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Abstract

We study a game with strategic vendors (the agents) who own
multiple items and a single buyer with a submodular valua-
tion function. The goal of the vendors is to maximize their
revenue via pricing of the items, given that the buyer will buy
the set of items that maximizes his net payoff.
We show this game may not always have a pure Nash equi-
librium, in contrast to previous results for the special case
where each vendor owns a single item. We do so by relating
our game to an intermediate, discrete game in which the ven-
dors only choose the available items, and their prices are set
exogenously afterwards.
We further make use of the intermediate game to provide tight
bounds on the price of anarchy for the subset games that have
pure Nash equilibria; we find that the optimal PoA reached in
the previous special cases does not hold, but only a logarith-
mic one. Finally, we show that for a special case of submod-
ular functions, efficient pure Nash equilibria always exist.

Introduction
Consider a scenario in the world of e-commerce, where a
single consumer is seeking to buy a set of products through
an online website with multiple vendors, such as Amazon or
eBay. Given the items available for sale and their prices, the
buyer will purchase some subset of them, according to his
valuation of the items and their prices.

Naturally, the vendors (our agents) strive to maximize
their profits.1 A vendor can both competitively tailor the set
of items it offers and adjust the prices of these items to react
to their competitors (pricing an item sufficiently high can
be regarded as not offering it). Indeed, automatic mecha-
nisms for rapid online price optimization exist in many mar-
kets and industries (Angwin and Mattioli 2012). This prac-
tice, sometimes called competitive price intelligence (Sko-
rupa 2014), is a growing phenomenon within online retail.
The specific question it addresses is how companies should
price products in this competitive environment.

Furthermore, as argued by Babaioff et al. 2014, such a set-
ting introduces subtle algorithmic questions, since changing
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1For ease of exposition we assume production costs are zero,
hence profits can be equated with revenues, or the sum of the prices
of their sold items.

the prices of the products may affect the resulting revenues
in a complex fashion, which may induce responses by one’s
competitors. Therefore, studying the convergence properties
of such pricing dynamics is of interest.

In this paper, we take a game-theoretic approach to price
competition among multiple sellers, each with a set of items
to sell. As in Babaioff et al. 2014, we study a setting with a
single buyer with a (combinatorial) valuation function, taken
to be a monotone and submodular set function over the set of
items, which is fully known to the vendors. However, unlike
that earlier work, we examine the more general case where
each of the k vendors controls a disjoint set of items Ai,
rather than a single item. Given the prices of all of the items,
the buyer will buy the set with the highest net-payoff (val-
uation minus the total price). Our model induces a game in
which the vendors’ strategy is a pricing of their items.

Contributions We begin by discussing a related two-
phase game, that serves as a way-station in our study of
the main game. In this intermediate game, vendors can only
modify the sets of items being offered, whereas their prices
for these items are subsequently set by a specific pricing
mechanism. We show that this game, which results only
from this modification of game dynamics (without changing
its parameters), has key properties that its equilibria share
with those of the original game. This allows us to reduce the
pricing decision to a decision over what items to sell, thereby
significantly simplifying the problem.

We next study basic game theoretic properties of our
game. We first show that there are games which admit no
pure Nash equilibrium. To do so, we show that our two-
phase game admits no pure Nash equilibria, which then im-
plies the nonexistence of a pure Nash equilibrium in the
original game, using Theorem 4 (see Proposition 6). This
result suggests the following question: suppose we restrict
attention to instances of the game that have some pure Nash
equilibria—can we then say anything about their value? To
accomplish this, we analyze the price of anarchy (PoA)
of this subset of games, where the objective function in
question is the social welfare value, taken to be simply the
buyer’s valuation of the set of items that he purchased. We
provide a tight bound of Θ(logm), where m is the maximal
number of items controlled by any of the vendors.

Finally, as an additional way of dealing with the conse-



quences of Proposition 6, we investigate a special class of
valuation functions, which we call category-substitutable,
that, informally, partition products into “equivalence
classes” or categories, such that only a single item will be
chosen within a specific category, while different categories
do not influence one another. We show not only that efficient
pure Nash equilibria always exist given such buyer valua-
tions, but provide a precise characterization of this equilib-
ria.

Previous Work

Multi-item pricing has been a significant topic of research
for many years (Hart and Nisan 2012; Hart and Reny
2012), including analyses of the price of anarchy (see
Christodoulou et al. 2008 and follow-up papers). The work
of Babaioff et al. 2014 is the most directly related to the
model developed here; the game that they study is a spe-
cial case of our game, in which each vendor sells only a
single item. They show that for a buyer with a general valu-
ation function, pure Nash equilibria may not exist, and they
prove several properties of the equilibria for games where
one does. Furthermore, for submodular valuation functions
(the focus of our paper), they show not only that pure Nash
equilibria always exist, but also that they are unique (they
give a closed-form characterization of the prices of the items
that are sold) and efficient—i.e., have a price of anarchy
(PoA) of one. In contrast to their setting, we show in our
more general case there exist games with no pure Nash equi-
libria. In cases where they exist, we provide a characteriza-
tion similar to theirs, though in our more general case, PoA
is significantly higher.

Non-competitive (i.e., single-vendor) optimal-pricing
problems have been studied in the theoretical computer sci-
ence community. (Guruswami et al. 2005) study a number
of settings with multiple buyers possessing various valuation
functions. They show that even with unit-demand buyers and
an unlimited supply of each item, selecting the optimal price
vector is APX-hard; they then provide a logarithmic approx-
imation algorithm for the same case. It should be noted that
Babaioff et al. 2014 also provide a log n approximation al-
gorithm for the case of a single vendor, and for that of a
single buyer with a submodular valuation function.

In a recent paper, Oren et al. 2014 analyze a model in
which fixed prices are given exogenously, and there are mul-
tiple unit-demand buyers. As above, their model assumes an
unlimited supply of each item. The strategies of the vendors
are which sets of items to sell. Having the vendor make de-
cisions only about the set of items to sell has traditionally
been studied in the field of operation research. In particular,
assortment optimization (Schön 2010) deals with optimizing
a seller’s “assortment” (e.g., his catalog, or shelf), under var-
ious circumstances. Although our game does not fall directly
into this category, we do define a discrete game in which the
vendors’ decisions are similar to those in assortment opti-
mization (although the pricing procedure differs).

Preliminaries — The Vendor Competition
(VC) Game

We consider the following setting: there is a set of k ven-
dors, with a corresponding vector of pairwise-disjoint sets
of items A = (A1, . . . , Ak), such that |Ai| = ni, and
n =

∑k
i=1 ni. We let A∗ =

⋃k
i=1Ai.

A strategy profile of the vendors is a price vector p ∈ Rn
+,

where p(a) denotes the price of item a according to p. For
a set S ⊆ A∗, we let p(S) =

∑
a∈S p(a). For a vendor i ∈

[k], we let pi ∈ Rni
+ denote vendor i’s price vector for the

items inAi, and as before, for an item a ∈ Ai, pi(a) denotes
vendor i’s price for item a according to pi. For convenience,
we will let p−i denote the price vector corresponding to the
items not in Ai (of all other vendors).

The buyer’s valuation function We assume there is a sin-
gle buyer with a valuation function v : 2A

∗ → R+; i.e., the
function v(·) assigns a non-negative value to every bundle
(or subset) of items. We let ma(S) = v(S ∪ {a}) − v(S),
where S ⊆ A∗, denote the marginal contribution of item a
to the set S. Following (Babaioff, Nisan, and Leme 2014),
we assume that v(·) is non-decreasing: for S ⊆ T ⊆ A∗,
v(S) ≤ v(T ) (implying that v(·) is maximized at A∗).
Furthermore, we assume that the valuation function is sub-
modular: for S ⊆ T ⊆ A∗ and a ∈ A∗ \ T , we have
that ma(S) ≥ ma(T ). Both of these assumptions are cen-
tral in the model proposed by Babaioff et al. (2014) (al-
though additional discussion and results are provided for
non-submodular functions). Note that v(·) is said to be sub-
modular if the following, equivalent property holds:

v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ), for all S ⊆ T ⊆ A∗.

Finally, slightly abusing notation, let the valuation be de-
fined over vectors of item sets as follows: for S∗ ⊆ A∗, de-
fine S = (S1, . . . , Sk) where Si = S∗∩Ai, for i = 1, . . . , k.
Then v(S) = v(S∗). We adapt the rest of our function defi-
nitions in an analogous fashion.

The buyer is assumed to have a quasi-linear utility func-
tion: given a vector of prices p ∈ Rn

+, the buyer’s utility for
a bundle S ⊆ A∗ is ub(S,p) = vb(S) −

∑
a∈S p(a). The

demand correspondence of the buyer is the family of sets
that maximizes his utility:

D(v;p) = {S ⊆ A∗ : ub(S) ≥ ub(S
′),∀S′ ⊆ A∗}.

The buyer’s decision function X(v;p) ⊆ 2A
∗

must satisfy
X(v;p) ∈ D(v;p). That is, given the price vector p, the
buyer buys the bundle X(v;p). The buyer’s decision is said
to be maximal (or simply, the buyer is maximal), if there
does not exist a set X̃ ∈ D(v;p) such that X(v;p) ( X̃ .
Babaioff et al. showed that this property is critical to ensure
the existence of pure Nash equilibria in their setting. In our
work, we will explicitly state where this is required.

Vendor payoffs Given the buyer’s decision function X ,
and a (fixed) price vector p = (pi,p−i), vendor i’s utility is
uXi (p) =

∑
a∈X(v;p)∩Ai

p(a). If the vendors select mixed
strategies, then a vendor’s utility is defined to be his expected
utility. Vendor j’s best response to the other agents’ mixed



strategies is a distribution over prices for Aj that maximizes
his expected utility.

This setup defines a game, parameterized by the vector A
and the valuation function v, in which each of the vendors
prices his items to maximize his utility. We will refer to such
a game as a vendor competition game, or simply a VC game.

When discussing our special case, we will also use the
following theorem, which was proved by Babaioff et al.:
Theorem 1 ((Babaioff, Nisan, and Leme 2014)). Consider
the case where each vendor owns a single item, that is Ai =
{ai}, for i = 1, . . . , k (and ni = 1). Then if the buyer’s
valuation function v(·) is non-decreasing and submodular,
then there exists a pure Nash equilibrium, p ∈ Rk

+, of the
following form: for every vendor i, such thatmai

(A∗\ai) >
0, p(ai) = mai(A

∗ \ai), and ai ∈ X(v;p). Also, the payoff
of each vendor i is precisely mai(A

∗ \ ai).

The objective function Given a VC gameG = (v,S) and
pricing vector p ∈ Rn

+, we use the standard definition of
social welfare, namely, the total payoff of all the parties in
the game, including the (non-strategic) buyer. Notice that by
this definition, social welfare is simply the valuation of the
set bought by the buyer, v(X(v;p)), since all payments are
simply transferred from the buyer to the vendors. Let f(p)
denote the social welfare resulting from a price vector p.

A Related Discrete Game
The game in its current formulation may seem somewhat
hard to reason about, due to large (continuous) strategy
spaces.2 To simplify our analysis, we use the following dis-
crete game, which can be thought of as imposing a specific
pricing mechanism given vendors’ selection of items.
Definition 2 (The price-moderated VC game). Given a
buyer valuation function over the vendors’ items, consider
the following two-round process:

1. Each vendor i ∈ [k] commits to offering a subset of Si ⊆
Ai of items; this is its (discrete) strategy;

2. Given strategy vector S = (S1, . . . , Sk), item prices are
set to their marginal values. I.e., if we set S∗ =

⋃k
i=1 Si,

then for each a ∈ S∗, the mechanism will set p̃(a) =
ma(S∗ \ {a}). For each item a′ /∈ S∗ the mechanism sets
p̃(a′) = v(A∗) + 1. Let p̃ be the resulting price vector.

The consumer then buys the set X(v; p̃), as before. We call
the resulting game a price-moderated vendor competition
game, or more succinctly, a PMVC game.

By analogy to our definitions for the original game, let
X ′(v;S) denote the set of items sold, given the strategy pro-
file S; i.e, given the price vector p̃ imposed by the pricing
mechanism in the second round, X ′(v;S) = X(v; p̃). Sim-
ilarly, define a vendor’s utility to be u′i(Si,S−i), for i ∈ [k].

Note that the specified pricing (v(A∗ + 1)) of items not
offered (i.e., not in S∗) ensures that the consumer will never
buy them (i.e., X(v; p̃) ⊆ S∗). Further observe that the set

2In particular, the game is clearly not normal form. Hence, we
cannot directly apply Nash’s theorem about existence of a mixed
equilibrium. We defer treatment of such equilibria to future study.

of price vectors p̃ that correspond to the discrete strategy
profiles S in the PMVC game is a strict subset of the strat-
egy space in the original VC game. We justify our use of
this game in our analysis by establishing the relationship be-
tween the original VC game and the proposed PMVC game,
using a number of straightforward results.

Assumption For ease of exposition, we assume that the
buyer is maximal. As we shall see, this implies that
X ′(v;S) = X(v;p). However, we can adapt the pricing
mechanism by judiciously setting the prices to be slightly
below the marginal contributions to ensure maximality (we
leave the details of such a modification to an expanded ver-
sion of the paper).

We now describe an important relationship between the
VC and PMVC games that simplifies our subsequent analy-
sis by relating our original model to a simpler discrete game:
Proposition 3. For every strategy profile p in the VC game
and valuation v, there is a strategy profile S in the PMVC
game such that X ′(v;S) = X(v;p), and u′i(Si,S−i) ≥
ui(pi,p−i) for each vendor i.

Proof. Let p be a strategy profile in the VC game, and
let T = X(v;p). Consider the strategy profile S where
Si = X(v;p) ∩ Ai, for i = 1, . . . , k, and let p̃ be the re-
sulting price vector imposed by the pricing mechanism. Fur-
thermore, we let T̃ = X ′(v;S). We begin by showing that
T = T̃ . First, notice that, as for all a /∈ T , p̃(a) = v(A∗)+1,
and hence item a is not sold, and T̃ ⊆ T . Next, suppose for
the sake of contradiction that T̃ ( T , and let a ∈ T \ T̃ .
By the submodularity of the function v(·), we have that
ma(T̃ ) ≥ ma(T ) ≥ 0. This implies that

ub(T̃ ∪ a, p̃) = v(T̃ ∪ a)−
∑
a′∈T̃

p̃(a′)−ma(T \ a)

≥ v(T̃ ∪ a)−
∑
a′∈T̃

p̃(a′)−ma(T̃ ) = ub(T̃ , p̃).

By maximality, the buyer would rather buy item a as well,
resulting in a contradiction.

We now claim that u′i(Si,S−i) ≥ ui(pi,p−i). This fol-
lows from the fact that marginal contributions are the max-
imal prices at which the buyer still buys X ′(v; p̃). That is,
any increase in the price would result in the buyer not buying
the product:

ub(T̃ , p̃) = v(T̃ )−
∑

a′∈T̃\a

p̃(a′)−ma(T \ a)

= v(T̃ \ a)−
∑

a′∈T̃\a

p̃(a′) = ub(T̃ \ a, p̃)

Similarly to the previous proposition, which offered a
mapping of strategy profiles in a way that does not cause the
vendor’s utilities to deteriorate, we now show that the same
mapping also preserves Nash equilibria in cases where such
equilibria exist. We note that the following result uses simi-
lar arguments to those given by Babaioff et al. for proving a
related characterization of pure Nash equilibria.



Theorem 4. For every pure Nash equilibrium p of a VC
game there is a pure Nash equilibrium S = (S1, . . . , Sk) in
the corresponding PMVC game, such that: (1) X ′(v;S) =
X(v;p); and (2) for all a ∈ X(v;p), p̃(a) = p(a), where p̃
is the induced price vector for S.

Proof. For convenience, let B = X(v;p). As before, we
let the strategy profile in the corresponding PMVC game be
S = (S1, . . . , Sk), where Si = B ∩Ai, for i = 1, . . . , k.

We begin by proving part (2) of the theorem. Suppose that
there is an item a ∈ B such that p(a) 6= ma(B \ a). If
p(a) > ma(B) = v(B)−v(B\a), then v(B\a)−p(B\a) >
v(B)−p(B), implying that the buyer would not buy item a,
contradicting our assumption that a ∈ B.

Assume now that p(a) < ma(B). Letting p′ denote the
vector resulting by replacing p(a) in p with ma(B \ a), we
clearly have that ub(B,p′) = ub(B \ a,p′). We now prove
the following claim:

Claim 5. ub(B \ a,p′) ≥ ub(T,p′), for all T ⊆ B \ a.

(Proof omitted due to space constraints.)
Therefore, the vendor who owns a can increase his payoff

by setting the price of item a to any value between p(a) and
ma(B), contradicting the equilibrium state.

What is left to prove is that S is a Nash equilibrium in
the PMVC game. Note that we can assume w.l.o.g. that the
price of all products which are not sold is v(A∗) + 1, as
they remain unsold and continue to contribute nothing to the
buyer or seller. Now, suppose S is not a Nash equilibrium,
and that there is a player i, which can benefit from changing
his set of sold items from Si to S′i, which would result in a
different vector of induced prices p̃′ = (p̃′i, p̃

′
−i). We now

argue that vendor i can make an identical improvement in
his revenue by changing his price vector from pi to p̃′i, con-
tradicting p being a Nash equilibrium. For convenience, we
let B′ = (B \ Si) ∪ S′i, and B′′ = X(v; p̃′i,p−i).

To show this, first notice that no other vendor would
sell any previously unsold items as a result; that is,
X(v; p̃′i,p−i) \ Ai ⊆ X(v; pi,p−i) \ Ai (since prices of
items in (A∗ \ Ai) ∩X(v; pi,p−i) are still v(A∗) + 1). So
B′′ = X(v; p̃′i,p−i) ⊆ X ′(v;S′i,S

′
−i) = B′. Thanks to

submodularity, we have that for every a ∈ S′i, ma(B′) <
ma(B′′). Arguments similar to the ones given above (on
p(a) = ma(B)) imply that player i would sell all the items
in S′i, and as the prices are unchanged from the PMVC game,
will make the same profit as in the PMVC game. As this in-
creases the player’s profit in the PMVC game, it would in-
crease its profit in the VC game as well, in contradiction to
p being a Nash equilibrium.

Discussion Note that we have not shown an exact equiv-
alence between the two games: the set of Nash equilibria
in the VC game is a subset of the equilibria in the PMVC
game. However, Proposition 3 and Theorem 4 allow us to
reason about our original game to a considerable extent.

In contrast to the original model of Babaioff et al. in which
ni = 1 for all i = 1, . . . , k, we can show that in our more
general game, there may not always be a pure Nash equilib-
rium. In order to do so, we provide an example of a VC game

in the next section with two vendors who each control two
items. We show that this game does not admit any pure Nash
equilibrium by relating to its corresponding PMVC game,
using Theorem 4. Moreover, if we restrict ourselves to VC
games that do admit pure Nash equilibria, we can provide
quantitative bounds on their quality. Specifically, when re-
stricting ourselves to VC games that have pure Nash equi-
libria, we provide a lower bound on the price of stability of
the PMVC game by analyzing an instance of the game. As
the optimal objective value (the valuation of the set that is
bought by the buyer) is always v(A∗), Theorem 4 immedi-
ately implies that the same lower bound applies to the VC
game. To complement lower bound, we provide an upper
bound for the price of anarchy, also ensuring tightness of
bounds.

Equilibrium Analysis
Previously we outlined several properties of the discrete
PMVC game. We now describe how the PMVC game can
serve as a surrogate to help analyze the stability of the VC
game, and its quality of equilibria when they exist.

Existence of pure Nash equilibria
We begin by showing that, as opposed to the special case
where each vendor owns a single item, some instances of
our game may not actually admit pure Nash equilibria.
Proposition 6. There exists an instance of the VC game with
two vendors, where n1 = n2 = 2, that does not admit a pure
Nash equilibrium.

Proof. Let A1 = {a, b} and A2 = {c, d}. We define the
buyer’s valuation function v according to Table 1 (the value
in each cell is the valuation of the union of the sets given at
the head of the entry’s row and column).

∅ {c} {d} {c, d}
∅ 0 2.8 2.7 4.1
{a} 3.2 5.4 5.3 6.5
{b} 2.5 5.3 5.2 6.6
{a, b} 4.4 6.6 6.5 7.6

Table 1: The buyer’s valuation function

It is easy to verify that v is (strictly) non-decreasing
and submodular. Now, consider the PMVC game with the
same item sets and valuation function v. For each strategy
profile (S1, S2), the mechanism prices items according to
their marginal contributions (Definition 2). Therefore, ven-
dor payoffs are the sum of the prices of their offered items.
The vendors’ payoffs for each strategy profile are easily cal-
culable from the table (omitted due to space constraints), and
it is evident from them that there is no pure Nash equilibrium
in the PMVC game. Theorem 4 then implies our proposition.

How bad can equilibria be?
Given the negative nature of Proposition 6, we now restrict
attention to the subclass of VC games that do admit pure



Nash equilibria, and ask whether reasonable guarantees on
social welfare in such equilibria can be derived

More formally, let G = {G = (v, (A1, . . . , Ak)) :
∃ a pure Nash equilibrium in G} be the set of VC games
which admit a pure Nash equilibrium. Define the price of
anarchy (PoA) as follows:

PoAG = max
G∈G

maxp∗ f(p
∗)

minp:p is a pure Nash equilibrium f(p)

PoA is a commonly used worst-case measure of the effi-
ciency of the equilibria, and in our case reflects the efficiency
loss in G resulting from the introduction of strategic pricing,
as opposed to using a “centrally coordinated” pricing policy.
Theorem 7. Define the set of VC games Gm, such that
G ∈ Gm iff (1) G has a pure Nash equilibrium, and (2)
maxki=1|Ai| = m. Then the PoA of Gm is at most Hm + 1,
where Hm is the m’th harmonic number.

Proof. Consider a game G = (v,A = (A1, . . . , Ak)} in
Gm. It is enough to provide a lower bound on the minimal
social welfare of a pure Nash equilibrium in the correspond-
ing PMVC game: by Theorem 4, this will establish a lower
bound on the social welfare of a pure Nash equilibrium in
G as well. So let S = (S1, . . . , Sk) be a pure Nash equilib-
rium of the PMVC game. As v(·) is non-decreasing, we can
assume w.l.o.g. that |Si| = {ai}, for some ai ∈ Ai.

Again by the assumption that v(·) is non-decreasing, we
know that optimal social welfare is obtained when all of A∗
is sold, so it is enough to upper bound v(A) in terms of v(S).

We now show the following straightforward bound on the
social welfare resulting from switching from Si to Ai:

Lemma 8. v(Ai,S−i) ≤ v(∅,S−i) + Hni(v(Si,S−i) −
v(∅,S−i)), for all i = 1, . . . , k.

Proof. As S is a Nash equilibrium, the profit from sellingAi
is higher than selling any set B ⊆ Ai. Using the definition
of the pricing mechanism of the PMVC game, we know

v(Si,S−i)−v(∅,S−i) ≥
∑
b∈B

mb(B\b,S−i), for all B ⊆ Ai

By an averaging argument, this means that for all B ⊆ Ai,
there exists an item b ∈ B such that

1

|B| (v(Si,S−i)− v(∅,S−i)) ≥ mb(B \ b,S−i) (1)

The above implies that there is a relabelling of the items in
Ai, so that: (1) Ai = {b1, . . . , bni}, (2) b1 = a1, and (3) if
set Pt = {b1, . . . , bt} ∪ S−i and P0 = S−i, the following
holds:

v(Ai,S−i) ≤ v(∅,S−i) +

ni∑
i=1

1

t
(v(Si,S−i)− v(∅,S−i))

= v(∅,S−i) +Hni(v(Si,S−i)− v(∅,S−i))

where the first equality follows from a simple telescopic se-
ries, and the first inequality follows from Eq. 1.

Next, we show the following useful bound:

Lemma 9.
∑k

i=1 v(Ai,S−i) ≥ v(Ai,A−i) + (k −
1)v(Si,S−i)

Proof. L(t) = (A1, . . . , At, St+1, . . . , Sk), for t =
1, . . . , k, and L(0) = S. That is, L(t) is the strategy profile
resulting from replacing the length-t prefix of S with that of
A. We prove by induction that

t∑
i=1

v(Ai,S−i) ≥ v(L(t)) + (t− 1)v(S)

and the lemma would follow by setting t = k.
The inequality clearly holds for t = 1, due to the mono-

tonicity of v(·). Assume that the inequality holds for t < k.
Thus, for t+ 1, we have:
t+1∑
i=1

v(Ai,S−i) ≥ v(L(t)) + (t− 1)v(S) + v(At+1,S−(t+1))

By the second definition of submodularity, we know
v(L(t)) + v(At+1,S−(t+1)) ≥ v(L(t+1)) + v(S). Putting
this in the preceding inequality concludes the proof.

We can also prove an upper bound on the optimal social
welfare in terms of the social welfare of S. By the above two
lemmas, we get:

v(A) ≤
k∑

i=1

v(Ai,S−i)− (k − 1)v(S)

≤
k∑

i=1

v(Si,S−i) +

k∑
i=1

Hni(v(Si,S−i)− v(∅,S−i))− (k − 1)v(S)

= v(S) +

k∑
i=1

Hni(v(Si,S−i)− v(∅,S−i)),

where third inequality follows from monotonicity of v(·).
By submodularity and that ni ≤ m for i = 1, . . . , k,

v(A) ≤ v(S) +Hm

k∑
i=1

(v(Si,S−i)− v(∅,S−i))

≤ v(S) +Hmv(S) = v(S)(Hm + 1),

which establishes our upper bound on the PoA.

We also give an example of a game with a pure Nash equi-
librium that matches the above bound.
Theorem 10. There exists a game in Gm with a price of
anarchy of Hm.

Proof. Our counter-example is obtained by making the
bound of Lemma 8 tight. Consider a game G = (v,A =
(A1, . . . , Ak)), in which |Ai| = m, for i = 1, . . . , k.

We define the valuation function as follows. For a strat-
egy profile T = (T1, . . . , Tk), we set v(T) =

∑k
i=1 `(Ti),

where `(Ti) = 0 if |Ti| = 0, and otherwise we set `(Ti) =
H|Ti|. Observe that the vendors are all symmetric, and that
furthermore, the payoffs only depend on their own prices.

We now consider the following strategy profile p. Pick an
arbitrary item ai from each Ai, for i = 1, . . . , k, and set
p(ai) = 1. Price the remaining items at v(A∗)+1. Note that
the payoff of each vendor is precisely 1 (for non-maximal
buyers, ai prices can be decreased by a small ε).

It is easy to see that p is a pure Nash equilibrium. Indeed,
suppose that it is not, and let i be an arbitrary vendor. Then



he has an alternative pricing p′i 6= pi, such that deviating to it
would improve his payoff of 1. Suppose that the set of items
being bought under a deviation to p′i is B = X(v; p′i,p

′
−i),

such that
∑

a∈B p(a) > 1. Then there exists an item b ∈ B,
such that p(b) > 1/|B|. But then by the definition of the
valuation function we have:

`(B)− p(B) = H|B| − p(B \ b)− p(b) < H|B|−1 − p(B \ b)

contradicting the assumption that the buyer buys the set B.

Note that the above construction can be extended to show
that the price of stability (PoS) is identical:

Corollary 11. The price of stability of Gm is Ω(Hm).

Sketch of Proof Use the construction in the proof for
Proposition 10, but set `(Ti) = 1 if |Ti| = 1, and `(Ti) =
H|Ti|−ε, if |Ti| > 1, for sufficiently small ε. It is not hard to
show that the aforementioned pure Nash equilibrium is the
only Nash equilibrium. A similar bound follows.

Special Case: Product Categories
A particular VC game of interest is one in which we have
classes of items that are roughly equivalent; as such the
buyer is interested in at most one item from each class (e.g.,
TV sets of a certain size, with different manufacturers and
sets of feature). Items in different classes however are “unre-
lated” so the buyer’s valuation for any set of items is additive
across these classes. This scenario reflects the case of shops
selling very similar products, of which the buyer only needs
one, and we seek to try to understand the model’s pricing
behavior.

Definition 12. A Category-Divided Substitutable-Product
Vendor Competition game (CDSP-VC) is a VC game with
a buyer with a category-product-substitutable valuation:

• A∗ is partitioned into r pairwise-disjoint sets,
T (1), . . . , T (r). That is, T (i) ∩ T (j) = ∅ for i 6= j,
and

⋃r
i=1 T

(i) = A∗. We refer to each set T (j) for
j = 1, . . . , r, as a category.

• For S ⊆ A∗, v(S) =
∑r

i=1 v(S ∩ T (i)).

• For S ⊆ A∗ and 1 ≤ i ≤ r, v(S ∩ T (i)) =
maxa∈S∩T (i)v(a).

The additivity allows us to focus on the pricing dynamic
within a specific category and easily generalize the results.

Observation 13. For a category T (j), regardless of the
other vendors’ strategies, no vendor can profit by selling any
items other than his most valuable one in category T (j).

(Proof omitted due to space constraints.)
Observation 13 implies that within every category, each of
the vendors is better off effectively trying to sell his high-
est valued item. In other words, we can assume w.l.o.g. that
for every vendor i and category T (j), the vendor can pick an
item a

(j)
i ∈ arg maxa∈T (j)∩Ai

v(a) (if such item exists) and
set p(b) = v(A∗) + 1, for all b 6= a

(j)
i , without incurring a

loss as a result. Therefore, this reduces our game to r inde-
pendent special cases of the VC game, in which each vendor
owns a single item.

We turn to the result given by Babaioff et al. 2014 (Theo-
rem 1 in the preliminaries). Their result implies the follow-
ing characterization of the prices in a pure Nash equilibrium.

Corollary 14. Every CDSP-VC game has a pure Nash equi-
librium of the following form. For every category T (j), let
c
(j)
i = arg maxa∈(T (j)∩Ai) v(a), and w = arg maxi c

(j)
i .

Let b(j) = arg maxa∈(T (j)\Aw) v(a) or b(j) = 0 if |T (j)| =
1. Then p(c(j)w ) = v(c

(j)
w )−b(j), and for every player i 6= w,

p(c
(j)
i ) = 0. For all other items a ∈ T (j), p(a) = v(A∗)+1.

Proof. Once we know that each player sells only a single
product, unsold products need to be priced high, and the rest
of the result stems from Theorem 1, as the above difference
constitutes the marginal contribution of item c(j).

Conclusions and Future Work
The multi-item, multi-vendor problem is a practical instance
of rival agents’ problems, with their actions directly af-
fecting actions to be taken by the others. This relationship
among the agents is, in many cases, intractable to handle.
However, in the simplified model, which is robust enough to
incorporate realistic limitations, we were able to analyze the
effects of each agent’s moves.

We defined a discrete game that allowed us to consider
a related game that was instrumental in analyzing our orig-
inal game. The main property of the discrete game was to
transform player strategies from pricing, to selecting what
items to sell. To paraphrase Clausewitz’s famous dictum,
displaying (what to sell) became pricing by other means.
Utilizing this discrete game, we were able to prove that a
multi-item, multi-vendor game with submodular buyers val-
uations does not necessarily have a Nash equilibrium (un-
like the “single item per vendor” model). Furthermore, even
when equilibria exist, it may provide only a logarithmic
price of anarchyBuilding on these results, we showed that
in a particularcategory-substitute model, there will always
be an efficient pure Nash equilibrium.

Many open problems remain, even before the “holy grail”
of pricing multi-item multi-buyer scenarios. We believe that
there is a need to establish the characteristics of valuation
functions that guarantee the existence of Nash equilibria.

Adding more buyers changes the model significantly, as
vendors do not simply construct some “buyer in expecta-
tion” and act according to it, but rather have a wider range
of options to pursue (primarily bundling). Perhaps using a
metric to define a set of similar, yet not identical, buyers, it
might be possible to build on our results, and construct ex-
tensions to the current model incorporating multiple buyers.

Acknowledgements This research has been partly funded by
Microsoft Research through its PhD Scholarship Programme, Is-
rael Science Foundation grant #1227/12, and the Israel Ministry of
Science and Technology — Knowledge Center in Machine Learn-
ing and Artificial Intelligence grant #3-9243. Oren and Boutilier
acknowledge the support of NSERC.



References
Angwin, J., and Mattioli, D. 2012. Coming soon: Toilet
paper priced like airline tickets. The Wall Street Journal.
Babaioff, M.; Nisan, N.; and Leme, R. P. 2014. Price
competition in online combinatorial markets. CoRR
abs/1401.1559.
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