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Abstract
All-pay auctions, a common mechanism for various
human and agent interactions, suffers, like many
other mechanisms, from the possibility of players’
failure to participate in the auction. We model such
failures and show how they affect the equilibrium
state, revealing various properties, such as the lack
of influence of the most-likely-to-participate player
on the behavior of the other players. We perform
this analysis with two scenarios: the sum-profit
model, where the auctioneer obtains the sum of all
submitted bids, and the max-profit model of crowd-
sourcing contests, where the auctioneer can only
use the best submissions and thus obtains only the
winning bid.
Furthermore, we examine various methods of in-
fluencing the probability of participation such as
the effects of misreporting one’s own probability of
participating, and how influencing another player’s
participation chances (e.g., sabotage) changes the
player’s strategy.

1 Introduction
Auctions have been the focus of much research in economics,
mathematics and computer science, and have received atten-
tion in the AI and multi-agent communities as a significant
tool for resource and task allocation. Beyond explicit auc-
tions, as are performed on the web (e.g., eBay) and in auction
houses, auctions also model various real-life situations, in
which people (and machines) interact and compete for some
valuable item. Companies advertising during the U.S. Super-
bowl are, in effect, bidding to be remembered by the viewer,
and are thus putting in tremendous amounts of money in or-
der to create a memorable and unique event for the viewer,
overshadowing the other advertisers.

A particularly suitable auction for modeling various sce-
narios in the real world is the all-pay auction. In this type of
auction, all participants announce bids, and all of them pay
those bids, while only the highest bid wins the product. Can-
didates applying for a job are, in a sense, participating in such
a bidding process, as they put in time and effort preparing for
the job interview, while only one of them is selected for the

job. This is a “max-profit” auction, as the auctioneer (em-
ployer, in this case), receives only the top bid. In comparison,
a workplace with an “employee of the month” competition
is a “sum-profit” auctioneer, as it enjoys the fruits of all em-
ployees’ labour, regardless of who won the competition.

The explosion in mass usage of the web has enabled many
more all-pay auction-like interactions, including some involv-
ing an extremely large number of participants. For exam-
ple, various crowdsourcing contests, such as the Netflix chal-
lenge [Bennett and Lanning, 2007], involve many participants
putting in effort, with only the one that performs best win-
ning a prize. Similar efforts can be seen throughout the web,
in TopCoder.com, Amazon Mechanical Turk, Bitcoin mining,
and other frameworks.

However, despite the research done on all-pay auctions
in the past few years [DiPalantino and Vojnović, 2009;
Chawla et al., 2012; Lev et al., 2013], some basic questions
about all-pay auctions remain — in a full information setting,
the only symmetric equilibrium has bidders’ expected profit
at 0, raising, naturally, the question of why bidders would
participate. Allowing bidders to cooperate does not alleviate
this problem (at best, it enables a bidder to have a positive
expected profit, at the expense of others’ negative profit [Lev
et al., 2013]).

This paper enriches the all-pay auction model by allow-
ing the possibility of bidders’ failure. This means that there
is a probability that a bidder will not be able to participate
in the auction. As most large-scale all-pay auction mecha-
nisms have variable participation, we believe this helps cap-
ture a large family of scenarios, particularly for web-based
situations and the uncertainty they contain. We propose a
symmetric equilibrium for this situation, and show its various
properties. Somewhat surprisingly, allowing failures makes
the expected profit for bidders positive, justifying their par-
ticipation.

We first examine the case where each bidder has a differ-
ent failure probability, and the potential manipulations possi-
ble in this case, such as announcing a false probability (e.g.,
saying that you will put all your time into a TopCoder.com
project) and changing the probability of others (e.g., sabotag-
ing their car). As calculations in this general case are com-
plex, we examine situations where bidders have the same fail-
ure probability (as is possible when weather, for example, is
the main determinant of participation), enabling us to detail



more information about the equilibrium in this state. We note
that due to the lengthiness of many of the calculations, we
omit most steps, and show the mathematical results directly.

2 Related Work
Initial research on all-pay auction was in the political sci-
ences, modeling lobbying activities [Hillman and Riley,
1989; Baye et al., 1993], but since then, much analysis (espe-
cially that dealing with the Revenue Equivalence Theorem)
has been done on game-theoretic auction theory [Krishna,
2002; Klemperer, 2004]. When bidders have the same value
distribution for the item, [Maskin and Riley, 2003] showed
that there is a symmetric equilibrium in auctions where the
winner is the bidder with the highest bid. A significant analy-
sis of all-pay auctions in full information settings was [Baye
et al., 1996], showing (aided by [Hillman and Riley, 1989])
the equilibrium states in various cases of all-pay auctions, and
noting that most valuations (apart from the top two), are not
relevant to the winner’s strategies.

More recent work has extended the basic model. [Lev
et al., 2013] addressed issues of mergers and collusions,
while several others directly addressed crowdsourcing mod-
els. [DiPalantino and Vojnović, 2009] detailed the issues
stemming from needing to choose one auction from several,
and [Chawla et al., 2012] dealt with optimal mechanisms for
crowdsourcing. Using both theoretical and empirical tools,
[Gao et al., 2012] examined whether several stages were
better for crowdsourcing, while [Archak and Sundararajan,
2009] addressed issues related to designing the award of the
crowdsourcing contest.

The early major work on failures in auctions was [McAfee
and McMillan, 1987], followed soon after by [Matthews,
1987], which introduced bidders who are not certain of how
many bidders there will actually be at the auction. Their anal-
ysis showed that in first-price auctions (like our all-pay auc-
tion), risk averse bidders prefer to know the numbers, while it
is the auctioneer’s interest to hide that number. In the case of
neutral bidders (such as ours), their model claimed that bid-
ders were unaffected by the numerical knowledge. [Dyer et
al., 1989] claimed that experiments that allowed “contingent”
bids (i.e., one submits several bids, depending on the num-
ber of actual participants) supported these results. [Menezes
and Monteiro, 2000] presented a model where auction par-
ticipants know the maximal number of bidders, but not how
many will ultimately participate. However, the decision in
their case was endogenous to the bidder, and therefore a re-
serve price has a significant effect in their model (though ul-
timately without change in expected revenue, in comparison
to full-knowledge models). In contrast to that, our model,1
which assumes a little more information is available to the
bidders (they know the maximal number of bidders, and the
probability of failure), finds that in such a scenario, bidders
are better off not having everyone show up, rather than know-
ing the real number of contestants appearing. Empirical work
done on actual auctions [Lu and Yang, 2003] seems to sup-
port some of our theoretical findings (though not specifically

1We use a framework similar to the one in [Meir et al., 2012],
albeit there it was used in congestion games.

in all-pay auction settings).

3 Model
We consider an all-pay auction with a single auctioned item
that is commonly valued by all the participants. This is a re-
stricted case of the model in [Baye et al., 1996], where play-
ers’ item valuation could be different.

Formally, we assume that each of the n bidders issues a bid
of bi, i = 1, . . . , n, and all bidders value the item at 1. The
highest bidders win the item and divide it among themselves,
while the rest lose their bid. Thus, bidder i’s utility from a
combination of bids (b1, . . . , bn) is given by:

πi(b1, . . . , bn) =


1

| argmax
j
bj | − bi i ∈ argmax

j
bj

−bi i /∈ argmax
j
bj

We are interested in a symmetric equilibrium, which in
this case, without possibility of failure, is unique [Baye et
al., 1996; Maskin and Riley, 2003]. It is a mixed equilib-
rium with full support of [0, 1], so that each bidder’s bid is
distributed in [0, 1] according to the same cumulative dis-
tribution function F , with the density function f (since it
is non-atomic, tie-breaking is not an issue). As we com-
pare this case to that of no-failures, this is a case similar
to that presented in [Baye et al., 1996; Gao et al., 2012;
DiPalantino and Vojnović, 2009], where various results on
the behavior of non-cooperative bidders have been provided.
We briefly give an overview of the results without failures in
Subsection 3.1.

When we allow bidders to fail, we assume that each of
them has a probability of participating — pi ∈ [0, 1]. As a
matter of convenience, we shall order the bidders according
to their probabilities, so 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. If a
bidder fails to participate, its utility is 0.2

3.1 Auctions without Failures
The expected utility of any participant with a bid b is:

π(b) = (1− b) · Pr(winning|b) + (−b) · Pr(losing|b)

where Pr(winning|b) and Pr(losing|b) are the probabili-
ties of winning or losing the item when bidding b, respec-
tively. In a symmetric equilibrium with n players, each of the
bidders chooses his bid from a single bid distribution with a
probability density function fn(x) and a cumulative distribu-
tion function Fn(x). A player who bids b can only win if
all the other n − 1 players bid at most b, which occurs with
probability Fn−1n (b). Thus, the expected utility of a player
bidding b is given by:

π (b) = (1− b)Fn−1n (b)−b
(
1− Fn−1n (b)

)
= Fn−1n (b)−b

In a mixed Nash equilibrium, all points in the support yield
the same expected utility to a player; thus, as the equilib-
rium has full support, π(0) = π(x) for all x ∈ [0, 1]. Since
π(0) = 0, this means that for all bids, Fn−1n (b) = b. Thus,

2The calculations utilize an average probability, so if every bid-
der has a distribution function on its probability to fail, these results
still stand.



Variable No Failures

Expected bid 1
n

[Variance] [ 1
2n−1 −

1
n2 ]

Bidder utility 0
[Variance] [ n−1

n(2n−1) ]

Sum-profit principal utility 1
[Variance] [ n

2n−1 −
1
n ]

Max-profit principal utility n
2n−1

[Variance] [ n(n−1)2
(3n−2)(2n−1)2 ]

Table 1: The values, in expectation, of some of the variables
when there is no possibility of failure

(
b∫
0

fn (x) dx

)n−1
= b, so Fn(x) = x

1
n−1 and fn(x) =

x
2−n
n−1

n−1 . The various properties of an auction without failures
can be found in Table 1.

4 Every Bidder with Own Failure Probability
We assume that each bidder has its own probability of partic-
ipating in the auction, with 0 ≤ p1 ≤ . . . ≤ pn ≤ 1. We
shall now present a symmetric equilibrium for this case, with
a positive expected utility for the bidders.

We begin by defining a few helpful functions. First, we de-

fine λ =
n−1∏
j=1

(1−pj), and we define the following expressions

for all 1 ≤ k ≤ n− 1:

Hk(x) =


(

λ+x∏k−1
j=1 (1−pj)

) 1
n−k

k > 1

(λ+ x)
1

n−1 k = 1

sk =

{
(1− pk)n−k

∏k−1
j=1 (1− pj)− λ k > 1

(1− p1)n−1 − λ k = 1

For the virtual “0” index, we use s0 = 1 − λ. Note that
because the pis are ordered, so are the sis: 1 ≥ s0 ≥ s1 ≥
. . . ≥ sn−1 = 0.

4.1 Equilibrium
We are now ready to define the c.d.f.s for our equilibrium, for
every player 1 ≤ i ≤ n− 1:

Fi(x) =



1 x ≥ s0
H1(x)+pi−1

pi
x ∈ [s1, s0)

...
...

Hk(x)+pi−1
pi

x ∈
[
sk, sk−1

)
...

...
Hi(x)+pi−1

pi
x ∈

[
si, si−1

)
0 x < si

Fn, uniquely, while it is very similar to Fn−1 in its piece-
wise composition, has an atomic point in the distribution at 0
of 1− pn−1

pn
, so:

Fn(x) =



1 x ≥ s0
H1(x)+pn−1

pn
x ∈ [s1, s0)

...
...

Hk(x)+pn−1
pn

x ∈
[
sk, sk−1

)
...

...
Hn−1(x)+pn−1

pn
x ∈

(
sn−1, sn−2

)
1− pn−1

pn
x = 0

0 x < 0

Note that all c.d.f.s are continuous and piecewise differen-
tiable,3 and when pi = pj it follows that Fi = Fj ; therefore,
this is a symmetric equilibrium. In the course of proving this
is indeed an equilibrium, we shall calculate the expected util-
ity of the bidders when they participate.

The logic behind this equilibrium is that bidders that par-
ticipate rarely will usually bid high, while those that fre-
quently participate in auctions with less competition would
more commonly bid low.

When bidder i bids according to this distribution, i.e., x ∈
[sk, sk−1) for 1 ≤ k ≤ i:

πi(x) = (1− x)
n∏

j=1;j 6=i

(pjFj(x) + 1− pj)−

− x

1−
n∏

j=1;j 6=i

(pjFj(x) + 1− pj)

 =

=

n∏
j=1;j 6=i

(pjFj(x) + 1− pj)− x =

=

k−1∏
j=1

(1− pj)
n∏

j=k;j 6=i

Hk(x)− x =

=

k−1∏
j=1

(1− pj)Hn−k
k (x)− x =

=

k−1∏
j=1

(1− pj)
λ+ x∏k−1

j=1 (1− pj)
− x =

=λ

If bidder i bids outside his support, i.e., x ∈ [sk, sk−1) for
i+ 1 ≤ k ≤ n− 1, the same equation becomes:

3When
∏k−1

j=1 (1 − pj) = 0, and Hk is undefined for some k,
then there is no range for which that Hk is used.



πi(x) =

k−1∏
j=1;j 6=i

(1− pj)
n∏
j=k

Hk (x)− x =

=

k−1∏
j=1;j 6=i

(1− pj)

(
λ+ x∏k−1

j=1 (1− pj)

)n−k+1
n−k

− x =

=
λ+ x

1− pi

(
λ+ x∏k−1

j=1 (1− pj)

) 1
n−k

− x

Since x ∈ [sk, sk−1), then x < sk−1 =

(1− pk−1)n−k+1∏k−2
j=1 (1− pj) − λ =

(1− pk−1)n−k
∏k−1
j=1 (1− pj) − λ, and hence

λ+ x < (1− pk−1)n−k
∏k−1
j=1 (1− pj). Therefore:

πi(x) <
λ+ x

1− pi

(
(1− pk−1)n−k

∏k−1
j=1 (1− pj)∏k−1

j=1 (1− pj)

) 1
n−k

− x =

=
λ+ x

1− pi
(1− pk−1)− x = (λ+ x)

pi − pk−1
1− pi

+ λ

Finally, as i + 1 ≤ k, pi ≤ pk−1, hence pi − pk−1 ≤ 0,
and πi(x) < λ.

4.2 Profits
When a bidder actually participates his expected utility is λ,
and therefore the overall expected utility for bidder i is piλ
(which, naturally, decreases with n). Notice that, as is to be
expected, a bidder’s profit rises the less reliable his fellow
bidders are, or the fewer participants the auction has. How-
ever, the most reliable of the bidders does not affect the prof-
its of the rest. If a bidder can set his own participation rate, if
there is no bidder with pj = 1, that is the best strategy; other-
wise, his optimal probability should be 1

2 , as that maximizes
pi(1− pi)

∏n−1
j=1;j 6=i(1− pj).

In order to calculate the auctioneer’s profit in a sum-profit
model, we need to calculate the expected bid by each bidder,
and for that we need to calculate the bidders’ p.d.f. For 1 ≤
i ≤ n− 1:

fi(x) =



0 x ≥ s0
(λ+x)

2−n
n−1

pi(n−1) x ∈ [s1, s0)
...

...
(λ+x)

k+1−n
n−k

pi(n−k)(
∏k−1

j=1 (1−pj))
1

n−k
x ∈

[
sk, sk−1

)
...

...
(λ+x)

i+1−n
n−i

pi(n−i)(
∏i−1

j=1(1−pj))
1

n−i
x ∈

[
si, si−1

)
0 x < si

and fn (x) =
pn−1

pn
fn−1 (x).

The expected bid by each bidder, for 1 ≤ i ≤ n− 1:

E [bidi] =

i∑
k=1

sk−1∫
sk

xfi(x) dx =

=
1

pi

(
1

n
+

i∑
k=1

(1− pk)n−k
∏k
j=1 (1− pj)

(n− k) (n− k + 1)
−

−
(1− pi)n−i

∏i
j=1 (1− pj)

n− i
− piλ

)

and E [bidn] =
pn−1

pn
E [bidn−1].

This expression decreases with n, indicating, as in the no-
failure model, that as more bidders participate, the chance
of losing increases, causing bidders to lower their exposure.
Surprisingly, when summing over all bidders, we receive
a much simpler expression, and the sum-profit auctioneer’s
profits are:

n∑
i=1

piE [bidi] = 1− λ

(
1 +

n−1∑
i=1

pi

)
In this case, growth with n is monotonic, and hence, any

addition to n is a net positive for the sum-profit auctioneer.
To calculate a max-profit auctioneer’s profits, we need to

first define the auctioneer’s c.d.f.:

G (x) =

n∏
i=1

(piFi(x) + 1− pi)

That is,

G (x) =



1 x ≥ s0
(λ+ x)

n
n−1 x ∈ [s1, s0)

...
...

(λ+x)
n−k+1
n−k

(
∏k−1

j=1 (1−pj))
1

n−k
x ∈

[
sk, sk−1

)
...

...
(λ+x)2∏n−2
j=1 (1−pj)

x ∈
[
sn−1, sn−2

)
0 x < 0

This is differentiable, and hence we can find g(x) =
d
dxG(x); looking for the expected profit, we have:

s0∫
sn−1

xg (x) dx =
n

2n− 1
− λ+

+

n−1∑
k=1

(
(1− pk)2n−2k−1

∏k
j=1(1− pj)2

4(n− k)2 − 1

)

This means that the max-profit auctioneer would prefer to
have two reliable players (pn = pn−1 = 1), and the other
n− 2 bidders as unreliable as possible.



Example 4.1. Consider how four bidders interact. Our bid-
ders have participation probability of p1 = 1

3 , p2 = 1
2 ,

p3 = 3
4 and p4 = 1. Let us look at each bidder’s c.d.f.s:

F1(x) =


1 x ≥ 11

12

3
(

1
12 + x

) 1
3 − 2 x ∈

[
23
108 ,

11
12

)
0 x < 23

108

F2(x) =



1 x ≥ 11
12

2
(

1
12 + x

) 1
3 − 1 x ∈

[
23
108 ,

11
12

)
2

(
3( 1

12+x)
2

) 1
2

− 1 x ∈
[

1
12 ,

23
108

)
0 x < 1

12

F3(x) =



1 x ≥ 11
12

4
3

(
1
12 + x

) 1
3 − 1

3 x ∈
[

23
108 ,

11
12

)
4
3

(
3( 1

12+x)
2

) 1
2

− 1
3 x ∈

[
1
12 ,

23
108

)
4
(

1
12 + x

)
− 1

3 x ∈
[
0, 1

12

)
0 x < 0

F4(x) =



1 x ≥ 11
12(

1
12 + x

) 1
3 x ∈

[
23
108 ,

11
12

)(
3( 1

12+x)
2

) 1
2

x ∈
[

1
12 ,

23
108

)
3
(

1
12 + x

)
x ∈

(
0, 1

12

)
1
4 x = 0

0 x < 0

The expected utility for bidder 1 is 1
36 , for expected bid of

14
27 ; for bidder 2, 1

24 for expected bid of 0.394; for bidder 3,
1
16 for expected bid of 0.277; and for the last bidder, 1

12 for
expected bid of 0.207.

A sum-profit auctioneer will see an expected profit of 113
144 ,

while a max-profit one will get, in expectation, 0.490.
As a comparison, in the case where we do not allow fail-

ures, the c.d.f. of the bidders is x
1
3 with expected bid of 1

4
and expected utility of 0. The expected profit of the sum-profit
auctioneer is 1, while the expected profit of the max-profit
auctioneer is 4

7 .

5 False Identity and Sabotage
Suppose our bidder can influence others’ perceptions, and
create a false sense of its participation probability. What
would its best strategy be, and how should the participation
probability be altered? Any bid beyond s0 is sure to win, but
as that would give profit of less than λ, which is less than the
expected profit for non-manipulators, it is not worthwhile. So
our bidder will bid in its support, with the expected profit be-
ing λ. Thus, our bidder will strive to increase λ, and would
do so by trying to portray its participation probability as be-
ing as low as possible, thus lulling the other bidders with a

false sense of security. Of course, this reduces the payment
to auctioneers of any type, and therefore, they would try to
expose such manipulation.

More interesting is the possibility of a player’s changing
another player’s participation probability by using sabotage;
thus our bidder would be the only bidder knowing the real
participation probability. Our bidder, i, sabotages bidder r,
with a perceived participation probability of pr, changing his
real participation probability to p′r. Bidder i’s expected profit
with bid x is:

πi(x) =

n∏
j=1;j 6=i,r

(pjFj(x) + 1− pj) (p′rFr(x) + 1− p′r)

The values of this function change according to the relation
between r, i and x. To find the optimal strategy for a player,
we will examine all the options. When x is in bidder i’s sup-
port and not in bidder r’s support, i.e., there is a k < i for
which x ∈ [sk, sk−1) and r < k:

πi(x) =
1− p′r
1− pr

(λ+ x)− x =
pr − p′r
1− pr

(λ+ x) + λ

In this case, this is larger than λ only if pr > p′r, and grows
with the bid, though the maximal bid (due to the fact that
r < k) is sr.

If k < r (i.e., k is in i and r’s support):

πi(x) =
pr − p′r
pr

(λ+ x)

(∏k−1
j=1 (1− pj)
λ+ x

) 1
n−k

− 1

+λ

Since x < sk−1, this means that λ + x < (1 −

pk−1)
n−k∏k−1

j=1 (1− pj), hence
∏k−1

j=1 (1−pj)
λ+x

1
n−k

> 1; again,
if pr > p′r, this is an increase over λ — the position without
sabotaging.

Due to space constraints we do not detail here the cal-
culations for the other cases for i and r, as they col-
lapse to the above equations. The saboteur’s optimal bid
is dependent on the specific makeup of the auction, and
hence, so is the value of the sabotage action. For x ∈[
sk, sk−1

]
, if 1

n−k is in the range (pk, pk−1), the optimal bid

is
(
1− 1

n−k

)n−k∏k−1
j=1 (1− pj)− λ, while if 1

n−k ≤ pk−1,

the optimal bid is sk−1, and if 1
n−k ≥ pk, sk is optimal. How-

ever, one must go through every range in player i’s support to
decide what is the optimal bid for a particular auction. Note
that the same equations are true for every bidder that is not r
(i.e., not just the manipulator i). Since at every point in i’s
support, it will be better than before the manipulation, that is
true also for the other bidders; therefore, the manipulation has
benefited not only the saboteur (though it will be able to op-
timize its strategy towards it), but also all other bidders other
than bidder r.

6 Uniform Failure Probabilities
If we allow our bidders to have the same probability of failure
(e.g., when failures stem from weather conditions), many of
the calculations become more tractable, and we are able to
further understand the scenario.



Variable No failures Uniform participation probability Individual participation probability

Expected bid 1
n

1
np

(
1− (1− p)n−1 (1 + p (n− 1))

) 1
pi

(
1
n +

i∑
k=1

(1−pk)n−k ∏k
j=1(1−pj)

(n−k)(n−k+1) −

− (1−pi)n−i ∏i
j=1(1−pj)

n−i − piλ
)

,

E [bidn] =
pn−1

pn
E [bidn−1]

Bidder utility 0 p(1− p)n−1 pi
∏n−1
j=1 (1− pj)

Sum-profit principal utility 1 1− (1− p)n−1 (1 + p (n− 1)) 1− λ
(
1 +

n−1∑
i=1

pi

)
Max-profit principal utility n

2n−1
n

2n−1 + n−1
2n−1 (1− p)

2n−1 − (1− p)n−1 n
2n−1 − λ+

n−1∑
k=1

(
(1−pk)2n−2k−1 ∏k

j=1(1−pj)
2

4(n−k)2−1

)
Table 2: The values, in expectation, of some of the variables in a no-failure setting, when all bidders have the same participation
probability, and when each member has their own participation probability.

6.1 Profit Variance
As this case is a particular instance of the general case pre-
sented above, we know the expected utilities. However, the
simplification of the identical probabilities allows us to exam-
ine the variance as well. For each bidder, the expected utility
is p(1 − p)n−1, monotonically decreasing in n. Using the
c.d.f. calculated in the general case, we can also calculate the
expected utility squared, and we use it to calculate the utility
variation:

n− 1

n (2n− 1)
− (1− p)n

n
+

(
p+

1

2n− 1

)
(1− p)2n−1

The variance increases with p.
The expected bid is 1

np

(
1− (1− p)n−1 (1 + p (n− 1))

)
,

which is neither monotonic in n nor in p. Hence, the
expected profit of the sum-profit auctioneer is 1 − (1 −
p)n−1 (1 + p (n− 1)) which is monotonically increasing in

p and in n. The profit variance is
np(1−(1−p)2n−1)

2n−1 −
(1−(1−p)n)2

n . Note that as n grows, the auctioneer’s expected
revenue approaches that of the no-failure case.

In the case of the max-profit auctioneer, the ex-
pected profit is n

2n−1 + n−1
2n−1 (1− p)

2n−1 − (1− p)n−1,
which is monotonically increasing in p; while not mono-
tonic in n, for large enough n it approaches the ex-
pected revenue in the no-failure case. The variance is
(1− p)2n−2 − 2n(1−p)n−1

2n−1 + n
3n−2 −

2(n−1)2(1−p)3n−2

(3n−2)(2n−1) −(
n

2n−1 + n−1
2n−1 (1− p)

2n−1 − (1− p)n−1
)2

.

7 Conclusion and Discussion
Bidders failing to participate in auctions happen commonly,
as people choose to apply to one job but not another, or to par-
ticipate in the Netflix challenge but not a similar challenge of-
fered by a competitor. Examining these scenarios enables us
to understand certain fundamental issues in all-pay auctions.
In the pure information, classical versions, bidders each have
an expected revenue of 0; in a limited information scenario,
such as the one we dealt with, bidders have positive expected
revenue, and are strongly incentivized to participate in the

auction. Auctioneers, on the other hand, mostly lose their
strong control of the auction, and no longer pocket almost all
revenues involved in the auction. However, by influencing
participation probabilities, max-profit auctioneers can effec-
tively increase their revenue in comparison to the no-failure
model. A short summary of our results appears in Table 2.

The basic idea of the equilibrium we explored here was that
frequent participants could allow themselves to bid lower, as
there would be plenty of contests where they would be one of
the few participants, and hence win with smaller bids. Infre-
quent bidders, on the other hand, would wish to maximize the
few times they participate, and hence bid fairly high bids. As
exists in the no-failure case as well, as more and more par-
ticipants join, there is a concentration of bids at lower price
points, as bidders are more afraid of the fierce competition.
Hence, it is fairly easy to see in all of our results that as n
approached larger numbers, the various variables were closer
and closer to their no-failure brethren.

There is still much left to explore in these models — not
only more techniques of manipulation by bidders and poten-
tial incentives by auctioneers, but also further enrichment of
the model. Currently, participation rates are not influenced
by other bidders’ probability of participation, but, obviously,
many scenarios in real-life have, effectively, a feedback loop
in this regard. Finding a suitable model for such interactions,
while an ambitious goal, might help us gain even further in-
sight into these types of interactions.
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