
An Algorithm for the
Coalitional Manipulation Problem under Maximin

Michael Zuckerman
michez@cs.huji.ac.il

Omer Lev
omerl@cs.huji.ac.il

Jeffrey S. Rosenschein
jeff@cs.huji.ac.il

The School of Computer Science and Engineering
The Hebrew University of Jerusalem

ABSTRACT
We introduce a new algorithm for the Unweighted CoalitionalMa-
nipulation problem under the Maximin voting rule. We prove that
the algorithm gives an approximation ratio of1 2

3
to the correspond-

ing optimization problem. This is an improvement over the previ-
ously known algorithm that gave a 2-approximation. We also prove
that its approximation ratio is no better than1 1

2
, i.e., there are in-

stances on which a1 1
2
-approximation is the best the algorithm can

achieve. Finally, we prove that no algorithm can approximate the
problem better than to the factor of1 1

2
, unlessP = NP .

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Social choice theory, Algorithms, Approximation

1. INTRODUCTION
In recent years, the importance of game-theoretic analysisas a

formal foundation for multiagent systems has been widely recog-
nized in the agent research community. As part of this research
agenda, the field ofcomputational social choicehas arisen to ex-
plore ways in which multiple agents can effectively (and tractably)
use elections to combine their individual, self-interested prefer-
ences into an overall choice for the group.

In an election, voters (agents) submit linear orders (rankings, or
profiles) of the candidates (alternatives); avoting rule is then ap-
plied to the rankings in order to choose the winning candidate. In
the prominent impossibility result proven by Gibbard and Satterth-
waite [8, 11], it was shown that for any voting rule, a) which is not
a dictatorship, b) which is onto the set of alternatives, andc) where
there are at least three alternatives, there exist profiles where a voter
can benefit by voting insincerely. Submitting insincere rankings in
an attempt to benefit is calledmanipulation. Exploring the compu-
tational complexity of, and algorithms for, thismanipulation prob-

Cite as: An Algorithm for the Coalitional Manipulation Problem un-
der Maximin, Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein,
Proc. of 10th Int. Conf. on Autonomous Agents and MultiagentSys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. 845-852.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

lem is one of the most important research areas in computational
social choice.

There are several ways to circumvent the Gibbard-Satterthwaite
result, one of which is by using computational complexity asa bar-
rier against manipulation. The idea behind this technique is as
follows: although there may exist a successful manipulation, the
voter mustdiscoverit before it can be used—but for certain voting
rules, discovering a successful manipulation might be computation-
ally hard. This argument was used already in 1989 by Bartholdi et
al. [2], and in 1991 by Bartholdi and Orlin [1], where they proved,
respectively, that second-order Copeland and Single Transferable
Vote are bothNP-hard to manipulate.

Later, the complexity of coalitional manipulation was studied by
Conitzer et al. [3]. In the coalitional manipulation problem, a coali-
tion of potentially untruthful voters try to coordinate their ballots so
as to make some preferred candidate win the election. Conitzer et
al. studied the problem where manipulators are weighted: a voter
with weightl counts asl voters, each of weight1. This problem was
shown to beNP-hard, for many voting rules, even for a constant
number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulation (UCM)
problem, where all voters have equal power. In a recent paper[13],
Xia et al. established as one of their main results that UCM isNP-
hard under the Maximin voting rule, even for 2 untruthful voters.

In 2009, Zuckerman et al. [14] defined a natural optimization
problem for the unweighted setting (i.e., Unweighted Coalitional
Optimization, UCO), namely finding the minimal number of ma-
nipulators sufficient to make some predefined candidate win.It is
proven, as a corollary of their results, that the heuristic greedy al-
gorithm proposed in the paper gives a2-approximation to the UCO
problem under Maximin. Here, we further study the UCO problem
under Maximin, proposing a new greedy algorithm that gives a1 2

3
-

approximation to the problem.1 We then provide an example show-
ing that the approximation ratio of the algorithm is no better than
1 1

2
. Furthermore, since this gap (between1 2

3
and1 1

2
) is due to the

fact that the size of the manipulating coalition is rounded upwards,
the actual bound on the ratio between the size of the coalition re-
turned by the algorithm, and the minimum size of manipulating
coalition, tends to1 1

2
as the number of voters tends to infinity.

2. RELATED WORK
Behavior designed to alter outcomes in the Maximin voting rule

has been widely studied. Perhaps the closest work to the UCM

1Strictly speaking, our algorithm is for thedecisionproblem, but
since the conversion of our algorithm to one for the optimization
problem is straightforward, we consider it an approximation algo-
rithm for the optimization problem.

845

problem is control by adding voters (AV), which has been studied
by Faliszewski et al. [6]. The difference between AV controland
UCM is that in the latter, manipulative voters can vote whatever
they like in order to make their preferred candidate win, whereas in
the former, the votes in the additional set are fixed. Faliszewski et
al. proved that AV control in Maximin (as well as DV [Delete Vot-
ers] control and constructive AC [Add Candidates] control)isNP-
complete. In contrast, they showed polynomial-time algorithms for
a combination of ACu (a variant of Adding Candidates) and DC
(Delete Candidates), and for a combination of destructive AC and
DC control.

In another paper, Elkind et al. studied control of electionsby
cloning candidates [5]. For prominent voting rules (including Max-
imin) they characterized preference profiles for which there exist a
successful cloning manipulation. For Maximin, a profile is manipu-
lable by cloning if and only if the preferred candidate does not win,
but is Pareto optimal. The authors also provided a simple linear-
time algorithm for solving the cloning manipulation problem under
Maximin.

Yet another topic that involves outcome-altering behaviorin elec-
tions is bribery. In their paper [4], Elkind et al. investigated a model
of bribery where the price of each vote depends on the amount of
change that the voter is asked to implement. They showed thatfor
their model, bribery isNP-complete for Maximin, as well as for
some other voting rules.

3. MAXIMIN VOTING, MANIPULATION
An election consists of a setC = {c1, . . . , cm} of candidates,

and a setS = {v1, . . . , v|S|} of voters. Each voter provides a total
order on the candidates (i.e., each voter submits a linear ranking of
all the candidates). The setting also includes avoting rule, which is
a function from the set of all possible combinations of votesto C.

The Maximin voting rule is defined as follows. For any two
distinct candidatesx and y, let N(x, y) be the number of vot-
ers who preferx over y. The Maximin scoreof x is S(x) =
miny 6=x N(x, y). The candidate with the highest Maximin score
is the winner.

DEFINITION 3.1. In the CONSTRUCTIVECOALITIONAL UN-
WEIGHTED MANIPULATION (CCUM) problem, we are given a
setC of candidates, with a distinguished candidatep ∈ C, a set
of (unweighted) votersS that have already cast their votes (these
are the non-manipulators), and a setT of (unweighted) voters that
have not yet cast their votes (these are the manipulators). We are
asked whether there is a way to cast the votes inT so thatp wins
the election.

DEFINITION 3.2. In the UNWEIGHTED COALITIONAL OPTI-
MIZATION (UCO) problem we are given a setC of candidates,
with a distinguished candidatep ∈ C, and a set of (unweighted)
votersS that have already cast their votes (the non-manipulators).
We are asked for theminimal n such that a setT of sizen of (un-
weighted) manipulators can cast their votes in order to makep win
the election.

REMARK 3.3. We implicitly assume here that the manipulators
have full knowledge about the non-manipulators’ votes (this is the
common assumption in the literature). Unless explicitly stated oth-
erwise, we also assume that ties are broken adversarially tothe
manipulators, so that ifp ties with another candidate,p loses.
The latter assumption is equivalent to formulating the manipula-
tion problems in theirunique winnerversion, when one assumes
that all candidates with maximal score win, but asks thatp be the
only winner.

Throughout this paper we will use the convention, unless explic-
itly stated otherwise, that|C| = m, |S| = N and |T | = n. We
will denote Ni(x, y) = |{j | x ≻j y,≻j∈ S ∪ {1, . . . , i}}|.
That is, Ni(x, y) will denote the number of voters fromS and
from the firsti voters ofT that preferx over y (assumingS is
fixed, and fixing some order on the voters ofT). Furthermore, we
will denote bySi(c) the accumulated score of candidatec from
the voters ofS and the firsti voters ofT . By definition, for each
x ∈ C, Si(x) = miny 6=x Ni(x, y). Also, we denote forx ∈ C,
MIN i(x) = {y ∈ C \ {x} | Si(x) = Ni(x, y)}. We denote
for 0 ≤ i ≤ n, ms(i) = maxc∈C\{p} Si(c). That is,ms(i) is
the maximum score of the opponents ofp afteri manipulators have
voted.

DEFINITION 3.4. The Condorcet winnerof an election is the
candidate who, when compared with every other candidate, ispre-
ferred by more voters.

Next we give a lower bound on the approximation ratio of any
polynomial-time algorithm for the UCO problem under Maximin.

PROPOSITION 3.5. No polynomial-time algorithm approximat-
ing the UCO problem under Maximin can do better than1 1

2
, unless

P = NP .

PROOF. Suppose, for contradiction, that there exists a polynomial-
time approximation algorithmA to the UCO problem under Max-
imin having approximation ratior < 1 1

2
. Then whenopt = 2,

the minimal size of manipulating coalition returned byA is n ≤
r · opt < 3. Since the size of the coalition is an integer, it fol-
lows thatn = 2. Therefore,A can decide the CCUM problem for
the coalition of 2 manipulators, which contradicts the factthat this
problem isNP-complete [13] (unlessP = NP).

4. THE ALGORITHM
Our algorithm for the CCUM problem under the Maximin vot-

ing rule is given as Algorithm 1 (see the final page of the pa-
per). The intuition behind Algorithm 1 is as follows. The algo-
rithm tries in a greedy manner to maximize the score ofp, and to
minimize the scores ofp’s opponents. To achieve this, for alli,
manipulatori putsp first in his preference list, making the score
of p grow by 1. He then builds a digraphGi−1 = (V, Ei−1),
whereV = C \ {p}, (x, y) ∈ Ei−1 iff (y ∈ MIN i−1(x) and
p /∈ MIN i−1(x)). He tries first to rank candidates without any out-
going edges from them, since their score will not grow this way
(because their score is achieved vs. candidates who were already
ranked above them). When there are no candidates without out-
going edges, the algorithm tries to find a cycle with two adjacent
vertices having the lowest score. If it finds such a cycle, then it
picks the front vertex of these two. Otherwise, any candidate with
the lowest score is chosen. After ranking each candidate, the edges
in the graph are updated, so that all candidates whose minimal can-
didate has already been ranked will be with outgoing degree 0. For
an edge(x, y), if y has already been ranked, we remove all the
edges going out ofx, since if we rankx now, its score will not go
up, and so it does not depend on other candidates in MINi−1(x).
There is no need of an edge(x, y) if p ∈ MIN i−1(x), since for
all x ∈ C \ {p}, p is always ranked abovex, and so whethery is
ranked abovex or not, the score ofx will not grow.

Let us note a few points regarding the algorithm:

• When picking a candidate with an out-degree 0, the algo-
rithm first chooses candidates with the lowest score (among
the candidates with an out-degree 0). It appears that this issue
is critical for getting the approximation ratio of1 2

3
.

846

• The candidates with out-degree 0 are kept in stacks in or-
der to guarantee a DFS-like order among candidates with the
same score (this is needed for Lemma 6.4, below, to work).

• After a candidateb is added to the manipulator’s preference
list, for each candidatey who has an outgoing edge(y, b),
the algorithm removes all the outgoing edges ofy, puts it
into the appropriate stack, and assignsb to bey’s “father”.
Essentially, the assignmenty.father ← b means that due to
b the score ofy did not grow. The “father” relation is used to
analyze the algorithm.

• Note the subtle difference between calculating the scores in
Algorithm 1 in this paper, as compared to Algorithm 1 in [14].
In the latter, the manipulatori calculates what the score would
be of the current candidatex if he putx at the current place
in his preference list; in the algorithm we are now presenting,
manipulatori just calculatesSi−1(x). This difference is due
to the fact that here, when we calculate the score ofx, we
know whetherdout(x) > 0, i.e., we know whether the score
of x will grow by 1 if we put it at the current available place.
So we separately compare the scores of candidates with out-
degree> 0, and the scores of candidates with out-degree 0.

DEFINITION 4.1. We refer to an iteration of the mainfor loop
in lines 3–37 of Algorithm 1 as astageof the algorithm. That is, a
stage of the algorithm is a vote of any manipulator.

DEFINITION 4.2. In the digraphGi built by the algorithm, if
there exists an edge(x, y), we refer toNi(x, y) = Si(x) as the
weightof the edge(x, y).

5. 2-APPROXIMATION
We first prove that Algorithm 1 has an approximation ratio of 2.

We then use this result in the subsequent proof of the1 2
3

approxi-
mation ratio.

THEOREM 5.1. Algorithm 1 has a2-approximation ratio for
the UCO problem under the Maximin voting rule.

To prove the above theorem, we first need the following two lem-
mas. In the first lemma, we prove that a certain sub-graph of the
graph built by the algorithm contains a cycle passing through some
distinguished vertex. We first introduce some more notation.

Let Gi = (V, Ei) be the directed graph built by Algorithm 1 in
stagei + 1. For a candidatex ∈ C \ {p}, let Gi

x = (V i
x , Ei

x) be
the graphGi reduced to the vertices that were ranked belowx in
stagei + 1, includingx.

Let V i(x) = {y ∈ V i
x | there is a path inGi

x from x to y}.
Also, letGi(x) be the sub-graph ofGi

x induced byV i(x).

LEMMA 5.2. Let i be an integer,0 ≤ i ≤ n− 1. Letx ∈ C \
{p} be a candidate. Denotet = ms(i). Suppose thatSi+1(x) =
t + 1. ThenGi(x) contains a cycle passing throughx.

PROOF. First of all note that for allc ∈ V i(x), Si(c) = t. It
follows from the fact that by definitionSi(c) ≤ t. On the other
hand,Si(x) = t, and all the other vertices inV i(x) were ranked
belowx. Together with the fact that the out-degree ofx was greater
than 0 whenx was picked, it gives us that for allc ∈ V i(x),
Si(c) ≥ t, and so for allc ∈ V i(x), Si(c) = t. We claim that
for all c ∈ V i(x), MIN i(c) ⊆ V i(x). If, by way of contradiction,
there existsc ∈ V i(x) s.t. there isb ∈ MIN i(c) whereb /∈ V i(x),
then b /∈ V i

x , since otherwise, ifb ∈ V i
x , then fromc ∈ V i(x)

and(c, b) ∈ Ei
x we get thatb ∈ V i(x). Sob /∈ V i

x , which means

that b was ranked byi + 1 abovex. After we rankedb we re-
moved all the outgoing edges fromc, and so we chosec beforex
sincedout(c) = 0 anddout(x) > 0 (since the score ofx increased
in stagei + 1). This contradicts the fact thatc ∈ V i(x) ⊆ V i

x .
Therefore, for every vertexc ∈ V i(x) there is at least one edge in
Gi(x) going out fromc. Hence, there is at least one cycle inGi(x).
Since at the time of pickingx by voteri + 1, for all c ∈ V i(x),
dout(c) > 0, and by the observation that for allc ∈ V i(x),
Si(c) = t, we have that the algorithm picked the vertexx from
a cycle (lines 21–22 of the pseudocode).

In the following lemma, we show an upper bound on the growth
rate of the scores ofp’s opponents.

LEMMA 5.3. For all 0 ≤ i ≤ n− 2, ms(i + 2) ≤ ms(i) + 1.

PROOF. Let 0 ≤ i ≤ n − 2. Let x ∈ C \ {p} be a candidate.
Denotet = ms(i). By definition,Si(x) ≤ t. We would like to
show thatSi+2(x) ≤ t + 1. If Si+1(x) ≤ t, thenSi+2(x) ≤
Si+1(x) + 1 ≤ t + 1, and we are done. So let us assume now that
Si+1(x) = t + 1.

Let V i(x) andGi(x) be as before. By Lemma 5.2,Gi(x) con-
tains at least one cycle. LetU be one such cycle. Leta ∈ U be
the vertex that was ranked highest among the vertices ofU in stage
i + 1. Let b be the vertex beforea in the cycle:(b, a) ∈ U . Since
b was ranked belowa in stagei + 1, it follows that Si+1(b) =
Si(b) ≤ t.

Suppose, for contradiction, thatSi+2(x) > t+1. Then the score
of x increased in stagei + 2, and so whenx was picked byi + 2,
its out-degree in the graph was not 0.x was ranked byi + 2 at
places∗. Thenb was ranked byi + 2 aboves∗, since otherwise,
when we had reached the places∗, we would not pickx sinceb
would be available (with out-degree 0, or otherwise—with score
Si+1(b) ≤ t < t + 1 = Si+1(x))—a contradiction.

Denote byZ1 all the vertices inV i(x) that have an outgoing
edge tob in Gi(x). For all z ∈ Z1, b ∈ MIN i(z), i.e.,Si(z) =
Ni(z, b). We claim that allz ∈ Z1 were ranked byi + 2 above
x. If, by way of contradiction, there isz ∈ Z1, s.t. until the place
s∗ it still was not added to the preference list, then two cases are
possible:

1. If (z, b) ∈ Ei+1, then afterb was added toi+2’s preference
list, we removed all the outgoing edges ofz, and we would
put inz (with out-degree 0) instead ofx, a contradiction.

2. (z, b) /∈ Ei+1. Since(z, b) ∈ Ei, we haveSi(z) = Ni(z, b).
Also sincez was ranked byi + 1 below x, it follows that
Si(z) = t. So from(z, b) /∈ Ei+1, we have thatSi+1(z) =
t andNi+1(z, b) = t + 1. Therefore, when reaching the
places∗ in the i + 2’s preference list, whetherdout(z) = 0
or not, we would not pickx (with the scoreSi+1(x) = t+1)
sincez (with the scoreSi+1(z) = t) would be available, a
contradiction.

Denote byZ2 all the vertices inV i(x) that have an outgoing
edge inGi(x) to some vertexz ∈ Z1. In the same manner we can
show that all the vertices inZ2 were ranked in stagei + 2 above
x. We continue in this manner, by defining setsZ3, . . . , where the
setZl contains all vertices inV i(x) that have an outgoing edge to
some vertex inZl−1; the argument above shows that all elements
of these sets are ranked abovex in stagei + 2. As there is a path
from x to b in Gi(x), we will eventually reachx in this way, i.e.,
there is somel such thatZl contains a vertexy, s.t.(x, y) ∈ Ei(x).

Now, if (x, y) ∈ Ei+1(x), then sincey was ranked byi + 2
abovex, we haveSi+2(x) = Si+1(x) = t + 1, a contradiction.

847

And if (x, y) /∈ Ei+1(x), then since(x, y) ∈ Ei(x) we get that
Ni+1(x, y) = t + 1 andSi+1(x) = t, a contradiction.

We are now ready to prove Theorem 5.1.

PROOF OFTHEOREM5.1. Let opt denote the minimum size
of coalition needed to makep win. It is easy to see thatopt ≥
ms(0) − S0(p) + 1. We setn = 2ms(0) − 2S0(p) + 2 ≤ 2opt.
Then, by Lemma 5.3:

ms(n) ≤ ms(0) +
⌈n

2

⌉

= 2ms(0) − S0(p) + 1.

Whereas:

Sn(p) = S0(p) + n = 2ms(0)− S0(p) + 2 > ms(n).

Sop will win when the coalition of manipulators is of sizen.

6. 12
3
-APPROXIMATION

Our next goal is to prove that Algorithm 1 has an approximation
ratio of 1 2

3
when there are no 2-cycles in the graphs built by the

algorithm.

THEOREM 6.1. For instances where there are no 2-cycles in the
graphsGi built by Algorithm 1, it gives a1 2

3
-approximation of the

optimum.

Let us give a general short overview of the proof of the above
theorem (we will give an intuitive description rather than afor-
mal/rigorous one). In Lemmas 6.2–6.5 we aim to prove that the
maximum score ofp’s opponents grows 3 times slower than the
score ofp, at the most. After proving this, the theorem will easily
follow. Recall that we proved in Lemma 5.2 that there is a cycle
passing throughx after i stages. Then we prove that at least one
such cycle stays after stagei + 1 (Lemma 6.2). In this cycle there
are 2 consecutive vertices with a low score (= t) (Lemma 6.3).
During stagei + 2 only the score of one of them will increase (at
the most), so the score of the second one will remaint (Lemma 6.4).
Then, in stagei + 3 this second vertex will be ranked abovex, and
the score ofx will not grow (and remaint + 1) (Lemma 6.5). This
way, during 3 stages the score ofx increases only by 1, whereas the
score ofp grows by 1 every stage.

Let us now state and prove the lemmas more formally.

LEMMA 6.2. Letx ∈ C\{p} be a candidate such thatSi+1(x) =
t + 1 (wheret = ms(i)). Let Gi(x) be as before. Then at least
one cycle inGi(x) that passes throughx will stay after stagei+1,
i.e., inGi+1.

PROOF. In Lemma 5.2 we have proved that inGi(x) at least
one cycle passes throughx. Sincex appears in the preference list
of i + 1 above all the MINi(x), it follows that each edge going
out of x in Gi(x), stays also inGi+1. After we addedx to the
preference list ofi + 1, all the vertices in all the cycles passing
throughx were added in some order to the preference list ofi + 1,
while they were with out-degree 0 at the time they were picked(it
can be proved by induction on the length of the path from the vertex
to x). Therefore, their “father” field was not null when they were
picked. We have to prove that there is at least one cycle whose
vertices were added in the reverse order (and then all the edges of
the cycle stayed inGi+1). Let z1 ∈ C \ {p, x} be some vertex
such that(x, z1) ∈ Gi(x) and there is a path inGi(x) from z1 to
x. Let z2 = z1.father. As observed earlier,z2 6= null. We first
show that whenz2 was picked byi + 1, it was with out-degree 0.
Indeed, if, by contradiction, we suppose otherwise, thenz2 would
have been picked afterz1 (the proof is by induction on the length of

the shortest path from vertex tox, that each vertex such that there is
a path from it tox was picked beforez2), and this is a contradiction
to the fact thatz2 = z1.father. Therefore, the “father” field ofz2

after stagei + 1 is not null.
Let z3 = z2.father. If z3 = x then we are done because we

have found a cyclex → z1 → z2 → z3 = x which was ranked in
stagei + 1 in the reverse order. Otherwise, by the same argument
as before, we can show that whenz3 was picked, its out-degree was
0. This way we can pass from a vertex to its father until we reach
p or null. We now show that we cannot reachp this way. Indeed,
if, by contradiction, we reachp, then there is a path fromx to p
in Gi, and so all the vertices in this path, includingx, were picked
when their out-degree was 0, and this is a contradiction to the fact
that the score ofx went up in stagei + 1. Therefore, we cannot
reachp when we go from a vertex to its father starting withz1.
Now, let zj be the last vertex before null in this path. We would
like to show thatzj = x. If, by contradiction,zj was picked before
x by voteri + 1, then all the verticeszj−1, . . . , z2, z1 would have
been picked beforex, when their out-degree is 0, and thenx would
have been picked when its out-degree is 0. This is a contradiction
to the fact thatx’s score increased in stagei + 1. Now suppose by
contradiction thatzj was picked afterx in stagei + 1. Then all
the vertices that have a path from them tox, includingz1, would
have been picked beforezj in stagei + 1, since the out-degree of
zj was greater than 0 when it was picked. This is a contradiction
to the fact thatzj was picked beforez1. So,zj = x. This way we
got a cyclex → z1 → . . . → zj−1 → x which was ranked in the
reverse order in stagei + 1.

LEMMA 6.3. Suppose that there are no 2-cycles in the graphs
built by the algorithm. Letx ∈ C \ {p} be a candidate such that
Si+1(x) = t+1 (wheret = ms(i)), and letGi(x) be as described
before Lemma 5.2. For each cycleU in Gi(x), if U exists inGi+1,
i.e., after stagei + 1, then there are 3 distinct verticesa, b, c, s.t.
(c, b) ∈ U , (b, a) ∈ U andSi+1(b) = Ni+1(b, a) = Si+1(c) =
Ni+1(c, b) = t.

PROOF. Let U ⊆ Ei(x) be a cycle which stays also afteri + 1
stages. Leta be the vertex which in stagei + 1 was chosen first
among the vertices ofU . Let b be the vertex beforea in U , i.e.,
(b, a) ∈ U , and letc be the vertex beforeb in U , i.e.,(c, b) ∈ U .
Since there are no 2-cycles,a, b, c are all distinct vertices. Recall
that for eachy ∈ V i(x), Si(y) = t. Sinceb was ranked below
a in stagei + 1, we haveSi+1(b) = Ni+1(b, a) = Ni(b, a) =
Si(b) = t. If c was chosen afterb in stagei + 1, thenSi+1(c) =
Ni+1(c, b) = Ni(c, b) = t and we are done. We now show thatc
cannot be chosen beforeb in stagei + 1. If, by way of contradic-
tion, c were chosen beforeb, since after rankinga, dout(b) = 0, it
follows that whenc was picked, its out-degree was also 0. Hence,
there existsd ∈ MIN i(c) which was picked byi + 1 beforec. And
so,Si+1(c) = t. On the other hand, sincec was picked beforeb,
we haveNi+1(c, b) = t+1 > Si+1(c), and so the edge(c, b) does
not exist inGi+1, a contradiction to the fact that the cycleU stayed
after stagei + 1.

LEMMA 6.4. Suppose that there are no 2-cycles in the graphs
built by the algorithm. Letx ∈ C \ {p} be a candidate such that
Si+1(x) = t+1 (wheret = ms(i)). Then after stagei+2 at least
one of the following will hold:

1. There will be a vertexw in Gi+2 s.t. p ∈ MINi+2(w) and
there will be a path fromx to w.

2. There will be a vertexw in Gi+2 withSi+2(w) ≤ t, s.t. there
will be a path fromx to w.

848

PROOF. 1. If there is a vertexw s.t. p ∈ MIN i+1(w) and
there is a path fromx to w in Gi+1, w.l.o.g. let us assume
thatw was picked first in stagei+2 among all such vertices.
It is easy to see thatp ∈ MIN i+2(w). If x = w, then trivially
condition 1 holds, and we are done. Otherwise, in stagei +
2, w was ranked abovex. Let us build a chain of vertices,
starting fromx, by passing from a vertex to its father, as
was assigned in the stagei + 2. The chain stops when we
reachp or null. If we reachp this way then we are done,
becausea = b.father means that there is an edge(b, a) in
Gi−1, and it stayed inGi+2 (becausea was ranked aboveb).
Now we show that we can’t reach null this way. Suppose,
for contradiction, that we reach null, and letz be the vertex
before null in the chain. Ifz was ranked abovew in stage
i+2, then we get a contradiction since at the time of ranking
z, dout(w) = 0, whereasdout(z) > 0, and we would prefer
w overz. On the other hand, ifw was ranked abovez, then
x should have been ranked abovez too, since there is a path
in Gi+1 from x to w whereasdout(z) > 0. So we got a
contradiction since, by definition,z was ranked abovex.

2. Now suppose that the condition in the first item does not
hold. If there is a vertexw, s.t.Si+1(w) < t and there is
a path inGi+1 from x to w, again, w.l.o.g. let us assume that
w was picked first in stagei + 2 among all such vertices.
ThenSi+2(w) ≤ t, and similarly to item 1 above, there is a
path inGi+2 from x to w.

Now let us suppose that the above conditions do not hold.
Let us look at the vertexy which in stagei + 2 was picked
first from a cycleU s.t. there is a path fromx to U , and
there are two consecutive edges inU , each with weightt.
By Lemma 6.3 and Lemma 6.2 such a vertexy exists. Ac-
cording to the algorithm (lines 21–22) and to the definition
of y, beforey only vertices s.t. there is no path fromx to
them, could be picked. Therefore, there is no path fromy to
earlier-picked vertices. So wheny was picked, its out-degree
was> 0, and hence all the edges going out ofy stayed after
stagei + 2. According to the algorithm (lines 21–22), there
is a vertexw s.t.Si+1(w) = Ni+1(w, y) = t and there is a
path fromy to w in Gi+1. Let W be the set of all such ver-
ticesw. According to the algorithm (lines 17–18), in stage
i + 2, all the vertices inW will be picked before all the ver-
ticesz with Si+1(z) = Ni+1(z, y) = t + 1.

Now let us go from a vertex to its father, starting withx (like
in Lemma 6.2) till we reach null (we cannot reachp this way
since condition 1 does not hold). Similarly to Lemma 6.2,
it can be verified that the last vertex before null isy. If we
passed this way through some vertexw ∈ W then we are
done, since we got a path fromx to w, andSi+2(w) = t
(becausew was picked in stagei + 2 aftery). Otherwise we
are in the next situation: the path fromx to U , connects to
U through the vertexy (if this is not the case then we will
pass through somew ∈ W since according to the algorithm
(lines 16–18 and 32), all the vertices which have a path from
them tow will be picked before all other verticesw′ with an
edge(w′, y) with weightt + 1 and a path fromy to w′). Let
b be a vertex s.t.(y, b) ∈ Gi+1 (and so also(y, b) ∈ Gi+2)
and there is a path inGi+1 from b to somew ∈ W . Sinceb
belongs to a cycle with two edges of the weightt and there
is a path fromx to b, it follows thatb was picked byi + 2
aftery. As there is a path fromb to w, it follows thatb was
picked whendout(b) = 0, and henceb.father 6= null. Like
in Lemma 6.2, we go from a vertex to its father, starting with

b, until we reachw. This way we got a path inGi+2 from x
throughy andb tow, and as mentioned earlier,Si+2(w) = t.

The next lemma is central in the proof of Theorem 6.1. It states
that the maximum score ofp’s opponents grows rather slowly.

LEMMA 6.5. If there are no 2-cycles in the graphs built by the
algorithm, then for alli, 0 ≤ i ≤ n− 3 it holds thatms(i + 3) ≤
ms(i) + 1.

PROOF. Let i, 0 ≤ i ≤ n − 3. Let x ∈ C \ {p} be a candi-
date. Denotems(i) = t. We need to prove thatSi+3(x) ≤ t + 1.
If Si+1(x) ≤ t, then similarly to Lemma 5.3 we can prove that
Si+3(x) ≤ t + 1. So now we assume thatSi+1(x) = t + 1. By
Lemma 5.3, we have thatSi+2(x) = t + 1. Suppose by contradic-
tion thatSi+3(x) = t + 2. x was ranked in stagei + 3 at the place
s∗. By Lemma 6.4 there exists a vertexw s.t. there is a path in
Gi+2 from x to w, andp ∈ MIN i+2(w) or Si+2(w) ≤ t. Thenw
was ranked in stagei+3 above the places∗, because the score ofx
increased in stagei + 3, and if, by contradiction,w was not ranked
above the places∗, then when we got to the places∗ we would pre-
fer w overx. It is easy to see that all the vertices that have a path
in Gi+2 from them tow, and which were ranked beloww in stage
i+3, did not have their scores increased in that stage (since we took
them one after another in the reverse order on their path tow when
they were with out-degree 0). And asx was ranked beloww, its
score did not increase as well, and soSi+3(x) = Si+2(x) = t+1,
a contradiction.

LEMMA 6.6. If the minimum number of manipulators needed
to makep win is equal to 1, then Algorithm 1 performs optimally,
i.e., finds the manipulation forn = 1.

PROOF. Let us denote byopt the minimum number of manip-
ulators needed to makep win the election. LetS∗

i (a) denote the
score ofa ∈ C afteri manipulators voted in the optimal algorithm,
and letms∗(i) be the maximum score ofp’s opponents afteri ma-
nipulators voted in the optimal algorithm. Assume thatopt = 1. If
S0(p) > ms(0) thenopt = 0, a contradiction. On the other hand,
if S0(p) < ms(0), thenS∗

1 (p) ≤ ms(0) ≤ ms∗(1), sop is not a
unique winner after the manipulator voted, a contradiction. There-
fore, S0(p) = ms(0). Also, S∗

1 (p) = ms(0) + 1 andms∗(1) =
ms(0) (otherwise,p would not be a unique winner of the election).
We need to show thatms(1) = ms(0). Let x ∈ C \ {p}. If
S0(x) < ms(0) then trivially S1(x) ≤ ms(0) and we are done.
Now suppose thatS0(x) = ms(0). Suppose, by contradiction, that
S1(x) = ms(0) + 1. Then whenx was ranked by the first manip-
ulator,dout(x) > 0. Denote, as before, byV 0

x the candidates that
were ranked by Algorithm 1 belowx, includingx, in stage 1. For
eachy ∈ V 0

x , S0(y) = ms(0) anddout(y) > 0. Therefore, if
we puty instead ofx, its score will increase toms(0) + 1. Let
b ∈ V 0

x be the candidate ranked highest among candidates inV 0
x

by the optimal algorithm. Thenms∗(1) ≥ S∗
1 (b) = ms(0) + 1,

contradicting the fact thatms∗(1) = ms(0).

We are now ready to prove the main theorem.

PROOF OFTHEOREM 6.1. Letopt be as before. It is easy to see
thatopt ≥ ms(0)−S0(p)+1. We shall prove first that Algorithm 1

will find a manipulation forn =
⌈

3ms(0)−3S0(p)+3
2

⌉

≤ ⌈

3
2
opt

⌉

.

And indeed, by Lemma 6.5,

ms(n) ≤ ms(0) +

⌈

n

3

⌉

= ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

.

849

a0

b0 c0

a1

b1 c1

al−1

bl−1 c l−1

...k

k

k k

k

k k

k

k

k+1 k+1 k+1

k+1

Figure 1: Example for lower bound on approximation ratio

Whereas,

Sn(p) = S0(p) + n

= S0(p) + (ms(0)− S0(p) + 1) +

⌈

ms(0)− S0(p) + 1

2

⌉

= ms(0) + 1 +

⌈

ms(0)− S0(p) + 1

2

⌉

> ms(0) +

⌈

ms(0)− S0(p) + 1

2

⌉

≥ ms(n).

Now, by Lemma 6.6, whenopt = 1, the algorithm performs op-
timally (i.e., finds the manipulation forn = 1). We have just
proved that foropt = 2 the algorithm finds the manipulation when
n ≤ ⌈

3
2
opt

⌉

= 3. Whenopt = 3, the algorithm finds the ma-
nipulation whenn ≤ ⌈

3
2
opt

⌉

= 5. It is easy to see that for all
opt > 3,

⌈

3
2
opt

⌉

< 5
3
opt. Therefore, the approximation ratio of

Algorithm 1 is≤ 5
3

= 1 2
3
.

It is worth noting that from the proof above we have that asopt
tends to infinity, the bound on the ratio between the size of the
manipulating coalition returned by Algorithm 1 andopt tends to
1 1

2
, sincen is bounded by

⌈

1 1
2
opt

⌉

.

THEOREM 6.7. The1 2
3
-approximation ratio of Algorithm 1 is

valid also when there are 2-cycles in the graphs built by the algo-
rithm.

We omit the proof of the above theorem due to space limitations.

7. LOWER BOUND ON THE APPROXIMA-
TION RATIO OF THE ALGORITHM

THEOREM 7.1. There is an asymptotic lower bound of1 1
2

to
the approximation ratio of Algorithm 1.

PROOF. Consider the following example (see Figure 1). Let
m = |C| be of the formm = 3t + 1 for an integert ≥ 2. De-
note l = 3t−1 = m−1

3
. Let C = {p, a0, b0, c0, a1, b1, c1, . . . ,

al−1, bl−1, cl−1}. Let N be a multiple of 3,N ≥ 6. Let k = N
3

.
S0(p) = 0; for all j, 0 ≤ j ≤ l − 1: S0(aj) = N0(aj , bj) =
S0(bj) = N0(bj , cj) = S0(cj) = N0(cj , aj) = k. In addi-
tion, for eachj, 0 ≤ j ≤ l − 2: N0(aj , aj+1) = k + 1, and
N0(al−1, a0) = k + 1. We first show that there exists a profile
of non-manipulators that induces the above scores. We will have
non-manipulator voters of 6 types;N−3

3
voters of each of the types

(1), (2) and (3), and one voter of each of the types (4), (5) and(6).
In all types,p is ranked in last place. To conserve space, we denote
by Aj the fragmentaj ≻ cj ≻ bj of the preference, byBj the
fragmentbj ≻ aj ≻ cj , and byCj the fragmentcj ≻ bj ≻ aj .
When showing the preference lists of the voters, it is convenient

to use the trinary representation of the indices. We have candidates
{p, a0, b0, c0, a1, b1, c1, . . . , a22...2, b22...2, c22...2}. For preference
list of type (1), we define the order0 ≻1 2 ≻1 1. In this preference
list, we have the fragmentsAj ordered by the order≻1, andp is
at the end. In type (2), we have the fragmentsCj ordered by the
order2 ≻2 1 ≻2 0, with p at the end. In type (3), we have the
fragmentsBj ordered by the order1 ≻3 0 ≻3 2, with p at the end.
In type (4), we have the fragmentsAj ordered by0 ≻4 1 ≻4 2,
with p at the end. In type (5), we have the fragmentsCj ordered by
1 ≻5 2 ≻5 0, with p at the end. Finally, in type (6) there are the
fragmentsBj ordered by2 ≻6 0 ≻6 1, with p at the end.

For instance, the next example illustrates the above profilefor
t = 3 (m = 28), and it easily generalizes to anyt ≥ 2.

(1):A0 ≻ A2 ≻ A1 ≻ A20 ≻ A22 ≻ A21 ≻ A10 ≻ A12 ≻ A11 ≻ p

(2):C22 ≻ C21 ≻ C20 ≻ C12 ≻ C11 ≻ C10 ≻ C2 ≻ C1 ≻ C0 ≻ p

(3):B11 ≻ B10 ≻ B12 ≻ B1 ≻ B0 ≻ B2 ≻ B21 ≻ B20 ≻ B22 ≻ p

(4):A0 ≻ A1 ≻ A2 ≻ A10 ≻ A11 ≻ A12 ≻ A20 ≻ A21 ≻ A22 ≻ p

(5):C11 ≻ C12 ≻ C10 ≻ C21 ≻ C22 ≻ C20 ≻ C1 ≻ C2 ≻ C0 ≻ p

(6):B22 ≻ B20 ≻ B21 ≻ B2 ≻ B0 ≻ B1 ≻ B12 ≻ B10 ≻ B11 ≻ p

It could be verified that the graphG0 which matches the above
profile looks as in Figure 1 (we omitted some of the dotted edges).

Now we will show that for the above example the approxima-
tion ratio of the algorithm is at least1 1

2
. Consider the following

preference list of the manipulators:

p ≻ Al−1 ≻ Al−2 ≻ . . . ≻ A0

p ≻ Al−2 ≻ Al−3 ≻ . . . ≻ A0 ≻ Al−1

p ≻ Al−3 ≻ Al−4 ≻ . . . ≻ A0 ≻ Al−1 ≻ Al−2

. . .

It can be verified that in the above preference list, the maximum
score ofp’s opponents (ms(i)) grows by 1 everym−1

3
stages (start-

ing with k + 1). In addition,p’s score grows by 1 every stage.
Therefore, when we apply the voting above, the minimum num-
ber of stages (manipulators)n∗ needed to makep win the election
should satisfyn∗ > k + 1 +

⌈

3n∗
m−1

⌉

. Since
⌈

3n∗
m−1

⌉

< 3n∗
m−1

+ 1,
the sufficient condition for makingp win is:

n∗ > k + 1 +
3n∗

m− 1
+ 1.

So, we have,

(m− 1)n∗ > (m− 1)(k + 2) + 3n∗

(m− 4)n∗ > (m− 1)(k + 2)

n∗ >
(m− 1)(k + 2)

m− 4
.

For large-enoughm, (m−1)(k+2)
m−4

< k + 3, and son∗ = k + 3
would be enough to makep win the election.

Now let us examine what Algorithm 1 will do when it gets this
example as input. One of the possible outputs of the algorithm
looks like this:

p ≻ C0 ≻ C1 ≻ . . . ≻ Cl−1

p ≻ B1 ≻ B2 ≻ . . . ≻ Bl−1 ≻ B0

p ≻ A2 ≻ A3 ≻ . . . ≻ Al−1 ≻ A0 ≻ A1

p ≻ C3 ≻ C4 ≻ . . . ≻ Cl−1 ≻ C0 ≻ C1 ≻ C2

. . .

850

It can be verified that in the above preference list,ms(i) grows
by 1 every 3 stages, andp’s score grows by 1 every stage. There-
fore, the number of stagesn returned by Algorithm 1 that are needed
to makep win the election satisfiesn > k +

⌈

n
3

⌉

. Since
⌈

n
3

⌉ ≥ n
3

,
the necessary condition for makingp win the election is:

n > k +
n

3
.

And then we have,

3n > 3k + n

2n > 3k

n >
3

2
k

So we find that the ration
n∗ tends to1 1

2
asm andN (andk) tend

to infinity.

8. DISCUSSION
In spite of the popularity of the approach of using computational

complexity as a barrier against manipulation, this method has an
important drawback: although for some voting rules the manipu-
lation problem has been proven to beNP-complete, these results
apply only to the worst case instances; for most instances, the prob-
lem could be computationally easy. There is much evidence that
this is indeed the case, including work by Friedgut et al. [7], and
Isaksson et al. [9]. They prove that a single manipulator canmanip-
ulate elections with relatively high probability by simplychoosing
a random preference. This is true when the voting rule is far from
a dictatorship, in some well-defined sense.

Additional evidence for the ease of manipulating electionson
average is the work of Procaccia and Rosenschein [10], and Xia and
Conitzer [12]. They connected the frequency of manipulation with
the fraction of manipulators out of all the voters. Specifically, they
found that for a large variety of distributions of votes, when n =
o(
√

N), then with high probability the manipulators can affect the
outcome of the elections. The opposite is true whenn = ω(

√
N).

The current work continues this line of research. It strength-
ens the results of Zuckerman et al. [14], giving an algorithmwith
a better approximation ratio for the Unweighted Coalitional Opti-
mization (UCO) problem under Maximin. Equivalently, it narrows
the error window of the algorithm for the decision problem CCUM
under Maximin. The result can be viewed as another argument in
favor of the hypothesis that most rules are usually easy to manipu-
late.

9. CONCLUSIONS AND FUTURE WORK
We introduced a new algorithm for approximating the UCO prob-

lem under the Maximin voting rule, and investigated its approxima-
tion guarantees. In future work, it would be interesting to prove or
disprove that Algorithm 1 presented in [14] has an approximation
ratio of 1 2

3
, for those instances where there is no Condorcet win-

ner.2 Another direction is to implement both algorithms, so as to
empirically measure and compare their performance.

Acknowledgments
We would like to thank Reshef Meir, Aviv Zohar, Jerome Lang and
Noam Nisan for helpful discussions on topics of this research. We
also thank Edith Elkind and Piotr Faliszewski for valuable com-
ments on an earlier version of this paper. This work was partially
2We have an example showing that that algorithm is no better than
a 2-approximation when there is a Condorcet winner.

supported by Israel Science Foundation grant #898/05, and Israel
Ministry of Science and Technology grant #3-6797.

10. REFERENCES
[1] J. Bartholdi and J. Orlin. Single transferable vote resists

strategic voting.Social Choice and Welfare, 8:341–354,
1991.

[2] J. Bartholdi, C. A. Tovey, and M. A. Trick. The
computational difficulty of manipulating an election.Social
Choice and Welfare, 6:227–241, 1989.

[3] V. Conitzer, T. Sandholm, and J. Lang. When are elections
with few candidates hard to manipulate?Journal of the
ACM, 54(3):1–33, 2007.

[4] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In
Proceedings of SAGT 2009, Springer-Verlag LNCS 5814,
pages 299–310, October 2009.

[5] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
elections. InProceedings of the Twenty-Fourth Conference
on Artificial Intelligence (AAAI 2010), pages 768–773, July
2010.

[6] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.
Multimode control attacks on elections. InThe Twenty-First
International Joint Conference on Artificial Intelligence
(IJCAI 2009), pages 128–133, Pasadena, California, July
2009.

[7] E. Friedgut, G. Kalai, and N. Nisan. Elections can be
manipulated often. InProc. 49th FOCS. IEEE Computer
Society Press, pages 243–249, 2008.

[8] A. Gibbard. Manipulation of voting schemes.Econometrica,
41:587–602, 1973.

[9] M. Isaksson, G. Kindler, and E. Mossel. The geometry of
manipulation — a quantitative proof of the
Gibbard-Satterthwaite theorem. In51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS
2010), pages 319–328, October 2010.

[10] A. D. Procaccia and J. S. Rosenschein. Average-case
tractability of manipulation in elections via the fractionof
manipulators. InThe Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2007),
pages 718–720, Honolulu, Hawaii, May 2007.

[11] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions.Journal of
Economic Theory, 10:187–217, 1975.

[12] L. Xia and V. Conitzer. Generalized scoring rules and the
frequency of coalitional manipulability. InProceedings of
ACM EC-08, pages 109–118, July 2008.

[13] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and
J. S. Rosenschein. Complexity of unweighted coalitional
manipulation under some common voting rules. InThe
Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 348–353, Pasadena,
California, July 2009.

[14] M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein.
Algorithms for the coalitional manipulation problem.Journal
of Artificial Intelligence, 173(2):392–412, February 2009.

851

Algorithm 1 Decides CCUM for Maximin voting rule

1: procedure MAXIMIN (C, p, XS, n) ⊲ XS is the set of preferences of voters inS, n is the number of voters inT
2: X ← ∅ ⊲ Will contain the preferences ofT
3: for i = 1, . . . , n do ⊲ Iterate over voters
4: Pi ← (p) ⊲ Putp at the first place of thei-th preference list
5: Build a digraphGi−1 = (V, Ei−1) ⊲ V = C \ {p}, (x, y) ∈ Ei−1 iff (y ∈ MIN i−1(x) andp /∈ MIN i−1(x))
6: for c ∈ C \ {p} do ⊲ This for loop is used in the algorithm’s analysis
7: if dout(c) = 0 then
8: c.father← p
9: else

10: c.father← null
11: end if
12: end for
13: while C \ Pi 6= ∅ do ⊲ while there are candidates to be added toi-th preference list
14: Evaluate the score of each candidate based on the votes ofS andi− 1 first votes ofT
15: if there exists a setA ⊆ C \ Pi with dout(a) = 0 for eacha ∈ A then ⊲ if there exist vertices in the digraphGi−1 with

out-degree 0
16: Add the candidates ofA to the stacksQj , where to the same stack go candidates with the same score
17: b← Q1.popfront() ⊲ Retrieve the top-most candidate from the first stack—with the lowest scores so far
18: Pi ← Pi + {b} ⊲ Add b to i’s preference list
19: else
20: Lets← minc∈C\Pi

{Si−1(c)}
21: if there is a cycleU in Gi−1 s.t. there are 3 verticesa, b, c, s.t.(c, b), (b, a) ∈ U , andSi−1(c) = Si−1(b) = s then
22: Pi ← Pi + {b} ⊲ Add b to i’s preference list
23: else
24: Pickb ∈ C \ Pi s.t.Si−1(b) = s ⊲ Pick any candidate with the lowest score so far
25: Pi ← Pi + {b} ⊲ Add b to i’s preference list
26: end if
27: end if
28: for y ∈ C \ Pi do
29: if (y, b) ∈ Ei−1 then ⊲ If there is a directed edge fromy to b in the digraph
30: Remove all the edges ofEi−1 originating iny
31: y.father← b ⊲ This statement is used in the algorithm’s analysis
32: Addy to the front of the appropriate stackQj—according toSi−1(y)
33: end if
34: end for
35: end while
36: X ← X ∪ {Pi}
37: end for
38: XT ← X
39: if argmaxc∈C{Score ofc based onXS ∪XT } = {p} then
40: return true ⊲ p wins
41: else
42: return false
43: end if
44: end procedure

852

