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ABSTRACT
In multiagent systems, social choice functions can help ag-
gregate the distinct preferences that agents have over alter-
natives, enabling them to settle on a single choice. Despite
the basic manipulability of all reasonable voting systems, it
would still be desirable to find ways to reach a stable result,
i.e., a situation where no agent would wish to change its vote.
One possibility is an iterative process in which, after every-
one initially votes, participants may change their votes, one
voter at a time. This technique, explored in previous work,
converges to a Nash equilibrium when Plurality voting is
used, along with a tie-breaking rule that chooses a winner
according to a linear order of preferences over candidates.

In this paper, we both consider limitations of the iter-
ative voting method, as well as expanding upon it. We
demonstrate the significance of tie-breaking rules, showing
that when using a general tie-breaking rule, no scoring rule
(nor Maximin) need iteratively converge. However, using a
restricted tie-breaking rule (such as the linear order rule
used in previous work) does not by itself ensure conver-
gence. We demonstrate that many scoring rules (such as
Borda) need not converge, regardless of the tie-breaking
rule. On a more encouraging note, we prove that Itera-
tive Veto does converge—but that voting rules “between”
Plurality and Veto, k-approval rules, do not.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Theory

Keywords
Social choice theory, Iterative Voting, Nash Equilibrium

1. INTRODUCTION
When multiple agents have independent, perhaps differ-

ing, views over a set of alternatives, one way to decide upon
an alternative is to use social choice theory (i.e., voting) to
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aggregate their preferences and arrive at a common decision.
However, the possibility of strategic manipulation remains a
potential pitfall; the well-known Gibbard-Satterthwaite re-
sult [7, 13] states that strategic voting is potentially benefi-
cial in any reasonable non-dictatorial voting system. Hence,
analyzing elections has been complicated by the possibility
that voters would attempt manipulations, and/or speculate
on the actions of other players so as to try and counter-
manipulate. Further complicating analysis is that effective
manipulation is strongly tied to the information each player
has of the game and his knowledge of the truthful preferences
of other players [15]; many papers dealing with manipula-
tion assume that all players have complete information of
the game.

One approach to understanding an election is to treat it as
a process, and see if we can reach some point of equilibrium,
where all players are satisfied with their votes/manipulations,
no longer wishing to change them. The most obvious can-
didate for such a stable solution would be to find a Nash
equilibrium. However, as there may be multiple Nash equi-
libria in a game, many of them trivial (e.g., when all voters
vote for any specific candidate), this may seem like an overly-
weak option to pursue. It is, in a sense, too broad a tool to
use in analyzing an election.

In previous work, Meir et al. [10] suggested the frame-
work of iterative voting: all participants vote, and then—
knowing only the result—may change their votes, one at a
time, though not in a predetermined order.1 This iterative
process stops when an equilibrium is reached, when no player
wishes to change his vote. A similar process can be seen, “in
action”, online at various websites used to coordinate dates
for an event, such as www.doodle.com; following an initial
vote, every participant can change his vote. Obviously, as
players change their choices one at a time, iterative voting
rules are more naturally suited to a relatively small number
of players, or an especially close election.

In their paper, Meir et al. [10] proved that using the simple
Plurality voting rule, with a deterministic tie-breaking rule
that uses a fixed linear order on candidates to break ties
(and further assuming that all voters have equal weight),
an iterative vote will converge to a Nash equilibrium when
voters always give the best response possible to the current
situation (in light of their preferences). They also showed
that with weighted voters, or when using better-reply strate-
gies (instead of best-replies), convergence is not guaranteed.

1If they were allowed to vote simultaneously, it is easy to
prove that the result may never converge to an equilibrium;
and a predetermined order would just be a new voting rule.



The authors further explored nondeterministic tie-breaking
rules, and showed that while they may not always converge,
if the starting point is a truthful state and voters are un-
weighted, the game will converge.

In the current paper, we examine the robustness of this
framework, as well as expanding it to encompass, beyond
Plurality, an additional voting rule. We discover that when
dealing with deterministic tie-breaking rules, the type of
tie-breaking rule is crucial for a positive result: if we do
not restrict the choice of tie-breaking rules, no scoring rule
can guarantee convergence, and going beyond scoring rules,
the Maximin voting rule is also not guaranteed to converge.
Furthermore, regardless of the tie-breaking rule used, itera-
tive voting cannot be generalized to all scoring rules, as the
Borda voting rule is not guaranteed to converge under any
tie-breaking rule. However, when using a linear-order tie-
breaking rule, the iterative process with the Veto voting rule
does converge when voters use the best-response strategy.2

Examining if voting rules “between” Plurality and Veto (k-
approval rules) are guaranteed to converge as well, we find
that they are not.

1.1 Related Work
While we use the framework established by Meir et al. [10],

the notions of an iterative approach to voting, as well as of
seeking election equilibria, exist in previous research. An it-
erative process for reaching decisions was offered for agents
in Ephrati and Rosenschein [5], but it uses a mechanism
to transfer money-like value among agents, and hence is ir-
relevant to our voting procedures. Several researchers have
considered reaching an equilibrium with an iterative (or dy-
namic) process, in particular when deciding on an allocation
of public goods. A summary of much of that work can be
found in Laffont [9], which details various approaches, in-
cluding different equilibria choices (Nash, local dominant,
local maximin) and methods. However, in order to reach
an equilibrium, they limit the possible preference choices
to single-peaked preferences. Another branch of research
deals with a process of having a player propose a change in
the current state, and hold a vote on its acceptance. Such
a model was used by Shepsle [14], who chose to force an
equilibrium by using a combination of preference limitation
and organizational limitations. De Trenqualye [3] chose to
achieve an equilibrium by using a specific voting rule and
Euclidean preferences. More recently, Airiau and Endriss [1]
examined—theoretically and experimentally—the possibil-
ity of an equilibrium in such games, using Plurality-type
voting rules (the threshold can be different than 50% for a
change to be accepted).

In searching for equilibria (albeit not iteratively), Fed-
dersen et al. [6] chose (like Laffont) to limit preferences to
single-peaked preferences. Others, like Hinich et al. [8], for
example, chose to change the single-peak limitation to a spe-
cific probabilistic model of voters over a Euclidean space of
candidates, while changing other parts of the model (such as
allowing for abstentions). A somewhat different approach,
taken by Messner and Polborn [11], analyzed equilibria by
coalitional manipulation (hence, using a stronger equilib-

2Iterative vetoing is used, in the real world, in various situa-
tions, such as elimination decisions in various“reality shows”
(e.g., American Idol, America’s Next Top Model, etc.). As
they usually use a single judge’s preferences to break ties, it
is indeed linear-order tie-breaking.

rium than Nash—a method also utilized by Dhillon and
Lockwood [4]). However, one of the main limitations of
many of the papers mentioned above is that they assume
some knowledge of other players’ preferences.

Attempting to investigate the role of knowing other play-
ers’ knowledge, Chopra et al. [2] examined iterative voting
with Plurality, and showed the effects of limiting a player’s
knowledge of the other players’ preferences. Another inter-
esting model, proposed in Myerson and Weber [12], found
a Nash equilibrium for scoring rules, assuming that vot-
ers have some knowledge of which candidates have a bet-
ter chance of winning (based, for example, on pre-election
polls), but this does not mean that every election results in
an equilibrium.

1.2 Overview of the Paper
In the following section, we give a brief overview of elec-

tions, and describe the model of iterative voting that we
will be exploring throughout the paper. In Section 3 we
show that the characteristics of the tie-breaking rule can af-
fect convergence; we give examples showing that for every
scoring rule, as well as for Maximin, there is a (non-linear-
ordered) tie-breaking rule for which it will not always con-
verge.

We show in Section 4 that the Borda voting rule is not
guaranteed to converge, regardless of the tie-breaking rule
used. After that, we limit ourselves to linear-ordered tie-
breaking rules, and in Section 5 we show that using the Veto
voting rule to create the Iterative Veto procedure results in
a voting rule that always converges to a Nash equilibrium.
However, we also show that generally, when using k-approval
voting rules, they do not always converge, even when using
linear-ordered tie-breaking rules. Finally, we discuss various
open problems, and the issues that make them difficult (and
interesting).

2. DEFINITIONS

2.1 Elections and Voting Systems
Before detailing our iterative game, we first define elec-

tions, and how winners are determined.

Definition 1. Let C be a group of m candidates, and let
A be the group of all possible preference orders over C. Let
V be a group of n voters, and every voter vi ∈ V has some
element in A which is its true, “real” value (which we shall
mark as ai), and some element of A which it announces as
its value, which we shall denote as ãi.

Note that our definition of a voter incorporates the possi-
bility of its announcing a value different than its true value
(strategic voting).

Definition 2. A voting rule is a function f : An → 2C \ ∅.

There are many known voting systems; one category among
them is the family of scoring rules.

Definition 3. A scoring rule is a voting rule that uses a
vector (α1, α2, . . . , αm−1, 0) ∈ Nm such that αi ≥ αi+1.
Each voter gives α1 points to its first choice, α2 points to the
second, and so on. The candidates with the highest scores
are the winners.



There are several well-known scoring rules.

• Plurality: The scoring vector is (1, 0, 0, . . . , 0)—a point
is only given to the most preferred candidate.

• Veto: The scoring vector is (1, 1, 1, . . . , 1, 0)—a point
is given to everyone except the least-preferred candi-
date.

• Borda: The scoring vector is (m−1,m−2, . . . , 2, 1, 0)—
a candidate receives points according to its preference
rank.

• k-approval (or k-veto): The scoring vector is
(1, 1, . . . , 1, 0, 0, . . . , 0)—a point is given to the most
preferred k candidates (or points are given to all ex-
cept the least-preferred k candidates).

There are also voting systems that are not scoring rules,
such as Maximin.

Definition 4. The Maximin voting rule defines for every
two candidates x, y ∈ V a score N(x, y) which is the num-
ber of voters who preferred x over y. Each candidate then
receives the score Sx = min

y∈V \x
N(x, y). The winners are the

candidates with the maximal score.

Our definition of voting rules allows for multiple winners.
However, in many cases what is desired is a single winner;
in these cases, a tie-breaking rule is required.

Definition 5. A tie-breaking rule is a function t : 2C → C
that, given a set of elements in C, chooses one of them as a
(unique) winner.

There can be many types of tie-breaking rules, such as
random or deterministic, lexical or arbitrary. One family of
tie-breaking rules that will be of interest to us is the family
of linear-ordered tie-breaking rules.

Definition 6. Linear-ordered tie-breaking rules are tie-break-
ing rules that decide upon a winner based on some preference
order over C (an element of A). Practically, this means that
if a, b ∈ D ⊆ C and t(D) = a, then if a, b ∈ D′ ⊆ C, then
t(D′) 6= b.

While this paper does not deal with weighted games, ex-
panding the above definitions to games that allow weighted
voters is straightforward: a voter vi with weight wi is con-
sidered as if it were wi different voters with the same pref-
erences and strategy.

2.2 The Iterative Game
The following definitions and explanations follow the frame-

work established by [10]. We do not assume that every voter
knows the preferences of the others; on the contrary, we as-
sume that each player only knows the current results (and
scores) of the game, and is not aware of other voters’ prefer-
ences. Hence, voters are myopic; they only think of changing
their vote so as to improve the current situation, as they do
not take into account future steps by other players (we also
assume they are not trying to learn what their rivals’ pref-
erences are, based on their strategies).

Formally, we are viewing the election as a game, in which
each player has an internal preference (ai), and a strategy
(ãi). The outcome of the game is t(f(ã1, ã2, . . . , ãn)). We

wish to find a Nash equilibrium, in which no player wishes to
change his strategy, i.e., a situation in which, for any voter
vi ∈ V and any a′i ∈ A:

t(f(ã1, ã2, . . . , ãi, . . . , ãn)) �ai t(f(ã1, ã2, . . . , ã
′
i, . . . , ãn))

However, we do not just want to prove that such an equi-
librium exists; rather, we wish to show a process that makes
that equilibrium reachable from the original starting point
(which in many cases might be, due to lack of prior infor-
mation, truthful on the part of the voting agents—though
this is not a necessary requirement for our proofs).

Definition 7. An iterative election game G is made up of
an initial election (which we shall mark as G0), followed by
further elections (G1, G2, . . .), with the difference between
election Gi and Gi+1 being that one voter changed his de-
clared preference. A game is stable if there is an n such that
for all i > n, Gi = Gn.
G0 may be a truthful state (i.e., voters vote according to

their real preferences), but it is not necessarily so.

Obviously, since at every step some voter may change
something about his reported preferences, no election need
be stable. However, analysis becomes more interesting once
we limit the voter’s possible changes, requiring individual
rationality. In that case, a valid step is one in which the
winner of the election changes (due to the myopic steps of
the players, a move that does not change the winner is point-
less), and one which changes the winner to one that the
voter who changed his strategy finds more preferred than
the previous winner (according to the voter’s internal, real
preferences). Formally, a step from Gi to Gi+1 is one in
which all voters played in Gi according to the strategies
(ã1, ã2, . . . , ãn) ∈ An, and for some player vj ∈ V , there is a
strategy ã′j ∈ A such that:

t(f(ã1, ã2, . . . , ã
′
j , . . . , ãn)) �aj t(f(ã1, ã2, . . . , ãj , . . . , ãn))

Under the assumption of individual rationality, a stable
game is one that has reached a Nash equilibrium.

Furthermore, we define a specific type of step for our anal-
ysis, following [10].

Definition 8. A best response step is one in which the
voter changing his strategy cannot cause a more preferred
candidate to win using a different strategy.

In specific voting rules below, we shall further refine what
a best response move means in various circumstances.

3. USING ARBITRARY TIE-BREAKING RULES

3.1 Scoring Rules

Theorem 1. An iterative scoring rule game with a de-
terministic tie-breaking rule, even for unweighted voters that
use best-response moves and start from a truthful state, does
not always converge.

Proof. Our examples will be somewhat complex, as we
deal with a large family of voting rules. In some cases us-
ing a best response is obvious, as there is only one choice
that results in making a specific candidate the winner. In
other cases, there may be multiple options to reach the same



winner. In the examples below, we use a “natural” defini-
tion, in which players who are taking off points from the
current winner will a) give him 0 points, b) award the new
winner maximal points, and c) if all things are equal, will
prefer to be as close as possible to their truthful preferences.
However, even if one does not use such a definition, cycles
are still created—just longer cycles, as they may go through
several more steps than detailed here.

First, we shall deal with the case where there are at least
three candidates that do not receive maximal scores (i.e.,
αm−2, αm−1, αm < α1). We have at least four candidates,
a, b, c and d. Our tie-breaking rule is that when c is tied
with others, except b, c wins. When b is tied with others,
except d, b wins. When d is tied with others, except a and
c, d wins. We write a � b � c to express that a is a voter’s
favorite candidate, c is his least preferred candidate, and b
is ranked in between. We have two voters:

Voter 1: a � b � c � d
Voter 2: c � d � b � a

We can add several dummy candidates so the score given
by voter 1 to b is less than is given to a, and the score voter 2
gives to d is less than given to c (and dummy voters, making
these dummy candidates irrelevant as winner possibilities).
The winner in this state is c (either he is the sole winner,
or through a tie with a). The only option for improving
the result for voter 1 is to make b victorious, changing his
preference to b � a � d � c. Voter 2 can improve the
result by changing his preference to d � c � a � b, making
d the winner (possibly through winning the tie between b
and d). The option available to voter 1 is to return to his
original preference order, making a, his favorite, the winner.
However, now voter 2 will return to his original preference
as well, as it ensures the victory of c, his most preferred
candidate.

If there are only two candidates that receive less than the
maximal score, then we use a different game, one with six
candidates. Our tie-breaking rule makes b win when a, b, c,
d are tied; a wins when a, c, d are tied; c wins when a and c
are tied; and c wins when a, c, d, e are tied (other ties that
include d make him the winner; if they do not include d, but
do include e or f , then e/f is the winner, with f triumphing
over e). Let us look at two voters:

Voter 1: a � b � c � d � e � f
Voter 2: b � c � a � d � e � f

The winner here is candidate b (since a, b, c, d are tied).
However, when voter 1 changes his stated preference to a �
c � d � e � f � b, then a, his favorite, becomes the
winner (since a, c, d are tied). Voter 2 can only improve this
situation by changing his stated preference to a � c � d �
e � b � f , making c victorious. Voter 1 can now improve
his situation by returning to his original preference, making
a the winner. In this case, voter 2 will gladly return as
well to his original preference, as that will make his favorite
candidate, b, win.

If there is only one candidate that receives the less-than-
maximal score, this is the Veto voting rule, for which there
is a similar, but simpler, example. We shall use two voters,
and we can describe the voting rule and tie-breaking rule
fully with a table, marking the victor according to whom
the voters chose to veto.

a b c d e
a b c d e d
b c d a a a
c d a b a a
d e a a a a
e d a a a a

In our case, the voters’ real preferences are:

Voter 1: c � b � d � e � a
Voter 2: b � d � c � e � a

The truthful starting point would result in b being the
winner. As voter 1 would rather that c win, he will move
to veto b. Following that, voter 2 would move to veto b as
well, as that would result in d winning. Voter 1, who would
rather that c win, will return to vetoing a, and as voter 2
would rather that b be victorious, would return to vetoing a
as well, returning to our original starting point.

3.2 Maximin

Theorem 2. An iterative Maximin game with determin-
istic tie-breaking, even for unweighted voters that use best-
response moves and start from a truthful state, does not al-
ways converge.

Proof. We shall again use two voters and four candi-
dates. The voters’ preferences are:

Voter 1: c � d � b � a
Voter 2: b � d � c � a

We define the tie-breaking rule as follows: b = c = d⇒ b;
c = b ⇒ c; a = b = c ⇒ b; a = b = c = d ⇒ c; c = d ⇒ c;
b = d⇒ b. All the rest include a, and result in a being the
winner.

Beginning in a truthful state, the scores of c, b and d are
tied at the top, hence b is the winner. Voter 1 has no better
manipulation than one that makes c victorious, and changes
his preference to c � b � d � a, which evens the score of
b and c, and c is the winner. Voter 2 now seeks to make
b the winner, and succeeds by announcing his preferences
to be a � b � d � c (which ties, with the top score, a, b,
and c). Voter 1, by returning to his original preference list,
makes the score of a, b, c and d equal, resulting in c being
the winner, and Voter 2 can retaliate by returning to his
original preference list as well, under which b, his favorite,
was victorious.

4. USING BORDA
Despite the significance of tie-breaking rules, there are

voting rules that will not converge, regardless of the tie-
breaking rule used.

Theorem 3. An iterative Borda game with every type of
tie-breaking rule, even for unweighted voters that use best-
response moves and start from a truthful state, does not al-
ways converge.

Proof. The example here is the same as the first example
used in the proof of Theorem 1. However, the analysis in the
Borda rule is much simpler, as in this case ties never occur,
and hence, there is no need to rely on tie-breaking rules to
achieve the necessary result: at every stage the winner will



  
  

  
  

  
  

  
  

Figure 1: The cycle of Borda non-convergence (top
left is the truthful state)

have 4 points, while the other candidates will have 3 points
or fewer (see Figure 1).

Notice that this proof stands for all scoring rules for which
m ≥ 4 and for which α1 > α2 and α3 > 0, and Borda is just
one example of such a scoring rule.

5. USING VETO AND K-APPROVAL
If we confine our work to tie-breaking rules that enforce

a linear order on candidates, most of our counter-examples
no longer work, and convergence becomes a possibility.

5.1 Veto

Definition 9. A best response in the case of the Veto vot-
ing rule implies that the current (undesired) winner is ve-
toed.

Theorem 4. An iterative Veto game with deterministic
linear-order tie-breaking and unweighted voters which use
a best-response strategy, converges even when not starting
from a truthful state.

Proof. Suppose there is an iterative election game G
that includes a cycle. We shall confine our game to the
cycle only, mark an arbitrary state in the cycle as G0, and
enumerate the rest of the cycle accordingly. Note that G0 is
not necessarily the opening state of the original game.

Definition 10. scorei(x) is defined as the score of candi-
date x in game state Gi. max(Gi) is defined as the score of
the winning candidate in Gi.

Lemma 5. If there is a cycle, then for j < i, max(Gi) ≤
max(Gj) + 1, and if max(Gi) = max(Gj) + 1, there is only
one candidate with that score.

Proof. By induction: for n = 0 the lemma is true by def-
inition. Assuming it is true for n′ < n, we shall prove it for
n. If for some j, max(Gn−1) = max(Gj)+1, then it is a sin-
gle candidate, and therefore, the next stage will make that
candidate’s score go down to max(Gj), and add a point to
another candidate. As that candidate’s score was less than
max(Gn−1), its new score will be, at most, max(Gn−1),
and if it is exactly max(Gn−1), it is a single candidate. If
max(Gn) < max(Gn−1), then due to the induction assump-
tion, max(Gn) < max(Gi) + 1 for i < n (there cannot be
equality, for that means max(Gn−1) > max(Gi) + 1).

Figure 2: General overview of Veto proof

If, for every i < n, max(Gn−1) ≤ max(Gi), then if the
candidate that gets an additional point at stage n has a lower
score than max(Gn−1), this means max(Gn) ≤ max(Gn−1),
and the induction requirements still stand. If it has the score
max(Gn−1), it becomes the single candidate with a score of
max(Gn−1)+1, and max(Gn) ≤ max(Gi)+1 for i < n.

Notice that since we can choose G0 arbitrarily from the
cycle, due to the last lemma, max(G0) + 1 ≥ max(Gi) ≥
max(G0)− 1, otherwise, there will be no possibility for the
cycle to return to its starting point.

Lemma 6. There can be at most n · (m − 2) consecutive
steps in which the voter changed his veto from candidate a
to candidate b, and candidate a became the winner.

Proof. Every time a voter changes his veto, he indicates
that he prefers the current vetoed candidate to the current
winner; that is, the winner is someone he likes less and less
as the game progresses. Since there are n voters and, at
most, m−1 candidates that are worse than the current one,
and as the voter will not vote for the very worst candidate,
there are n · (m− 2) steps.

We shall deal, first of all, with the easiest case, solved by
the lemma above, when there is always only one candidate
with the winning score (the tie-breaking rule is never used).
In this case, at every step, the old winner loses a point, and
the new winner gets a point. This is the case dealt with in
Lemma 6, and as the number of steps is limited, there can
be no cycle.



Figure 3: When only one candidate has maximal
score

Figure 4: When multiple candidates have the max-
imal score
Diagrams showing why there is a limit on the increase and
decrease of maximal score. When there is a state with only
one candidate with maximal score, the maximal score will ei-
ther remain the same with a single winner (move type A) or
decrease (move type B). If it is a state where there are sev-
eral candidates with the maximal score, the maximal score
will either (move type D) increase while creating a situation
with a single winner (which cannot increase) or the max-
imal score will remain the same (move type C). This also
illustrates why the score cannot go down much if there is
a cycle—it can only increase by one in the whole cycle; at
no point can we reach a maximal score 2 points higher than
another.

Having dealt with that case, let us take a closer look at
G0, which we can define as one of the states in which there
is more than one candidate with a maximal score. Note that
there must be more than one of these states, since if there
were a single winner in Gi and more than that in Gi+1,
a candidate received a point and did not become a unique
winner, i.e., his score in Gi was, at most, max(Gi)−2. Since
this is a cycle, there must be a step in which he returns to
that score (if it is Gi+1, then for a cycle to happen, the same
candidate will need to rise again so the voter that increased
his score in Gi will veto him again).

Lemma 7. For every state Gi in which there is more than
one candidate scoring max(Gi), max(Gi) = max(G0),
|{x|scorei(x) = max(Gi)}| = |{x|score0(x) = max(G0)}|
and |{x|scorei(x) = max(Gi)−1}| = |{x|score0(x) = max(G0)−
1}|. This means there is always the same number of candi-
dates with the maximal score, and with maximal score −1.
Furthermore, these are always the same candidates, switch-
ing between the two scores: {x|scorei(x) ∈ {max(Gi),max(Gi)−
1}} = {x|score0(x) ∈ {max(G0),max(G0)− 1}}.

Proof. According to Lemma 5, ifmax(Gi) = max(G0)+
1, there is only one candidate with the winning score, and
we are not dealing with such a state. Suppose max(Gi) =
max(G0)−1; according to the same lemma, this means there
is only one candidate with the winning score in G0, which
we defined as a state having at least two.

At any step in the game, one player loses a point and
another gets it. Hence, if the number of those with the
maximal score and maximal −1 score is not the same as
in G0, some candidate lost (or gained) a point, which has
a score lower than maximal −1. However, as the maximal
score will never be max(G0) − 1 (otherwise, according to
Lemma 5, there would only be one candidate with winning
score in G0), there is no way in the cycle for the candidate
to be vetoed when it has a score of max(G0)− 1, and get a
lower score. As no candidate that has a score of max(G0) or
max(G0)−1 can get a smaller score, the group of candidates
with these scores stays fixed throughout the cycle.

Definition 11. LetB be the group of candidates who changed
places in states in which max(Gi) = max(G0): {x|∃i such
that scorei(x) = max(G0) and ∃j such that scorej(x) =
max(G0)− 1}.

Let z ∈ B be the lowest ranked candidate, according to
the linear tie-breaking rule, in B. However, as at some state
i it has a score of max(G0), and at state j has a score of
max(G0)− 1, there is a state i′ in which it is vetoed and its
score drops. At state i′ it is the winner, meaning that all
b ∈ B \ z have a score of max(G0)− 1. This further means
that there is always only one element of B with the score
of max(G0) (since the number of candidates with that score
is constant, and candidates not in B never have a score of
max(G0)− 1), and that candidate is always victorious over
any other candidates with that score (since it is a part of B,
it needs to be vetoed).

Thus a step during the game will either give a candidate
with a score of max(G0) a point that will make him win
by giving him a score of max(G0) + 1, or give a point to
a candidate with the score of max(G0) − 1 (and veto the
single candidate with a score of max(G0) + 1, or, if such
does not exist, a candidate in B with a score of max(G0)),



making him the winner. Hence, the voted-for candidates
always become the winners, and according to Lemma 6, this
is a finite process.

5.2 k-Approval, k ≥ 3

For the k-approval voting rule, for k ≥ 3 we prove, as for
Borda, a stronger claim than for general scoring rules—we
prove that even when using linear-ordered tie-breaking rules,
k-approval is not guaranteed to converge.

Theorem 8. An iterative k-approval or k-veto game, when
k ≥ 3, with linear-ordered tie-breaking rule, even for un-
weighted voters that use best-response moves and start from
a truthful state, does not always converge.

Proof. We shall provide a proof for 3-approval—it can
be expanded for any larger k by adding additional dummy
variables. Our tie-breaking rule is linear, with the prefer-
ence: b � c � a � d � e � f . Let us assume the existence
of 50 voters whose preferences are a � b � c � d � e � f .
50 others prefer a � b � d � c � e � f ; 50 others prefer
b � c � d � a � e � f , and 50 others a � c � d � b � e �
f . So a, b, c and d have the same number of points, which
is maximal—150, and e and f have 0 points. Another voter
votes for a � d � e � b � c � f , and the 3 voters we will
deal with have the following preferences:

Voter 1: b � a � e � f � c � d
Voter 2: c � b � e � f � d � a
Voter 3: d � c � a � e � f � b

Following all voters, a is the winner with 153 points. b,
c and d have 152 points each, e has 3 points, and f has no
points. Voter 1 realizes that he can make his favorite, b,
win, by changing his vote to b � e � f � c � d � a (a,
b, c and d are now all tied with 152 points). Voter 2 now
sees he can make his favorite, c, win, by changing his vote
to c � e � f � d � a � b (a, c and d are tied with 152
points, b has 151 points). At this point, voter 3 realizes he
too can make his favorite the victor, by changing his vote to
d � e � f � b � c � a (so d has 152 points, a, b and c have
151 points). Now, voter 1 understands that returning to his
original vote would make a the winner, which he prefers over
d (now a and d are tied with 152 points). Following that,
voter 2 sees that he can make b victorious by returning to
his previous preference (since a, b and d will be tied with
152 points). Returning to our starting position, voter 3 sees
that returning to his original vote would make a the winner,
which is preferable, for him, over b.

6. DISCUSSION AND FUTURE WORK
An iterative voting process has a certain natural attrac-

tiveness, allowing voters to modify their stated preferences,
in light of what they see about the results of an election.
Assuming that all voters are equivalently entitled to make
modifications, it seems an appealing way to acknowledge
the strategic nature of voters, allowing them to change their
votes to get results they prefer. If the process converges,
we reach some stable expression of the aggregated group
preference—but the process may not converge.

We began by shedding some light on the limitations of
this mechanism, and on some of the elements that enable it
to converge, under specific circumstances. We showed that
the makeup of the tie-breaking rule is critical for iterative

voting to become a useful, converging mechanism. This is
due to the basic construction of iterative voting; if ties never
occur, the analysis is straightforward, either towards guar-
anteed convergence or not (Iterative Borda does not always
converge; Iterative Plurality and Veto always will).

As ties are a significant element of what complicates the
iterative convergence problem, the specific mechanism used
to resolve them is part of what guarantees convergence (or
lack of it): Some tie-breaking rules in certain circumstances
ensure convergence; others do not. There is still much to
clarify regarding this interaction between tie-breaking rules
and equilibria. We have yet to establish the necessary re-
quirements on tie-breaking rules that ensure convergence
even when dealing with Iterative Plurality, let alone with
other voting rules. We conjecture that requirements may be
different for weighted and unweighted voting games.

However, even when eliminating considerations of tie-break-
ing rules, and even when we limit ourselves to scoring rules,
we see that some voting rules—in fact, most of them—will
never give us guaranteed convergence (such as Borda, and
similar scoring rules with more than three different values).
Furthermore, even if we allow ourselves to use only 1s and
0s in our scoring rules, we reach the surprising conclusion
that other than the edges of this space (i.e., preference vec-
tors where all but one element is 0, or all but one element
is 1), almost no other part of this space can guarantee con-
vergence.

This points to the basic difficulty of the iterative process—
in many types of voting rules, a voter’s change of stated pref-
erence may have unintended side-effects, so when a player
wishes to make a certain candidate victorious, he may be
inadvertently setting the stage for another candidate to be-
come a viable contender, to be made the winner by another
player. Contrast that with Iterative Plurality or Veto, in
which only one candidate benefits (and as a corollary, only
one candidate is damaged). However, this is still highly
dependent on tie-breaking rules, and hence there might be
some tie-breaking criteria that would enable these voting
rules to converge as well.

The problem of unexpected candidates becoming viable is
further exacerbated with the Maximin voting rule. In that
case we encounter a problem of actually defining a “best
response”—no longer is there a straightforward definition of
a single candidate gaining or losing points. Rather, many
candidates may be affected, but which ones will be affected
and made viable in the long run cannot be computed or ana-
lyzed in a simple or predictable way. While we have begun to
analyze this particular non-scoring-rule voting mechanism,
the iterative process for these types of voting rules remains
mostly unexplored.

The non-convergence of many voting rules may suggest
that it would be useful to consider different solution strate-
gies, instead of best-response. While we know [10] that using
a better-response strategy does not help, as it will not guar-
antee convergence even for Iterative Plurality, other solution
strategies may enable convergence for a wider range of vot-
ing rules. However, we have yet to find a satisfactory voting
strategy, which is both natural and ensures convergence.

The new voting rule we explored, Iterative Veto, despite
having some superficial resemblance to Iterative Plurality,
does not have the “self-reinforcing” dynamic that Iterative
Plurality has, in which once a candidate has become non-
viable he will never return to relevance. In Iterative Veto,



candidates’ scores can increase very little from the initial
stage, and when their score decreases, it may increase the
number of viable candidates, making the process more tur-
bulent then its Plurality equivalent. By making the ultimate
winner potentially a candidate which was not viable at the
outset, Iterative Veto enables us to reach Nash equilibria
that were impossible using Iterative Plurality.

On a final note, we have not dealt with computational
complexity issues here, as they were not relevant in the sce-
narios we considered. However, when expanding the analy-
sis to other voting rules, such issues may arise. For exam-
ple, [15] showed that finding a manipulation, even for a sin-
gle manipulator in an unweighted game, is NP-complete for
“ranked-pair”games such as STV and second-order Copeland.
Therefore, each voter may struggle to find the step to im-
prove his situation (and of course, struggle to find his best
response).
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