly more complex model, was shown in
Meir, Lev, & Rosenschein, 2014). A voter in a plurality election (e.g., for U.S. Congress or
U.K. Parliament) that supports a party that has no chance of winning may switch their vote
to the major party that they support the most, in order to influence the election outcome.
Looking at the set of states that are reachable from true preferences, using this dynamic,
gives us (in some sense) a set of plausible outcomes. These states are far fewer than the
number of Nash equilibria, and may give us a better understanding of realistic outcomes.

However, the results in the work of Meir et al. (2010) were limited: the process was shown
to converge if voters are myopic and pursue at each stage the most beneficial strategy that
they can, while the voting system is plurality with a linear tie-breaking rule. While the
assumptions on voters were justified—the necessity of the best-response strategy was shown,
and it is not clear how to remove the myopic assumption (though some recent work has

1. This problem is only exacerbated when considering independent computer agents. They are motivated
to manipulate, and may have the computational resources to calculate the particular strategy to do so
optimally.
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tried to address this problem)—there is no obvious reason to assume plurality with a linear
tie-breaking rule as the underlying voting rule.

In this paper, we examine the robustness of the iterative voting framework, as well as
expanding it to encompass, beyond Plurality, an additional voting rule. We discover that
when dealing with deterministic tie-breaking rules, the type of tie-breaking rule is crucial
for a positive result: if we do not restrict the choice of tie-breaking rules, no scoring rule
can guarantee convergence. We prove that when using a linear-order tie-breaking rule,
the iterative process with Veto does converge when voters use the best-response strategy.2

However, we end with a negative result, showing that regardless of the tie-breaking rule
used, iterative voting cannot be generalized to all scoring rules: no scoring rule other than
plurality and veto will converge, including the family of voting rules that lies “between”
them (k-approval). This negative result was expanded to several other non-scoring rules in
the work of Koolyk, Lev, and Rosenschein (2016).

2. Related Work

The common game-theoretic approach to iterative processes is subgame-perfect Nash equi-
librium, which entails a backward induction from potential results. This has mostly been
used to analyze open serial elections (e.g., roll-calls) and sequential elections with two candi-
dates (Sloth, 1993; McKelvey & Niemi, 1978; Dekel & Piccione, 2000). However this is not
well-attuned to reality, as people are notoriously bad at doing backward induction (Johnson,
Camerer, Sen, & Rymon, 2002), and in our iterative setting, with its limited information
about other voters’ preferences and its non-deterministic voting order, it is even less appli-
cable and realistic.

While we use the framework established by Meir et al. (2010), the notions of an iterative
approach to voting, as well as of seeking election equilibria, exist in prior research. Dealing
with general game structure, and therefore including mixed strategies (which are less rele-
vant in a voting setting), fictitious play was suggested by Brown (1951). It includes agents
reacting with a best response strategy to one another, and has been shown to converge
for particular types of games (e.g., zero-sum games Robinson, 1951). In decision making
settings, an iterative process for reaching decisions was offered for agents by Ephrati and
Rosenschein (1996), but it used a mechanism to transfer money-like value among agents,
and hence is not relevant to voting procedures. Several researchers have considered reaching
an equilibrium with an iterative (or dynamic) process, in particular when deciding on an
allocation of public goods. A summary of much of that work can be found in the work
of Laffont (1987), which details various approaches, including different equilibria choices
(Nash, local dominant, local maximin) and methods. However, in order to reach an equilib-
rium, they limit the possible preference choices to single-peaked preferences. More recently,
Reijngoud and Endriss (2012) explored an iterated poll setting, but as theirs had only one
round where voters change their vote according to a fixed order, the issues discussed here
do not arise.

2. Iterative vetoing is used, in the real world, in various situations, such as elimination decisions in various
“reality shows” (e.g., American Idol, America’s Next Top Model, etc.). As they usually use a single
judge’s preferences to break ties, it is indeed linear-order tie-breaking.
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Another branch of research deals with a process of having a player propose a change in
the current state, and hold a vote on its acceptance. Such a model was used by Shepsle
(1979), where an equilibrium was forced by using a combination of preference limitation and
organizational limitations. A different approach was used by de Trenqualye (1998), who
chose to achieve an equilibrium by using a specific voting rule and Euclidean preferences.
More recently, Airiau and Endriss (2009) examined, theoretically and experimentally, the
possibility of an equilibrium in such games, using plurality-type voting rules (the threshold
can be different than 50% for a change to be accepted).

Attempting to investigate the role of knowing other players’ knowledge, Chopra, Pacuit,
and Parikh (2004) examined iterative voting with plurality, and showed the effects of limiting
a player’s knowledge of the other players’ preferences. Another interesting model, proposed
by Myerson and Weber (1993), found a Nash equilibrium for scoring rules, assuming that
voters have some knowledge of which candidates have a better chance of winning (based,
for example, on pre-election polls); this does not, however, mean that every election results
in an equilibrium.

In searching for equilibria (albeit not iteratively), Feddersen, Sened, and Wright (1990)
chose (like Laffont, 1987) to limit preferences to single-peaked preferences. Others, like
Hinich, Ledyard, and Ordeshook (1972), chose to change the single-peak limitation to a
specific probabilistic model of voters over a Euclidean space of candidates, while chang-
ing other parts of the model (such as allowing for abstentions). A somewhat different
approach, taken by Messner and Polborn (2007), analyzed equilibria by coalitional manip-
ulation (hence, using a stronger equilibrium than Nash, a method also utilized in Dhillon &
Lockwood, 2004). However, one of the main limitations of many of the papers mentioned
above is that they assume some player knowledge of other players’ preferences.

2.1 Iterative Voting

The iterative model presented by Meir et al. (2010) has attracted much interest, aiming to
expand the model in different directions. Some work has attempted to understand the need
for the “best response” strategy requirement, and try to generalize it, which was analyzed
by Obraztsova, Markakis, Polukarov, Rabinovich, and Jennings (2015c) (and, in a different
way, yet still applicable to the iterative model, in Meir, 2015). Looking into strategies
that might ensure convergence in an iterative voting process (and not just best-response)
was also explored by Grandi, Loreggia, Rossi, Venable, and Walsh (2013), and by Loreggia
(2012). A recent attempt to address the myopic limitation has been done by Obraztsova,
Lev, Polukarov, Rabinovich, and Rosenschein (2015b), but it is in its early stages, and is
the least-explored direction.

A different approach has been to change the voters’ behavior in the iterative process, and
make them biased: truth-biased (i.e., all things being equal, prefer truthful vote) or lazy-
biased (all things being equal, prefer not participating). This was explored by Rabinovich,
Obraztsova, Lev, Markakis, and Rosenschein (2015), which also showed that finding if a
state is reachable iteratively with regular voters is NP-complete. In a different approach,
Brânzei, Caragiannis, Morgenstern, and Procaccia (2013) addressed some notions of the
price of anarchy in the context of iterative plurality, showing that winners will have a very
high truthful score.
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A different model using an iterative concept is by Meir et al. (2014) (and, continuing
it, Meir, 2015), but it assumes that players are not sure of what the state of the world
is (though their simulations, even for our stricter setting, seem to vindicate the general
iterative approach). While that model encompasses, in some respects, the iterative voting
model as a particular case, it has so far only explored plurality.

Moving beyond plurality, Obraztsova, Lev, Markakis, Rabinovich, and Rosenschein
(2015a) examine the complexity of knowing if a particular profile is reachable from the
truthful state via an iterative process using plurality and veto, and show this is NP-
complete, while also showing a particular family of problems where this is polynomial for
veto. Grandi et al. (2013) (and Loreggia, 2012) approach non-scoring rules, but only show
convergence there with a limited set of strategies, but not best-response. Recently, Koolyk
et al. (2016) showed non-convergence in various strategies, including best-response, in var-
ious non-scoring rules.

We note that Meir et al. (2010) also showed various non-convergence results for plurality
when the iterative stage is simultaneous, and when tie-breaking is non-deterministic. Also,
after the publication of the proof below on iterative veto, another proof, very different in
structure, for the same result was published by Reyhani and Wilson (2012). They also
showed that convergence for veto occurs with complexity O(mn).

3. Preliminaries

We first set out to define elections. An election E is composed of several elements:

• Candidates: A set C of m elements.

• Voters: A set V of size n. Each voter i ∈ V is associated with an element ai ∈ π(C),
where π(C) is the set of linear orders of the elements of C. This represents the
truthful preferences of a particular voter. To make this similar to common game-
theoretic settings, we can associate this preference order with some utility function
ui : C → R, in which there is a higher utility from higher-ranked candidates, but this
utility function is hidden from anyone but the voter itself. We mark this preference
order by �i.

• Voting function: A function f : π(C)n → C which is given a set of preferences from
each voter and outputs a winner.

A voting function f : π(C)n → C consists of two parts: a voting rule f̂ : (π(C))n → 2C

itself, and a tie-breaking rule t : 2C → C. Thus, f = t ◦ f̂ .

Definition 1. A tie-breaking rule is a function t : 2C → C, which takes a subset of C and
returns a single candidate. A particular family of tie-breaking rules is of lexicographic or
linear tie-breaking rules which are defined by an order a ∈ π(C), and for Ĉ ⊆ C, t(Ĉ) is
c ∈ Ĉ which is the highest ranked member in Ĉ according to the order a (i.e., for all c′ ∈ Ĉ,
c′ 6= c, c �a c

′).

As a voter may be strategic, it may report to the voting rule a different preference
than its truthful �i preference order. That is, each voter i is reporting to the voting rule
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bi ∈ π(C), and bi might not equal ai. A set of all such n declared votes is a voting profile,
which we shall generally denote by b.

Definition 2. A strategic deviation by voter i in a profile b in which each voter j 6= i is
reporting a vote bj ∈ π(C), is when there is a preference order b̂i ∈ π(C), b̂i 6= bi such that

f(b1, . . . , b̂i, . . . , bn) �i f(b1, . . . , bi, . . . , bn)

We denote the profile b without the vote of voter i ∈ V as b−i.

The Gibbard-Satterthwaite theorem tells us that all reasonable voting rules have a profile
for which there are voters that have a strategic deviation from the truthful profile.

Definition 3. A profile b is a Nash equilibrium when no voter has a strategic deviation
from the profile. So for any voter i,

f(b1, . . . , bi, . . . , bn) �i f(b1, . . . , b̂i, . . . , bn)

for any b̂i ∈ π(C).

We use the terminology of Nash equilibria in voting scenarios to refer only to pure Nash
equilibria, as mixed Nash equilibria have little practical meaning in such scenarios.

3.1 Voting Rules

Many voting rules have been suggested in the literature, though we shall focus only on a
few of them. In particular, we will pay attention to a particular family of voting rules:

Definition 4. A scoring rule is a voting rule defined by a vector

(α1, α2, . . . , αm−1, 0)

in which α1 ≥ α2 ≥ αm−1 ≥ 0. Each voter’s vote contributes α1 points to the highest
ranked candidate in its reported preference, α2 points to the second ranked candidate, and so
on. Finally, scores are tallied after all votes have been cast, and the candidates that scored
the maximal number of points are the winners.

Many commonly used voting rules are scoring rules. In particular, we shall focus on:

Plurality The most widely-used voting rule. Equivalent to the scoring rule (1, 0, . . . , 0).

Veto A voting rule complementary to plurality. Equivalent to the scoring rule (1, 1, . . . , 1, 0).

k-approval/k-veto Lying between plurality and veto, in which we fix the number of can-
didate getting a score of 1, or the number of those getting a score of 0. Equivalent to
the scoring rule (1, . . . , 1, 0, . . . , 0).

We shall discuss these voting rules as families, including their variants for any number
of candidates. So, for example, when discussing the veto voting rule, we refer to using the
veto scoring rule for any number of candidates m. However, our proofs apply to each of
these separately, and therefore, for example, any scoring rule that incorporates the plurality
scoring rule for a particular number of candidates m will converge for m candidates (though
not necessarily for a different number of candidates, if they use a different scoring rule for
that number).
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3.2 The Iterative Process

The following definitions and explanations follow the framework established by Meir et al.
(2010). We do not assume that every voter knows the preferences of the others; on the
contrary, we assume that each player only knows the current results (and candidate scores)
of the game, and is not aware of other voters’ preferences. Hence, voters are myopic; they
only think of changing their vote so as to improve the current situation, as they do not take
into account future steps by other players.

We wish to show a process that examines equilibria reachable from the original starting
point, which in many cases might be, due to lack of prior information, truthful on the part
of the voting agents (though this is not a necessary requirement for our proofs).

Definition 5. An iterative election game G is made up of an initial election (which we shall
mark as G0), followed by further elections (G1, G2, . . .), with the difference between election
Gi and Gi+1 being that one voter changed their declared preference. A game converges if it
becomes stable, i.e., there is an n such that for all i > n, Gi = Gn.

G0 may be a truthful state (i.e., voters vote according to their true preferences), but it
is not necessarily so.

Obviously, since at every step some voter may change something about their reported
preferences, no election need be stable. However, the analysis becomes more interesting
once we limit the voter’s possible changes, requiring individual rationality. In that case,
a valid step is one in which the winner of the election changes,3 and the step must be
one that changes the winner to a candidate that the voter who changed their vote prefers
over the previous winner (according to the voter’s internal, real preferences). Formally, a
step from Gi to Gi+1 is one in which all voters played in Gi according to the strategies
(b1, b2, . . . , bn) ∈ π(C)n, and for some player j ∈ V , there is a strategy b′j ∈ π(C) such that:

t(f(b1, b2, . . . , b
′
j , . . . , bn)) �aj t(f(b1, b2, . . . , bj , . . . , bn))

Under the assumption of individual rationality, and thanks to voters not changing votes
simultaneously,4 a stable game is one that has reached a Nash equilibrium.

Furthermore, we define a specific type of step for our analysis (following Meir et al.,
2010).

Definition 6. A best response step is one in which the voter changing their strategy cannot
cause a more preferred candidate to win using a different strategy, i.e., given a strategy
profile (b1, b2, . . . , bn) ∈ π(C)n, strategy b̄i ∈ π(C) is the best response for player i if for
every strategy b′i ∈ π(C)

t(f(b1, b2, . . . , b̄i, . . . , bn)) �ai t(f(b1, b2, . . . , b
′
i, . . . , bn))

In specific voting rules below, we shall further refine what a best response move means in
various circumstances. In particular, Meir et al. (2010) defined a best response in plurality
to mean the voter is voting for the candidate they are making the winner, and proved:

3. Due to the myopic steps of the players, a move that does not change the winner is pointless.
4. Meir et al. (2010) showed that allowing simultaneous updates prevents convergence even for plurality.
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Theorem 1 (Meir et al., 2010 Thm. 3). An election conducted using iterative plurality
with a linear order deterministic tie-breaking rule, when voters are myopic and using best-
response strategies, will always converge.

4. Tie-Breaking Rules

We start our analysis of the iterative voting model by examining if the requirement for
linear-ordered tie-breaking rules is necessary. Indeed, we show that using arbitrary tie-
breaking rules is not just harmful to the convergence of plurality, but that it prevents
convergence for any scoring rule.

We shall be dealing in our proof with some number of candidates, so we first wish to
ensure any proof on non-convergence in more cases.

Lemma 1. If a scoring rule α = (α1, . . . , αm−1, 0) does not converge, then for every m′ >
m, and scoring rule β = (β1, . . . , βm′−1, 0) such that β1 = α1 and for every αi there is a j
such that αi = βj, β does not converge as well.

Proof. Suppose the example showing that α does not converge requires a voters. To con-
struct a similar example for β, we first select m candidates. Now, let us take m! voters.
Each voter has a different permutation of m candidates in the first m rankings (so, after all
m! voters are tallied, all m candidates will have the same score), and then some permutation
of the remaining m′ −m candidates, but with only a specific one of them in the last place.
Now, we create another set of m! voters, and this time, a different candidate of the m′−m
is put in the last place for all of them. Overall, (m′ −m)m! voters are created, with each
of the m voters having an identical score, and each of the m′ −m candidates has a score
that is lower by m!αm−1 than the m candidates (if this is not more than α1 we repeat the
process several times until it is). Finally, we repeat this process a times, so that there is no
way for a voters to make any of those m′ −m voters a viable winner.

Now, we add the a voters from the α example, placing our m candidates in an order so
that they get the scores they get in the α example, and the rest of the m′ −m candidates
fill in the rest of the ranking. The rest of the iterative process happens by those a voters
iteratively doing what they did in the α example.

We now turn to the main theorem. Our examples will be somewhat complex, as we deal
with a large family of voting rules. In some cases the best response strategy is obvious, as
there is only one choice that results in making a particular candidate the winner. In other
cases there may be multiple options to reach the same outcome, hence we used a “natural”
definition for scoring rules, in which players taking off points from the current winner will
give it zero points and award the new winner the maximal score possible. Also, all things
being equal, we assume that voters will prefer to be as close as possible to their truthful
preferences. However, even if one does not use such a definition for best response, cycles
are still created—but they might be longer ones, as they may go through several more steps
than detailed here.

Theorem 2. An election conducted using an iterative scoring rule with an arbitrary deter-
ministic tie-breaking rule, when voters are myopic and using best-response strategies, will
not converge for some preferences even when starting from the truthful state.
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Proof. First, we deal with scoring rules in which at least three candidates do not receive
maximal scores (i.e., αm−2 < α1). We have at least four candidates, a, b, c, and d, and 2
voters:

Voter 1: a � b � c � d
Voter 2: c � d � b � a

Our tie-breaking rule needs to include the following, for ties of two candidates:

• c wins when tied with others, except b.

• b wins when tied with others, except d.

• d wins when tied with others, except a or c.

We can add several dummy candidates so that the score given by voter 1 to b is less
than is given to a, and the score voter 2 gives to d is less than given to c (and dummy
voters, making these dummy candidates irrelevant as potential winners). The winner in
this truthful state is c (either the sole winner, or through a tie with a). Voter 1’s best
response is to make b victorious, changing its preference to b � a � d � c. Voter 2 can
improve the result by changing its preference to d � c � a � b, making d the winner
(possibly through winning the tie between b and d). The best option available to voter 1 is
to return to its original preference order, making a, its favorite, the winner. However, now
voter 2 will return to its original preference as well, as it ensures the victory of c, its own
most-preferred candidate.

If there are only two candidates that receive less than the maximal score, then we use
a different setting, one with six candidates. Our tie-breaking rule follows:

• b wins when a, b, c, d are tied.

• a wins when a, c, d are tied.

• c wins when a and c are tied and when a, c, d, e are tied.

• d wins in other ties that include it.

• f wins in other ties that do not include d.

• e wins in other ties that do not include d or f .

Let us look at two voters:

Voter 1: a � b � c � d � e � f
Voter 2: b � c � a � d � e � f

The winner here is candidate b (since a, b, c, d are tied). However, when voter 1 changes
its stated preference to a � c � d � e � f � b, then a, its favorite, becomes the winner
(since a, c, d are tied). Voter 2 can only improve this situation by changing its stated
preference to a � c � d � e � b � f , making c victorious. Voter 1 can now improve the
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a b c d e

a b c d e d

b c d a a a

c d a b a a

d e a a a a

e d a a a a

Table 1: Non-linear tie-breaking rule for veto

situation by returning to its original preference, making a the winner. In this case, voter 2
will also return to its original preference, as that will make its favorite candidate, b, win.

If there is only one candidate that receives the less-than-maximal score, this is the Veto
voting rule, for which there is a similar, but simpler, example. We shall use two voters,
and we can describe the voting rule and tie-breaking rule using Table 1, marking the victor
according to whom the voters chose to veto.

In our case, the voters’ real preferences are:

Voter 1: c � b � d � e � a
Voter 2: b � d � c � e � a

The truthful starting point would result in b being the winner. As voter 1 would rather
that c win, it will move to veto b. Following that, voter 2 would move to veto b as well,
as that would result in d winning. Voter 1, which would rather that c win, will return to
vetoing a, and as voter 2 would rather that b be victorious, it would return to vetoing a as
well, returning to our original starting point.

5. Veto

The veto voting rule is the only scoring rule, besides plurality, that converges under the
iterative mechanism (as will be shown below). In the work on iterative plurality, it was
assumed that in a best-response move, the voter votes for the candidate that becomes the
winner (because it is always a best-response). Similarly, for veto, we assume that a best-
response move is one in which a candidate vetoes the current winner; no move can get a
better result.

Observation 1. A best response in the case of the Veto voting rule is equivalent to the
current (undesired) winner being vetoed.

Now we can prove convergence, using a proof by contradiction.

Theorem 3. Iterative Veto elections with deterministic linear-order tie-breaking and voters
that use a best-response strategy, converge even when not starting from a truthful state.

Proof. Suppose there is an iterative election G that includes a cycle. We shall mark an
arbitrary state in the cycle as G0, and enumerate the rest of the cycle accordingly. Note
that G0 is not necessarily the opening state of the election.
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Definition 7. scorei(x) is defined as the score of candidate x in game state Gi. max(Gi)
is defined as the score of the winning candidate in Gi.

Lemma 2. For j < i, max(Gi) ≤ max(Gj) + 1, and if max(Gi) = max(Gj) + 1, there is
only one candidate with that score.

Proof. Proving by induction, the base case is trivial. Assuming it is true after h− 1 steps,
proving it for step h: examining Gh−1, if there was a j < h − 1 for which max(Gh−1) =
max(Gj)+1, there is a single winner in Gh−1, which loses a point, and therefore the winner
in Gh will have, at most, max(Gh−1) points. Thus, max(Gh) ≤ max(Gh−1), and the claim
stems from its truth for Gh−1.

If for every j < h − 1 max(Gh−1) ≤ max(Gj), the maximal score in Gh will rise
by at most one point, i.e., max(Gh) ≤ max(Gj) + 1 for all j < h. Furthermore, if it
indeed grows, there is only a single candidate with that number of points (as only the
candidate that got an extra point has this score). If the maximal score in Gh did not grow,
max(Gh) ≤ max(Gh−1), and the claim is true from its correctness for Gh−1.

Notice that since we can choose G0 arbitrarily from the cycle, due to the previous lemma,
max(G0) + 1 ≥ max(Gi) ≥ max(G0) − 1, otherwise, there will be no possibility for the
cycle to return to its starting point.

Lemma 3. There can be at most n · (m− 2) consecutive steps in which the voter changed
their veto from candidate a to candidate b, and candidate a became the winner.

Proof. Every time a voter changes its vetoed candidate, it indicates that the previously
vetoed candidate is preferable to the current winner; that is, the winner is a candidate less
and less liked as the game progresses. So, if a voter’s currently vetoed candidate is c ∈ C,
and the current winner is c′ ∈ C, the voter indicates c � c′ by their move. Later, in their
next move, they prefer making c′ ∈ C the winner over the current one, c′′ ∈ C, indicating
c′ � c′′. When this continues, we pass more and more candidates as winners, ranked lower
and lower for each voter. Since there are n voters and, at most, m − 1 candidates that
are worse than the current one, and as the voter will not choose to make the very worst
candidate the winner, there are n · (m− 2) steps.

We shall deal, first of all, with the easiest case, solved by the lemma above, when there
is always only one candidate with the winning score (the tie-breaking rule is never used).
In this case, at every step, the old winner loses a point, and the new winner gains a point.
This is the case dealt with in Lemma 3, and as the number of steps is limited, there can be
no cycle.

Having dealt with that case, let us take a closer look at G0, which we can define as one
of the states in which there is more than one candidate with a maximal score. Note that
there must be more than one of these states, since if there was a single winner in Gi and
more than that in Gi+1, a candidate received a point and did not become a unique winner,
i.e., its score in Gi was, at most, max(Gi)− 2. Since this is a cycle, there must be a step in
which it returns to that score, i.e., where the maximal score is max(Gi) − 1 (if it is Gi+1,
then for a cycle to happen, the same candidate will need to rise again so the voter that
increased this candidates’s score in Gi will veto it again).
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Figure 1: When only one candidate has maximal score

Figure 2: When multiple candidates have the maximal score
Diagrams showing why there is a limit on the increase and decrease of maximal score. When
there is a state with only one candidate with maximal score, the maximal score will either
remain the same with a single winner (move type B) or decrease (move type A). If it is
a state where there are several candidates with the maximal score, the maximal score will
either increase (move type D) while creating a situation with a single winner or the maximal
score will remain the same (move type C). This also illustrates why the score cannot go down
much if there is a cycle—it can only increase by one in the whole cycle; at no point can we
reach a maximal score 2 points higher than another.

584



Convergence of Iterative Scoring Rules

Lemma 4. For every state Gi in which there is more than one candidate scoring max(Gi),
max(Gi) = max(G0), |{x | scorei(x) = max(Gi)}| = |{x | score0(x) = max(G0)}| and
|{x | scorei(x) = max(Gi)−1}| = |{x | score0(x) = max(G0)−1}|. This means the number
of candidates with the maximal score remains fixed, as does the number of candidates with
maximal score −1. Furthermore, these are the same candidates, switching between the two
scores: {x | scorei(x) ∈ {max(Gi),max(Gi)−1}} = {x | score0(x) ∈ {max(G0),max(G0)−
1}}.

Proof. According to Lemma 2, if max(Gi) = max(G0) + 1, there is a single candidate
with the winning score, and this lemma does not handle this case. Suppose max(Gi) =
max(G0) − 1; according to the same lemma, this means there is only one candidate with
the winning score in G0, which we defined as a state having at least two.

At any step in the game, one candidate loses a point and another gains it. Hence, if
the number of those with the maximal score and maximal−1 score is not the same as in
G0, some candidate lost (or gained) a point, which has a score lower than maximal−1 in
G0. However, as the maximal score will never be max(G0) − 1 (otherwise, according to
Lemma 2, there would only be one candidate with winning score in G0), there is no way
in the cycle for the candidate to be vetoed when it has a score of max(G0) − 1, and get a
lower score. As no candidate that has a score of max(G0) or max(G0)−1 can get a smaller
score, the set of candidates with these scores stays fixed throughout the cycle.

Let B be the set of candidates who changed places in states in which max(Gi) =
max(G0) (i.e., B = {x | ∃i such that scorei(x) = max(G0) and ∃j such that scorej(x) =
max(G0) − 1}). Let z ∈ B be the lowest-ranked candidate according to the linear tie-
breaking rule in B. Since z changes its score, there is a state Gi where z has the score
max(G0) and is vetoed, i.e., z is the winner if Gi. This means there is no other candidate
from B with the score max(G0). As the number of candidates with max(G0) does not
change (according to Lemma 4), this means that at every state Gj in which max(Gj) =
max(G0), there is only a single candidate from B with max(G0) points, and it always wins
(due to the tie-breaking rule, since z wins). This means the candidate getting the point at
every stage is the one that becomes the winner—which, as noted in Lemma 3, is a finite
process, contradicting the endless cycle.

6. Other Scoring Rules

Finally, having shown that iterative veto converges (and knowing that iterative plurality
converges from Meir et al., 2010), we are ready to show that the iterative process will not
converge for any other scoring rule, regardless of the tie-breaking rule it uses.

Theorem 4. Under the iterative procedure, using a best response strategy and when voters
are myopic, no scoring rule apart from plurality and veto converges.

Proof. Different rules require different proofs, and we consequently divide our proof:

Part 1: Scoring Rules with 2 Values (k-approval)
Scoring rules with only 2 values which are not plurality or veto are equivalent to k-

approval for k > 1 and k < m − 1. We shall show it for k = 2 and m = 4. Using dummy
candidates, this can be extended to any size of k.
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Let a be the candidate which a tie-breaking rule selects when all 4 candidates are tied.
The voters are:

Voter 1: a � b � c � d
Voter 2: d � b � c � a

The winner in this case is b, with a score of 2. But voter 1 can change its vote to
a � c � d � b, making a the winner (thanks to the tie-breaking). But now voter 2
can change to c � d � b � a, making c the winner. Now, voter 1, by reverting to its
truthful preference makes a the winner again (thanks to tie-breaking rules), and, finally, by
reverting to its true preference, voter 2 returns us to the original state, making b the winner
and creating the cycle.

Part 2: Scoring Rules with 3 Values
Oddly, this is the most complicated case. Our scoring rule has the values α1, α2 and

0. Let us first examine the case when the scoring rule for 4 candidates is (α1, α2, 0, 0) and
α1 < 2α2. Any tie-breaking rule has a candidate a for which there are at least 2 other
candidates, b and c, which it dominates when tied with them. The voters are:

Voter 1: b � d � c � a
Voter 2: a � d � c � b

Hence the winner is d, with a score of 2α2. Voter 2 can now change its vote to a � c �
b � d, making a the winner with α1 points (as d changes to α2). Now voter 1 can change to
c � b � d � a, making c the winner, with α1 + α2 points. By reverting to its truthful vote,
voter 2 can make its favorite candidate, a, the winner again, to which voter 1 retaliates by
returning to its truthful vote as well, creating a cycle, with d as the winner.

We now create a cycle for the case α1 ≥ 2α2. Our tie-breaking rule is such that candidate
a dominates candidate c. The voters are:

Voter 1: a � c � d � b
Voter 2: d � c � b � a

This means a is the winner with α1 points, thanks to the tie-breaking rule. Voter 2 now
changes to c � d � b � a, making c the winner with α1 + α2 points. Voter 1 retaliates
by changing to a � d � b � c, making a the winner again. By returning to its truthful
preference, voter 2 makes the winner d, its favorite candidate, with α1+α2 points. However,
by completing the cycle and returning to its truthful preference, voter 1 makes its favorite,
a, the winner again.

We now look at the case where the scoring rule for 4 candidates is (α1, α2, α2, 0). Any
tie-breaking rule has a candidate (which we name a) which when tied with d, wins, and a
candidate b that when tied with candidates c or d it wins as well. The voters are:

Voter 1: c � d � b � a
Voter 2: a � b � d � c
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The winner is either a or b (depending on if α1 < 2α2 or not). Voter 1 reacts by voting
d � c � b � a, making d the winner with α1 + α2 points, to which voter 2 reacts by voting
a � b � c � d, making a or b the winner. However, by reverting to its truthful preference,
voter 1 makes c the winner with a score of α1 +α2. Voter 2 completes the cycle by reverting
to its truthful preference.

The last case is when the scoring rule for 4 candidates is (α1, α1, α2, 0). Let a be a
candidate that loses in ties against 2 other candidates, b and c (every tie-breaking rule has
such a candidate). The voters are:

Voter 1: a � b � c � d
Voter 2: a � c � b � d
Voter 3: a � b � c � d
Voter 4: a � c � b � d
Voter 5: d � b � a � c
Voter 6: d � c � a � b
Voter 7: a � c � b � d
Voter 8: d � b � c � a

The winner is a with 5α1 + 2α2 points, which is changed to c (with 5α1 + 2α2 points,
using the tie-breaking rule) when voter 8 changes to c � d � b � a. Now voter 7 makes
a the winner again when it votes a � b � d � c. Voter 8 now returns to being truthful,
making b the winner, with 5α1 + 2α2 points (and using the tie-breaking rule), causing voter
7 to revert to being truthful, making a the winner again.

Part 3: Scoring Rules with More Values
We shall show this on voting rules with 4 values and 4 candidates. This is easily extendable

to more candidates and values by adding dummy candidates (and voters who do not get to
manipulate) as necessary.

The scoring rule is (α1, α2, α3, 0) and is strictly monotonic. The voters are:

Voter 1: a � b � c � d
Voter 2: c � d � b � a

Candidate c is the winner here with α1 +α3 points (a has only α1 points; b has α2 +α3;
and d has α2). Voter 1 can change the outcome by changing its vote to b � a � d � c
reducing c to only α1 points, and raising b to α1 + α3. Voter 2 retaliates by changing to
d � c � a � b, making d the winner with α1 + α3 points, and reducing b to α1. Voter 1
improves its situation by reverting to its truthful preferences, which make a the winner (with
α1 + α3 points). Voter 2 completes the cycle by also reverting to its truthful preferences,
making its favorite candidate, c, the winner.

7. Conclusion and Discussion

Since the iterative model was introduced for plurality by Meir et al. (2010), many extensions,
additions, and further models have been based on it. Almost all of this work has focused
on the plurality voting rule, which was there shown to converge. However, relatively little
work has gone into examining the mechanism itself. In this work, we examined some varied
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voting systems that can be used with the iterative dynamic. While for the tie-breaking
rule we show that the restriction on linear-ordered rules (for deterministic tie-breaking) has
merit (as no larger class ensures convergence even in plurality), things are quite different
regarding the voting mechanism itself.

We then show that the iterative process does converge in veto, adding it to plurality as
a converging scoring rule. However, we prove that except for these two, all other scoring
rules have a setting where they will not converge, regardless of the type of tie-breaking
rule used, including, surprisingly, the iterative k-approval voting rules that lie, in a sense,
between plurality and veto. By exploring this point we see a limitation of the iterative
process—it is mainly relevant, in its current form, to limited options with regard to voting
rules. However, these voting rules are among the most popular, so the analysis maintains
its applicability. Moreover, the common usage of iterative processes in real life may help
explain the prevalence of these voting rules.

In analyzing non-iterative elections, the iterative dynamic helps us consider likely moves
by agents (or people), as they try to assess what to do (akin to the effects of polls in real-
world elections). Therefore, an important direction of research is to try and find some
natural family of strategies that is more limited than just best response, in which other
scoring rules may converge. Furthermore, for non-scoring rules, our understanding of what
is a reasonable iterative strategy is still limited, and we therefore still seek a better under-
standing of how an iterative dynamic will behave there; then we can determine whether
analysis can yield stable states as an outcome.

Beyond that, we hope to see an undertaking similar to the one taken for plurality by
Meir et al. (2014), in which a simulator outputs properties of mechanisms based on various
voter distributions. Using such a simulation system to compare different voting rules (as
a starting point, plurality and veto) may be an interesting next step in the exploration of
iterative models and their representation of common human decision-making processes.
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