An Algorithm for the
Coalitional Manipulation Problem under Maximin

Michael Zuckerman
michez@cs.huiji.ac.il

Omer Lev
omerl@cs.huiji.ac.il

Jeffrey S. Rosenschein
jeff@cs.huji.ac.il

The School of Computer Science and Engineering
The Hebrew University of Jerusalem

ABSTRACT

We introduce a new algorithm for the Unweighted Coalitidvial
nipulation problem under the Maximin voting rule. We probvatt
the algorithm gives an approximation ratioldj to the correspond-
ing optimization problem. This is an improvement over thevpr
ously known algorithm that gave a 2-approximation. We aleo@
that its approximation ratio is no better thaé, i.e., there are in-
stances on which h%-approximation is the best the algorithm can
achieve. Finally, we prove that no algorithm can approxertae
problem better than to the factor D%, unlessP = NP.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Social choice theory, Algorithms, Approximation

1. INTRODUCTION

In recent years, the importance of game-theoretic anabsis
formal foundation for multiagent systems has been widetpge
nized in the agent research community. As part of this rebear
agenda, the field ofomputational social choickas arisen to ex-
plore ways in which multiple agents can effectively (anctahly)
use elections to combine their individual, self-interdspeefer-
ences into an overall choice for the group.

In an election, voters (agents) submit linear orders (iragssi or
profiles) of the candidates (alternatives)yating ruleis then ap-
plied to the rankings in order to choose the winning canéidt
the prominent impossibility result proven by Gibbard antt&#h-
waite [8, 11], it was shown that for any voting rule, a) whismbt
a dictatorship, b) which is onto the set of alternatives, @nahere
there are at least three alternatives, there exist proftesewa voter
can benefit by voting insincerely. Submitting insincerekiags in
an attempt to benefit is calledanipulation Exploring the compu-
tational complexity of, and algorithms for, thisanipulation prob-

Cite as: An Algorithm for the Coalitional Manipulation Problem un-
der Maximin, Michael Zuckerman, Omer Lev and Jeffrey S. Reshein,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia§sst
tems (AAMAS 2011Yumer, Yolum, Sonenberg and Stone (eds.), May,
2-6, 2011, Taipei, Taiwan, pp. 845-852.

Copyright (C) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

845

lemis one of the most important research areas in computational
social choice.

There are several ways to circumvent the Gibbard-Satteitaw
result, one of which is by using computational complexitydsr-
rier against manipulation. The idea behind this techniquas
follows: although there may exist a successful maniputattbe
voter mustdiscoverit before it can be used—but for certain voting
rules, discovering a successful manipulation might be agatjpon-
ally hard. This argument was used already in 1989 by Bartlebld
al. [2], and in 1991 by Bartholdi and Orlin [1], where they yped,
respectively, that second-order Copeland and Single Teeaide
Vote are both\/P-hard to manipulate.

Later, the complexity of coalitional manipulation was saatby
Conitzer et al. [3]. In the coalitional manipulation proflga coali-
tion of potentially untruthful voters try to coordinate thieallots so
as to make some preferred candidate win the election. Gorétz
al. studied the problem where manipulators are weightedterv
with weight/ counts ag voters, each of weight. This problem was
shown to beNP-hard, for many voting rules, even for a constant
number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulatfd/CM)
problem, where all voters have equal power. In a recent dapgr
Xia et al. established as one of their main results that UCM72-
hard under the Maximin voting rule, even for 2 untruthful esmst

In 2009, Zuckerman et al. [14] defined a natural optimization
problem for the unweighted setting (i.e., Unweighted Gimdal
Optimization, UCO), namely finding the minimal number of ma-
nipulators sufficient to make some predefined candidate is.
proven, as a corollary of their results, that the heuristeedy al-
gorithm proposed in the paper give&-approximation to the UCO
problem under Maximin. Here, we further study the UCO proble
under Maximin, proposing a new greedy algorithm that givk%a
approximation to the problemWe then provide an example show-
ing that the approximation ratio of the algorithm is no bettean
13. Furthermore, since this gap (betwehand13) is due to the
fact that the size of the manipulating coalition is roundpd/ards,
the actual bound on the ratio between the size of the coalite
turned by the algorithm, and the minimum size of maniputatin
coalition, tends td% as the number of voters tends to infinity.

2. RELATED WORK

Behavior designed to alter outcomes in the Maximin votirlg ru
has been widely studied. Perhaps the closest work to the UCM

IStrictly speaking, our algorithm is for thaecisionproblem, but
since the conversion of our algorithm to one for the optirticra
problem is straightforward, we consider it an approximatigo-
rithm for the optimization problem.

problem is control by adding voters (AV), which has been igdd
by Faliszewski et al. [6]. The difference between AV contol
UCM is that in the latter, manipulative voters can vote whete
they like in order to make their preferred candidate win, ighs in
the former, the votes in the additional set are fixed. Faliskeet
al. proved that AV control in Maximin (as well as DV [Deletetvo
ers] control and constructive AC [Add Candidates] contisly P-
complete. In contrast, they showed polynomial-time athons for
a combination of AG (a variant of Adding Candidates) and DC
(Delete Candidates), and for a combination of destructi@eafd
DC control.

In another paper, Elkind et al. studied control of electibys
cloning candidates [5]. For prominent voting rules (inéhgdMax-
imin) they characterized preference profiles for which éretist a
successful cloning manipulation. For Maximin, a profile anipu-
lable by cloning if and only if the preferred candidate doeswin,
but is Pareto optimal. The authors also provided a simpkalin
time algorithm for solving the cloning manipulation profl@inder
Maximin.

Yet another topic that involves outcome-altering behavi@lec-
tions is bribery. In their paper [4], Elkind et al. investigd a model
of bribery where the price of each vote depends on the amdunt o
change that the voter is asked to implement. They showeddhat
their model, bribery is\V"P-complete for Maximin, as well as for
some other voting rules.

3. MAXIMIN VOTING, MANIPULATION

An election consists of a sét = {ci,...,cn} of candidates,
and aseS = {vi1,..., g} Of voters. Each voter provides a total
order on the candidates (i.e., each voter submits a line&ing of
all the candidates). The setting also includesting rule which is
a function from the set of all possible combinations of vdte§'.

The Maximin voting rule is defined as follows. For any two
distinct candidates: andy, let N(z,y) be the number of vot-
ers who preferz overy. The Maximin scoreof z is S(z) =
minyx, N(x,y). The candidate with the highest Maximin score
is the winner.

DEFINITION 3.1. In the CONSTRUCTIVE COALITIONAL UN-
WEIGHTED MANIPULATION (CCUM) problem, we are given a
setC of candidates, with a distinguished candidatec C, a set
of (unweighted) voters' that have already cast their votes (these
are the non-manipulators), and a sEtof (unweighted) voters that
have not yet cast their votes (these are the manipulators) aMy/
asked whether there is a way to cast the vote® iso thatp wins
the election.

DEFINITION 3.2. In the UNWEIGHTED COALITIONAL OPTI-
MizATION (UCO) problem we are given a sét of candidates,
with a distinguished candidate € C, and a set of (unweighted)
votersS that have already cast their votes (the non-manipulators).
We are asked for theinimal n such that a sef” of sizen of (un-
weighted) manipulators can cast their votes in order to maken
the election.

REMARK 3.3. We implicitly assume here that the manipulators
have full knowledge about the non-manipulators’ votess(hithe
common assumption in the literature). Unless explicithedd oth-
erwise, we also assume that ties are broken adversariallgheo
manipulators, so that ip ties with another candidatep loses.
The latter assumption is equivalent to formulating the rpalta-
tion problems in theirunique winnerversion, when one assumes
that all candidates with maximal score win, but asks thae the
only winner.

846

will denote Ni(z,y) = [{j | = =; y,>=;€ SU{L,...

Throughout this paper we will use the convention, unlessiexp
itly stated otherwise, thdC| = m, |S| = N and|T| = n. We
That is, N;(z,y) will denote the number of voters frorf and
from the firsti voters of T' that preferz over y (assumingS is
fixed, and fixing some order on the votersiof. Furthermore, we

will denote by S;(c) the accumulated score of candidatérom

the voters ofS and the first voters of . By definition, for each
z € C, Si(x) = miny+, N;(z,y). Also, we denote for: € C,
MIN;(z) = {y € C\ {z} | Si(x) = Ni(x,y)}. We denote
for 0 < i < n, ms(i) = max.cco\(py Si(c). That is,ms(i) is
the maximum score of the opponentgaifter: manipulators have
voted.

DEFINITION 3.4. The Condorcet winneof an election is the
candidate who, when compared with every other candidaf@geis
ferred by more voters.

Next we give a lower bound on the approximation ratio of any
polynomial-time algorithm for the UCO problem under Maximi

PrRopPosITION 3.5. No polynomial-time algorithm approximat-
ing the UCO problem under Maximin can do better th@) unless
P =NP.

PROOF Suppose, for contradiction, that there exists a polynbmia
time approximation algorithr to the UCO problem under Max-
imin having approximation ratio < 1%. Then whenopt = 2,
the minimal size of manipulating coalition returned Hyis n <
r - opt < 3. Since the size of the coalition is an integer, it fol-
lows thatn = 2. Therefore,A can decide the CCUM problem for
the coalition of 2 manipulators, which contradicts the thett this
problem isN“P-complete [13] (unles® = NP). O

4. THE ALGORITHM

Our algorithm for the CCUM problem under the Maximin vot-
ing rule is given as Algorithm 1 (see the final page of the pa-
per). The intuition behind Algorithm 1 is as follows. The @lg
rithm tries in a greedy manner to maximize the score,adnd to
minimize the scores of’s opponents. To achieve this, for all
manipulator: putsp first in his preference list, making the score
of p grow by 1. He then builds a digrap’~' = (V, E* 1),

whereV = C\ {p}, (z,y) € E"""iff (y € MIN;_1(z) and
p ¢ MIN;_1(z)). He tries first to rank candidates without any out-

going edges from them, since their score will not grow thiy wa
(because their score is achieved vs. candidates who weadsglr
ranked above them). When there are no candidates without out
going edges, the algorithm tries to find a cycle with two aeljac

vertices having the lowest score. If it finds such a cyclentie

picks the front vertex of these two. Otherwise, any candiddth
the lowest score is chosen. After ranking each candidateedijes
in the graph are updated, so that all candidates whose nlinana
didate has already been ranked will be with outgoing degré®0
an edge(z,y), if y has already been ranked, we remove all the
edges going out af, since if we rankc now, its score will not go
up, and so it does not depend on other candidates in; MI{t:).
There is no need of an edde, y) if p € MIN;_1(z), since for
allz € C'\ {p} p is always ranked above, and so whethey is
ranked above: or not, the score aof will not grow.

Let us note a few points regarding the algorithm:

e When picking a candidate with an out-degree 0, the algo-
rithm first chooses candidates with the lowest score (among
the candidates with an out-degree 0). It appears that thisis
is critical for getting the approximation ratio d)%.

e The candidates with out-degree 0 are kept in stacks in or- that b was ranked byi + 1 abovex. After we rankedb we re-
der to guarantee a DFS-like order among candidates with the moved all the outgoing edges froemand so we chose beforex

same score (this is needed for Lemma 6.4, below, to work).

e After a candidaté is added to the manipulator’s preference
list, for each candidatg who has an outgoing eddg, b),
the algorithm removes all the outgoing edgesyofputs it
into the appropriate stack, and assign® bey’s “father”.
Essentially, the assignmentfather — b means that due to
b the score ofy did not grow. The “father” relation is used to
analyze the algorithm.

o Note the subtle difference between calculating the scares i
Algorithm 1in this paper, as compared to Algorithm 1in [14].
In the latter, the manipulatércalculates what the score would
be of the current candidateif he putz at the current place
in his preference list; in the algorithm we are now presetin
manipulator; just calculatesS;_1 (x). This difference is due
to the fact that here, when we calculate the score,oive
know whetherd,.:(z) > 0, i.e., we know whether the score
of z will grow by 1 if we put it at the current available place.

So we separately compare the scores of candidates with out-

degree> 0, and the scores of candidates with out-degree O.

DEFINITION 4.1. We refer to an iteration of the mafior loop
in lines 3-37 of Algorithm 1 as stageof the algorithm. That is, a
stage of the algorithm is a vote of any manipulator.

DEFINITION 4.2. In the digraphG® built by the algorithm, if
there exists an edger, y), we refer toN;(z,y) = Si(z) as the
weightof the edgdx, y).

5. 2-APPROXIMATION

We first prove that Algorithm 1 has an approximation ratio of 2
We then use this result in the subsequent proof ofltguapproxi—
mation ratio.

THEOREM 5.1. Algorithm 1 has a2-approximation ratio for
the UCO problem under the Maximin voting rule.

To prove the above theorem, we first need the following two lem
mas. In the first lemma, we prove that a certain sub-grapheof th
graph built by the algorithm contains a cycle passing thhcamme
distinguished vertex. We first introduce some more notation

Let G* = (V, E*) be the directed graph built by Algorithm 1 in
stagei 4 1. For a candidate € C \ {p}, letGL = (V{, E.) be
the graphG’ reduced to the vertices that were ranked beloin
stagei + 1, includingz.

Let Vi(z) = {y € Vi | thereis apath i@’ fromz toy}.
Also, letG*(x) be the sub-graph af”, induced byV* ().

LEMMA 5.2. Letibe anintege) < i <n —1. Letz € C'\
{p} be a candidate. Denote= ms(i). Suppose tha$; () =
t + 1. ThenG"*(z) contains a cycle passing through

PROOF First of all note that for alt € V*(z), Si(c) = t. It
follows from the fact that by definitio$;(c) < t. On the other
hand,S;(z) = t, and all the other vertices il (x) were ranked
belowz. Together with the fact that the out-degreecafias greater
than 0 whenz was picked, it gives us that for all € V'(z),
Si(e) > t, and so for alle € V*(z), Si(c) = t. We claim that
for all ¢ € Vi(x), MIN;(c) C V'(=). If, by way of contradiction,
there existe € V*(z) s.t. there i$ € MIN;(c) whereb ¢ V' (),
thenb ¢ V., since otherwise, ib € V;, then frome € Vi(z)
and(c,b) € EZ we get thab € V'(x). Sob ¢ V;, which means

847

sincedout(c) = 0 anddout(x) > 0 (since the score of increased
in stagei + 1). This contradicts the fact that € V'(z) C V,.
Therefore, for every vertex € V*(z) there is at least one edge in
G*(z) going out frome. Hence, there is at least one cycledf(z).
Since at the time of picking: by voteri 4 1, for all ¢ € V(x),
dout(c) > 0, and by the observation that for all € Vi(z),
Si(c) = t, we have that the algorithm picked the vertexrom

a cycle (lines 21-22 of the pseudocode]l]

In the following lemma, we show an upper bound on the growth
rate of the scores gfs opponents.

LEMMA 53. Forall0 <i<n—2,ms(i+2) <ms(i) + 1.

PROOF Let0 < i <n—2. Letz € C'\ {p} be a candidate.
Denotet = ms(z). By definition, S;(x) < ¢. We would like to
show thatSi+2(£L') < t+1. If S¢+1($) < t, thenSi+2(a:) <
Si+1(x) +1 < t+ 1, and we are done. So let us assume now that
S¢+1(x)_:t+1. _)

Let V*(z) andG*(z) be as before. By Lemma 5.2 (x) con-
tains at least one cycle. Lét be one such cycle. Let € U be
the vertex that was ranked highest among the verticésiafstage
i + 1. Letb be the vertex before in the cycle:(b,a) € U. Since
b was ranked below: in stage: + 1, it follows that S;11(b) =
Si(b) < t.

Suppose, for contradiction, thélt12(z) > t+1. Then the score
of z increased in stage+ 2, and so when: was picked byi + 2,
its out-degree in the graph was not ©.was ranked by + 2 at
places™. Thenb was ranked by + 2 aboves™, since otherwise,
when we had reached the plagg we would not pickz sinceb
would be available (with out-degree 0, or otherwise—witbrec
Si+1(b) <t <t+ 1= Sit1(z))—a contradiction.

Denote byZ; all the vertices inV(z) that have an outgoing
edge tob in G'(x). Forallz € Z1, b € MIN;(2), i.e., Si(z) =
Ni(z,b). We claim that allz € Z; were ranked by + 2 above
z. If, by way of contradiction, there is € Z;, s.t. until the place
s™ it still was not added to the preference list, then two cases a
possible:

1. If (2,b) € E*!, then afteh was added té+ 2's preference
list, we removed all the outgoing edgeszqfand we would
put in z (with out-degree 0) instead af a contradiction.

2. (2,b) ¢ E""'. Since(z,b) € E*, we haveS;(z) = N;(z,b).
Also sincez was ranked byi + 1 below z, it follows that
Si(z) = t. Sofrom(z,b) ¢ E**!, we have thal;;1(z) =
t and N;4+1(z,b) = ¢t + 1. Therefore, when reaching the
places™ in thei + 2's preference list, whethet,,.(z) = 0
or not, we would not piclk (with the scoreS; 1 (z) = t+1)
sincez (with the scoreS;+1(z) = t) would be available, a
contradiction.

Denote byZ, all the vertices inl’*(x) that have an outgoing
edge inG*(z) to some vertex € Z;. In the same manner we can
show that all the vertices i, were ranked in stage+ 2 above
x. We continue in this manner, by defining séts . .., where the
setZ; contains all vertices i *(x) that have an outgoing edge to
some vertex inZ;_1; the argument above shows that all elements
of these sets are ranked abavén stage: + 2. As there is a path
from z to b in G*(x), we will eventually reach: in this way, i.e.,
there is somésuch thatZ; contains a vertey, s.t.(x,y) € E'(x).

Now, if (z,y) € E“t'(zx), then sincey was ranked by + 2
abovez, we haveS;12(z) = Si+1(z) = ¢t + 1, a contradiction.

And if (z,y) ¢ E**(z), then since(z,y) € E'(x) we get that
Nit1(z,y) =t + 1andS;;+1(z) = t, a contradiction. [J

We are now ready to prove Theorem 5.1.

PROOF OFTHEOREMS5.1. Letopt denote the minimum size
of coalition needed to make win. It is easy to see thaipt >
ms(0) — So(p) + 1. We setn = 2ms(0) — 25o0(p) + 2 < 20pt.
Then, by Lemma 5.3:

ms(n) < ms(0) + [g] = 2ms(0) — So(p) + 1.
Whereas:
Sn(p) = So(p) +n =2ms(0) — So(p) + 2 > ms(n).

Sop will win when the coalition of manipulators is of size [

6. 12-APPROXIMATION

Our next goal is to prove that Algorithm 1 has an approxinmatio
ratio of 1% when there are no 2-cycles in the graphs built by the
algorithm.

THEOREM 6.1. For instances where there are no 2-cycles in the
graphsG" built by Algorithm 1, it gives a%-approximation of the
optimum.

Let us give a general short overview of the proof of the above
theorem (we will give an intuitive description rather tharfoa-
mal/rigorous one). In Lemmas 6.2—6.5 we aim to prove that the
maximum score op’s opponents grows 3 times slower than the
score ofp, at the most. After proving this, the theorem will easily
follow. Recall that we proved in Lemma 5.2 that there is a eycl
passing through after: stages. Then we prove that at least one
such cycle stays after stage- 1 (Lemma 6.2). In this cycle there
are 2 consecutive vertices with a low score () (Lemma 6.3).
During stage + 2 only the score of one of them will increase (at
the most), so the score of the second one will reméirmma 6.4).
Then, in stage + 3 this second vertex will be ranked abaveand
the score of: will not grow (and remairt + 1) (Lemma 6.5). This
way, during 3 stages the scoreaoincreases only by 1, whereas the
score ofp grows by 1 every stage.

Let us now state and prove the lemmas more formally.

LEMMA 6.2. Letz € C\{p} be acandidate such tha&},(z) =
t + 1 (wheret = ms(i)). LetG*(x) be as before. Then at least
one cycle inG*(z) that passes through will stay after stage + 1,
i.e.,inGitt,

PROOF. In Lemma 5.2 we have proved that dif(z) at least
one cycle passes through Sincex appears in the preference list
of ¢ + 1 above all the MIN(z), it follows that each edge going
out of z in G*(x), stays also irG**!. After we addedr to the
preference list of + 1, all the vertices in all the cycles passing
throughz were added in some order to the preference ligt-pfl,
while they were with out-degree 0 at the time they were piglied
can be proved by induction on the length of the path from thexe
to z). Therefore, their “father” field was not null when they were

the shortest path from vertex g that each vertex such that there is
a path from it tar was picked before,), and this is a contradiction
to the fact that, = z;.father. Therefore, the “father” field of.
after stagé + 1 is not null.

Let z3 = zo.father If z3 = z then we are done because we
have found a cycle — 21 — 22 — 23 = x which was ranked in
stagei + 1 in the reverse order. Otherwise, by the same argument
as before, we can show that wheywas picked, its out-degree was
0. This way we can pass from a vertex to its father until weeac
p or null. We now show that we cannot reagglthis way. Indeed,
if, by contradiction, we reach, then there is a path from to p
in G*, and so all the vertices in this path, includingwere picked
when their out-degree was 0, and this is a contradictionedabt
that the score of went up in stage + 1. Therefore, we cannot
reachp when we go from a vertex to its father starting with
Now, let z; be the last vertex before null in this path. We would
like to show that; = x. If, by contradictionz; was picked before
x by voteri + 1, then all the vertices;_1, ..., z2, z: would have
been picked before, when their out-degree is 0, and themvould
have been picked when its out-degree is 0. This is a contranlic
to the fact that:’s score increased in stage- 1. Now suppose by
contradiction that; was picked after: in stagei + 1. Then all
the vertices that have a path from themztoincluding z1, would
have been picked beforg in stagei + 1, since the out-degree of
z; was greater than 0 when it was picked. This is a contradiction
to the fact that; was picked before:. So,z; = x. This way we
gotacycler — z1 — ... — z;_1 — x which was ranked in the
reverse order in staget+ 1. [

LEMMA 6.3. Suppose that there are no 2-cycles in the graphs
built by the algorithm. Let: € C'\ {p} be a candidate such that
Sit1(x) = t+1 (wheret = ms(4)), and letG* () be as described
before Lemma 5.2. For each cydlein G* (), if U exists inG* ",

i.e., after stage + 1, then there are 3 distinct vertices b, ¢, s.t.
(C7 b) e U, (b, a) eU andSH_l(b) = N¢+1(b, a) = Si+1(c) =
NL'+1 (07 b) =t.

PROOF LetU C E'(x) be a cycle which stays also aftes 1
stages. Let: be the vertex which in stage+ 1 was chosen first
among the vertices df/. Let b be the vertex before in U, i.e.,
(b,a) € U, and letc be the vertex beforéin U, i.e.,(c,b) € U.
Since there are no 2-cycles, b, c are all distinct vertices. Recall
that for eachy € V*(zx), Si(y) = t. Sinceb was ranked below
a in stagei + 1, we haveS;+1(b) = Ni+1(b,a) = Ni(b,a) =
Si(b) = t. If c was chosen afterin stagei + 1, thenS;;1(c)
Nit1(c,b) = Ni(c¢,b) = t and we are done. We now show that
cannot be chosen befoben stagei + 1. If, by way of contradic-
tion, c were chosen beforg since after ranking, do.:(b) = 0, it
follows that whenc was picked, its out-degree was also 0. Hence,
there existgl € MIN;(c) which was picked by + 1 beforec. And
s0,5;+1(c) = t. On the other hand, sineewas picked beforé,
we haveN;.1(c,b) = t+1 > Siy1(c), and so the edge, b) does
not exist inG***, a contradiction to the fact that the cydlestayed
after stage + 1. [

LEMMA 6.4. Suppose that there are no 2-cycles in the graphs

picked. We have to prove that there is at least one cycle whose built by the algorithm. Let € C'\ {p} be a candidate such that

vertices were added in the reverse order (and then all theseofy
the cycle stayed il ™). Letz; € C\ {p,z} be some vertex
such that(z, z1) € G*(z) and there is a path 6" (z) from z; to
z. Let zo = z.father. As observed earliets # null. We first
show that wher, was picked byi + 1, it was with out-degree O.
Indeed, if, by contradiction, we suppose otherwise, thewould
have been picked aftes (the proof is by induction on the length of

848

Si+1(z) = t+1 (wheret = ms(7)). Then after stagé+ 2 at least
one of the following will hold:

1. There will be a vertexy in G2 s.t.p € MIN;12(w) and
there will be a path fronx to w.

2. There will be a vertew in G2 with S; 1 »(w) < ¢, s.t. there
will be a path fromz to w.

PROOF 1. If there is a vertexw s.t.p € MIN;;;(w) and
there is a path from: to w in G*™', w.l.o.g. let us assume
thatw was picked first in stage+ 2 among all such vertices.
Itis easy to see that € MIN ;42 (w). If z = w, then trivially
condition 1 holds, and we are done. Otherwise, in stage
2, w was ranked above. Let us build a chain of vertices,
starting fromz, by passing from a vertex to its father, as
was assigned in the staget 2. The chain stops when we
reachp or null. If we reachp this way then we are done,
becauser = b.father means that there is an ed@e a) in
G'~!, and it stayed it "2 (because was ranked abovi.
Now we show that we can't reach null this way. Suppose,
for contradiction, that we reach null, and kebe the vertex
before null in the chain. I£ was ranked above in stage
i+ 2, then we get a contradiction since at the time of ranking
z, dout(w) = 0, whereaslou:(z) > 0, and we would prefer
w over z. On the other hand, iy was ranked above, then
x should have been ranked abov®o, since there is a path
in G from z to w whereasd,.+(z) > 0. So we got a
contradiction since, by definition, was ranked above.

2. Now suppose that the condition in the first item does not
hold. If there is a vertexw, s.t. Si+1(w) < ¢ and there is
a path inG***! from x to w, again, w.l.0.g. let us assume that
w was picked first in stagé + 2 among all such vertices.
ThenS;+2(w) < t, and similarly to item 1 above, there is a
path inG**2 from z to w.

Now let us suppose that the above conditions do not hold.
Let us look at the vertey which in stage + 2 was picked
first from a cycleU s.t. there is a path from to U, and
there are two consecutive edgeslin each with weight.

By Lemma 6.3 and Lemma 6.2 such a vertegxists. Ac-
cording to the algorithm (lines 21-22) and to the definition
of y, beforey only vertices s.t. there is no path fromto
them, could be picked. Therefore, there is no path frotm
earlier-picked vertices. So wherwas picked, its out-degree
was> 0, and hence all the edges going outydftayed after
stagei + 2. According to the algorithm (lines 21-22), there
is a vertexw s.t. Siy1(w) = Niy1(w,y) = t and there is a
path fromy to w in G*T!. Let W be the set of all such ver-
ticesw. According to the algorithm (lines 17-18), in stage
i + 2, all the vertices it/ will be picked before all the ver-
ticesz with Sp,.l(z) Ni+1(z, y) =t+1.

Now let us go from a vertex to its father, starting witlflike

in Lemma 6.2) till we reach null (we cannot regekhis way
since condition 1 does not hold). Similarly to Lemma 6.2,
it can be verified that the last vertex before nulisif we
passed this way through some vertexe W then we are
done, since we got a path fromto w, and Si;2(w) = ¢
(becausev was picked in stagé+ 2 aftery). Otherwise we
are in the next situation: the path framto U, connects to
U through the vertey (if this is not the case then we will
pass through some € W since according to the algorithm
(lines 16-18 and 32), all the vertices which have a path from
them tow will be picked before all other verticas’ with an
edge(w’, y) with weightt + 1 and a path fromy to w’). Let

b be a vertex s.t(y,b) € G*** (and so alsdy, b) € G**?)
and there is a path i6"™* from b to somew € W. Sinceb
belongs to a cycle with two edges of the weigtend there

is a path fromz to b, it follows thatb was picked byi + 2
aftery. As there is a path frorh to w, it follows thatb was
picked whend,..:(b) = 0, and hencé.father # null. Like

in Lemma 6.2, we go from a vertex to its father, starting with

849

b, until we reachw. This way we got a path i6**2 from x
throughy andb to w, and as mentioned earlief; 12 (w) = ¢.

O

The next lemma is central in the proof of Theorem 6.1. It state
that the maximum score @fs opponents grows rather slowly.

LEMMA 6.5. If there are no 2-cycles in the graphs built by the
algorithm, then for alk;, 0 < ¢ < n — 3 it holds thatms(i + 3) <
ms(i) + 1.

PROOF Leti, 0 < i <n—3. Letz € C\ {p} be a candi-
date. Denotens(i) = t. We need to prove thafli;s(z) < t + 1.
If Sit1(x) < t, then similarly to Lemma 5.3 we can prove that
Si+s(x) < t+ 1. So now we assume th&t1(z) =t + 1. By
Lemma 5.3, we have th&; 2 (z) = ¢t + 1. Suppose by contradic-
tion thatS;13(z) = t + 2. = was ranked in stage+ 3 at the place
s*. By Lemma 6.4 there exists a vertexs.t. there is a path in
G2 from z to w, andp € MIN ;42(w) or Si1a2(w) < t. Thenw
was ranked in staget 3 above the place*, because the score of
increased in stage+ 3, and if, by contradictiomyw was not ranked
above the place™, then when we got to the plagé we would pre-
fer w overzx. Itis easy to see that all the vertices that have a path
in G**2 from them tow, and which were ranked below in stage
i+ 3, did not have their scores increased in that stage (sinceake t
them one after another in the reverse order on their pathwden
they were with out-degree 0). And aswas ranked beloww, its
score did not increase as well, and%qs(z) = Si+2(z) = t+1,
a contradiction. [

LEMMA 6.6. If the minimum number of manipulators needed
to makep win is equal to 1, then Algorithm 1 performs optimally,
i.e., finds the manipulation for = 1.

PROOF Let us denote bypt the minimum number of manip-
ulators needed to makewin the election. LetS; (a) denote the
score ofa € C afteri manipulators voted in the optimal algorithm,
and letms™ (i) be the maximum score @fs opponents after ma-
nipulators voted in the optimal algorithm. Assume thpt = 1. If
So(p) > ms(0) thenopt = 0, a contradiction. On the other hand,
if So(p) < ms(0), thenS7(p) < ms(0) < ms*(1), sopis nota
unique winner after the manipulator voted, a contradictibnere-
fore, So(p) = ms(0). Also, S7(p) = ms(0) + 1 andms*(1) =
ms(0) (otherwisep would not be a unique winner of the election).
We need to show thatis(1) = ms(0). Letz € C\ {p}. If
So(z) < ms(0) then trivially S1(z) < ms(0) and we are done.
Now suppose thai(x) = ms(0). Suppose, by contradiction, that
S1(z) = ms(0) + 1. Then whenc was ranked by the first manip-
ulator, d.:(x) > 0. Denote, as before, by, the candidates that
were ranked by Algorithm 1 below, includingz, in stage 1. For
eachy € V2, So(y) = ms(0) anddout(y) > 0. Therefore, if
we puty instead ofz, its score will increase tens(0) + 1. Let
b € V2 be the candidate ranked highest among candidat&¥'in
by the optimal algorithm. Thems*(1) > S} (b) = ms(0) + 1,
contradicting the fact thatis™ (1) = ms(0). O

We are now ready to prove the main theorem.

PROOF OFTHEOREMG.1. Letopt be as before. Itis easy to see
thatopt > ms(0)—So(p)+1. We shall prove first that Algorithm 1
will find a manipulation forn = [ww < [Zopt].
And indeed, by Lemma 6.5,

ms(n) < ms(0) + [g] — ms(0) + [

ms(0) — So(p) + 1-‘
5 .

Figure 1: Example for lower bound on approximation ratio

Whereas,

Sn(p) = So(p) +n

ms(0) — So(p) + 1
2

= So(p) + (ms(0) — So(p) + 1) + [

1

=ms(0) +1 + [ms(O) —250(]?) i 1}
> ms(0) + {ms(o) *QSO(I)) + 1}
> ms(n).

Now, by Lemma 6.6, whenpt = 1, the algorithm performs op-
timally (i.e., finds the manipulation fon = 1). We have just
proved that foopt = 2 the algorithm finds the manipulation when
n < [3opt] = 3. Whenopt = 3, the algorithm finds the ma-
nipulation whenn < [2opt| = 5. Itis easy to see that for all
opt > 3, [2opt] < Zopt. Therefore, the approximation ratio of
Algorithm 1is< 2 =12, 0O

It is worth noting that from the proof above we have thavas
tends to infinity, the bound on the ratio between the size ef th
manipulating coalition returned by Algorithm 1 algt tends to
11, sincen is bounded by 12 opt].

THEOREM 6.7. Thel%-approximation ratio of Algorithm 1 is
valid also when there are 2-cycles in the graphs built by tlgea
rithm.

We omit the proof of the above theorem due to space limitation

7. LOWER BOUND ON THE APPROXIMA-

TION RATIO OF THE ALGORITHM

THEOREM 7.1. There is an asymptotic lower bound bg to
the approximation ratio of Algorithm 1.

PrROOF Consider the following example (see Figure 1). Let
m = |C| be of the formm = 3" + 1 for an integert > 2. De-
note! = 3t~ = mT_l LetC = {p, ap, bo,co,a1,b1,c1,...,
ai—1,bi—1,c1—1}. Let N be a multiple of 3N > 6. Letk = .
So(p) = 0; for all j,O < _] < I —1: So(aj) = No(aj,bj) =
S()(bj) = N()(bj,Cj) = So(C]') = N()(Cj,aj) = k. In addi-
tion, for eachj,0 < 57 < I — 2! No(aj,a;+1) = k + 1, and
No(ai—1,a0) = k + 1. We first show that there exists a profile
of non-manipulators that induces the above scores. We aih
non-manipulator voters of 6 typeé’;;—3 voters of each of the types
(1), (2) and (3), and one voter of each of the types (4), (5)(&hd
In all types,p is ranked in last place. To conserve space, we denote
by A; the fragmenta; >~ c¢; > b; of the preference, by3; the
fragmentb; > a; > c;, and byCj the fragment; > b; > a;.
When showing the preference lists of the voters, it is coiarén

850

to use the trinary representation of the indices. We havdidates
{p, ao, bo, Cco, a1, bl, Cly...,022...2, bzzmg, 622_,_2}. For preference
list of type (1), we define the ordér>-; 2 > 1. In this preference
list, we have the fragmentd; ordered by the ordex, andp is
at the end. In type (2), we have the fragmeftsordered by the
order2 =5 1 >2 0, with p at the end. In type (3), we have the
fragmentsB; ordered by the ordelr -3 0 >3 2, with p at the end.
In type (4), we have the fragments; ordered by0 >4 1 >4 2,
with p at the end. In type (5), we have the fragmefisordered by
1 =5 2 =5 0, with p at the end. Finally, in type (6) there are the
fragmentsB; ordered by2 ¢ 0 > 1, with p at the end.

For instance, the next example illustrates the above prfufile
t = 3 (m = 28), and it easily generalizes to ahy> 2.

1):Ag = Az = A1 > Ao = Ago > Az1 > A1g > A1z = A1 > p
2):Ca2 = Ca1 = C20 = C12 = C11 = C10 = C2 = C1 > Co = p
3):B11 = Bio = Bi2 = B1 > Bo = B2 = Ba1 = B2o = B2z = p
4):Ag = A1 = Az = Ao = A1 > Arz = Azg > As1 > A2 - p
5):Ci11 = Ci2 = Cio = C21 = Ca2 = Co = C1 = Co = Co = p
6):Baz = Bao = Ba1 = B2 = Bo = B1 > Bi2 = Bio = Bi1 = p

(1):
(2):
(3):
(4):
(5):
(6):

It could be verified that the grap® which matches the above
profile looks as in Figure 1 (we omitted some of the dotted sfige

Now we will show that for the above example the approxima-
tion ratio of the algorithm is at leadt}. Consider the following
preference list of the manipulators:

p-Ai1 = Ao = A
p- Ao A3 ... Ao > A1
p-Ais>= Ay ... = Ao A1 = Ais

It can be verified that in the above preference list, the marim
score ofp’'s opponentsifis(i)) grows by 1 every”T‘1 stages (start-
ing with & + 1). In addition,p’s score grows by 1 every stage.
Therefore, when we apply the voting above, the minimum num-
ber of stages (manipulatora) needed to makg win the election
should satisfyn* > k + 1 + [222]. Since[225] < Bn 41,

the sufficient condition for making win is:

3n”

m —

n>k+1+ 1+1.

So, we have,

(m—1)n">(m-1)(k+2)+3n"
(m—4)n” > (m—1)(k +2)
s (mfl)_(liJrQ)

For large-enoughn, =D¢+2) & 1 3 and son* = k + 3
would be enough to makewin the election.

Now let us examine what Algorithm 1 will do when it gets this
example as input. One of the possible outputs of the alguarith

looks like this:
p>Co>CL ...
p>=B1> B2 > ...
p=As = A3z > ...
p=Cs3>=Cyqrm ...

= Ci_1

= Bi_1 > By

= A1 > Ao > A1

= Ci_1 = Co = C1 = Cs

It can be verified that in the above preference list(:) grows supported by Israel Science Foundation grant #898/05, snaell
by 1 every 3 stages, angs score grows by 1 every stage. There- Ministry of Science and Technology grant #3-6797.
fore, the number of stagesreturned by Algorithm 1 that are needed

to makep win the election satisfies > k+ [%]. Since[2] > 2, 10. REFERENCES

the necessary condition for makipgyin the election is: [1] J. Bartholdi and J. Orlin. Single transferable vote s&si

n>k+ 2. strategic votingSocial Choice and Welfay&:341-354,
3 1991.
And then we have, [2] J. Bartholdi, C. A. Tovey, and M. A. Trick. The

computational difficulty of manipulating an electidgocial

sn >3k +n Choice and Welfargs:227—-241, 1989.
2n > 3k [3] V. Conitzer, T. Sandholm, and J. Lang. When are elections
n> §k with few candidates hard to manipulatddurnal of the
2 ACM, 54(3):1-33, 2007.
So we find that the ratig’ tends tol 3 asm and N (andk) tend [4] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. |
to infinity. [J " Proceedings of SAGT 2009, Springer-Verlag LNCS 5814
pages 299-310, October 2009.
[5] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
8. D_ISCUSSION) elections. InProceedings of the Twenty-Fourth Conference
In spite of the popularity of the approach of using compotz on Atrtificial Intelligence (AAAI 201Q)pages 768773, July

complexity as a barrier against manipulation, this methasl #&n 2010.
important drawback: although for some voting rules the imamni [6] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra.

lation problem has been proven to A&P-complete, these results Multimode control attacks on elections. Tine Twenty-First
apply only to the worst case instances; for most instanbesrob- International Joint Conference on Artificial Intelligence

lem could be computationally easy. There is much evidenae th IJCAI 2009) pages 128-133. Pasadena. California. Jul
this is indeed the case, including work by Friedgut et al, fifd (2009') pag ' ' Y

Isaksson et al. [9]. They prove that a single manipulatomeanip-
ulate elections with relatively high probability by simpthoosing
a random preference. This is true when the voting rule isrfanf
a dictatorship, in some well-defined sense.

Additional evidence for the ease of manipulating elections
average is the work of Procaccia and Rosenschein [10], aaelnd
Conitzer [12]. They connected the frequency of maniputeatidth [0
the fraction of manipulators out of all the voters. Specificghey
found that for a large variety of distributions of votes, whe =
o(v/N), then with high probability the manipulators can affect the
outcome of the elections. The opposite is true whea w(v/N).

The current work continues this line of research. It strengt
ens the results of Zuckerman et al. [14], giving an algorithittn
a better approximation ratio for the Unweighted CoalitioDati- .
mization (UCO) problem under Maximin. Equivalently, it naws Autonomous Agents and Multlagt_a_nt Systems (AAMAS 2007)
the error window of the algorithm for the decision problemd\ pages 718720, Honolulu, Hawaii, May 2007.
under Maximin. The result can be viewed as another argument i [11] M. Satterthwaite. Strategy-proofness and Arrow’s

[7] E. Friedgut, G. Kalai, and N. Nisan. Elections can be
manipulated often. liProc. 49th FOCS. IEEE Computer
Society Presgpages 243-249, 2008.

[8] A. Gibbard. Manipulation of voting schemdsconometrica

41:587-602, 1973.

M. Isaksson, G. Kindler, and E. Mossel. The geometry of

manipulation — a quantitative proof of the

Gibbard-Satterthwaite theorem. $ist Annual IEEE

Symposium on Foundations of Computer Science (FOCS

2010) pages 319-328, October 2010.

[10] A. D. Procaccia and J. S. Rosenschein. Average-case

tractability of manipulation in elections via the fractioh
manipulators. InThe Sixth International Joint Conference on

favor of the hypothesis that most rules are usually easy wpna conditions: Existence and correspondence theorems for
late. voting procedures and social welfare functiofmurnal of
Economic Theoryl10:187-217, 1975.
9. CONCLUSIONS AND FUTURE WORK [12] L. Xiaand V. Con!t_zer. Gene_rallzec_i scoring rule_s arel th
) . o frequency of coalitional manipulability. IRroceedings of
We introduced a new algorithm for approximating the UCO prob ACM EC-08 pages 109118, July 2008.
lem under the Maximin voting rule, and investigated its agpna- [13] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and

tion guarantees. In future work, it would be interesting tove or
disprove that Algorithm 1 presented in [14] has an approkiona
ratio of 1%, for those instances where there is no Condorcet win-

J. S. Rosenschein. Complexity of unweighted coalitional
manipulation under some common voting rulesThe
Twenty-First International Joint Conference on Atrtificial

ner? Another direction is to implement both algorithms, so as to Intelligence (IJCAI 2009)pages 348353, Pasadena,
empirically measure and compare their performance. California, July 2009.

[14] M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein.
Acknowledgments Algorithms for the coalitional manipulation probledournal
We would like to thank Reshef Meir, Aviv Zohar, Jerome Land an of Artificial Intelligence 173(2):392-412, February 2009.

Noam Nisan for helpful discussions on topics of this reseavle
also thank Edith Elkind and Piotr Faliszewski for valuabtame
ments on an earlier version of this paper. This work was albyti

2We have an example showing that that algorithm is no betsar th
a 2-approximation when there is a Condorcet winner.

851

Algorithm 1 Decides CCUM for Maximin voting rule

1: procedure MAXIMIN (C, p, X5, n) > X5 is the set of preferences of votersinn is the number of voters i#’
2: X0 > Will contain the preferences af
3: fori=1,...,ndo > lterate over voters
4 P, — (p) > Putp at the first place of théth preference list
5: Build a digraphG~! = (V, E*~1) >V =C\{p}, (z,y) € B iff (y € MIN,;_1(x) andp ¢ MIN;_1(z))
6: for c € C'\ {p} do > This for loop is used in the algorithm’s analysis
7: if dout(c) = 0then
8: c.father— p
9: else

10: c.father — null

11: end if

12: end for

13: while C'\ P; # 0 do > while there are candidates to be added-tio preference list

14: Evaluate the score of each candidate based on the vatearafi — 1 first votes ofT’

15: if there exists aset C C'\ P; with do..:(a) = 0 for eacha € Athen » if there exist vertices in the digraghi’—* with

out-degree O

16: Add the candidates of to the stacks);, where to the same stack go candidates with the same score

17: b «— Q1.popfron{) > Retrieve the top-most candidate from the first stack—withlthwest scores so far

18: P, — P; + {b} > Add b to i’s preference list

19: else

20: Lets «— min.coy p, {Si—1(c)}

21 if there is a cycld/ in G*~! s.t. there are 3 vertices b, ¢, s.t.(c, b), (b,a) € U, andS;_1(c) = S;—1(b) = s then

22: P, — P; + {b} > Add b to i’s preference list

23: else

24: Pickb € C'\ P;s.t.Si—1(b) = s > Pick any candidate with the lowest score so far

25: P, — P; + {b} > Add b to i’s preference list

26: end if

27: end if

28: fory € C'\ P;do

29: if (y,b) € E*!then > If there is a directed edge frogto b in the digraph

30: Remove all the edges &F ~* originating iny

31: y.father— b > This statement is used in the algorithm'’s analysis

32: Addy to the front of the appropriate stacgk;—according taS;_1 (y)

33: end if

34: end for

35: end while

36: X — XU{R}

37: end for

38: Xr— X

39: if argmax_{Score ofc based onXs U X7} = {p} then

40: return true > p wins

41: else

42: return false

43: end if

44: end procedure

852

