
On Semi-Algebraic Proofs and Algorithms

Noah Fleming† Mika Göös Stefan Grosser
UCSD EPFL McGill University

Memorial University

Robert Robere†
McGill University

January 19, 2022

Abstract

We give a new characterization of the Sherali-Adams proof system, showing that there is a
degree-d Sherali-Adams refutation of an unsatisfiable CNF formula C if and only if there is
an ε > 0 and a degree-d conical junta J such that violC(x) − ε = J , where violC(x) counts
the number of falsified clauses of C on an input x. Using this result we show that the linear
separation complexity, a complexity measure recently studied by Hrubeš (and independently
by de Oliveira Oliveira and Pudlák under the name of weak monotone linear programming
gates), monotone feasibly interpolates Sherali-Adams proofs.

We then investigate separation results for violC(x) − ε. In particular, we give a family of
unsatisfiable CNF formulas C which have polynomial-size and small-width resolution proofs,
but for which any representation of violC(x)− 1 by a conical junta requires degree Ω(n); this
resolves an open question of Filmus, Mahajan, Sood, and Vinyals. Since Sherali-Adams can
simulate resolution, this separates the non-negative degree of violC(x) − 1 and violC(x) − ε
for arbitrarily small ε > 0. Finally, by applying lifting theorems, we translate this lower bound
into new separation results between extension complexity and monotone circuit complexity.

†Research supported by NSERC.

1 Introduction

The Sherali-Adams hierarchy is a well-studied method in optimization that provides an automatic way
to convert a linear program with “weak” approximation guarantees into a linear program with “strong”
approximation guarantees. Each “level” of the Sherali-Adams hierarchy is defined by systematically
adding new variables and inequalities to the original linear program — “lifting” it to a higher dimen-
sional space — and then “projecting” it back down to a polytope contained within the original linear
program. The Sherali-Adams hierarchy at level r results in a linear program with roughly

(
n
≤r
)

con-
straints and variables, and it is known that at level n the hierarchy converges to the integral hull of the
starting polytope. Owing to its strength and its generality, much work has been spent on understanding
the strength of the Sherali-Adams hierarchy and its subsystems when applied to NP-Hard optimization
problems [1, 6, 15, 19, 38, 44, 46, 47, 50, 57], as well as its strength when it is treated as a refutation
system in propositional proof complexity [2, 5, 7, 18, 21, 34, 36].

A powerful generalization of the Sherali-Adams hierarchy is the notion of an extended formulation,
which was originally formulated by Yannakakis [59] and extended by Braun et al. [9] to nested pairs
of polytopes. Given a pair of polytopes P ⊆ Q ⊆ Rn, an extended formulation of the pair (P,Q) is
a polytope K ⊆ Rm with m ≥ n along with a projection π such that P ⊆ π(K) ⊆ Q. Indeed, the
Sherali-Adams hierarchy gives many examples of extended formulations: if we are given some linear
program Q ⊆ [0, 1]n which gives a “weak” approximation guarantee to any point in the integral hull

int(Q) := conv {x ∈ Zn | x ∈ Q} ,

then each level of the Sherali-Adams hierarchy produces an extended formulation (K,π) such that

int(Q) ⊆ π(K) ⊆ Q.

We regard this as giving a “tighter” relaxation to the integral hull, when compared to the starting
polytope Q (indeed, at n-th level of the hierarchy it turns out that π(K) = int(Q)).

More generally, for some polytopes P ⊆ Rn with exponentially many facets, it turns out to be pos-
sible to find an extended formulation K ⊆ Rm such that π(K) = P but m = poly(n) and K has only
polynomially many facets [59] (this is certainly a boon if P = int(Q) for some combinatorial optimiza-
tion problem encoded by Q!). Given a polytope pair P ⊆ Q we therefore let xc(P,Q) denote the size
(= number of facets) of the smallest extended formulation for the pair P,Q. After a breakthrough result
by Fiorini et. al. [25], strong lower bounds have been shown for the extension complexity of polytopes
associated with many standard NP-Hard optimization problems [9–11, 14, 25, 31, 43, 55, 56, 59]. All of
these lower bound results crucially rely on the close relationship between the number of facets in any
extended formulation and the non-negative rank of a certain related matrix [9, 59].

Theorem 1.1 (Factorization Theorem). Let P ⊆ Q ⊆ Rn be polyhedral sets, let v1, . . . , vn be the
vertices of P and let a1 · x ≤ b1, . . . , am · x ≤ bm be linear inequalities in Rn describing the facets
of Q. The size of the smallest extended formulation of (P,Q) is rank+(SP,Q) ± 1 where SP,Q is the
n×m matrix defined by SP,Q(i, j) = bj − aj · vi.

Indeed, works of Chan et. al. [14] , Göös et. al. [33], and Kothari, Raghavendra, and Steurer [43]
have shown that for certain NP-Hard optimization problems, lower bounds on the size of arbitrary
extended formulations follow immediately from lower bounds on the Sherali-Adams hierarchy. These
results join a long line of lifting theorems in communication, proof, and circuit complexity [16, 17,
22, 23, 26, 29, 30, 32, 35, 51, 53, 58] which systematically relate the complexity of computations in
“complicated” computational models with complexity in “simple” computational models.

1

1.1 Sherali-Adams as Proofs and Extended Formulations as Circuits

In this work we further the study of the Sherali-Adams hierarchy and its relationship with extended
formulations, but approach it from a different point of view. In particular, we are interested in the “dual
view” of Sherali-Adams as a propositional proof system (first considered in [18]), and in extended
formulations as a device for computing boolean functions. Before we formally state our results, let us
first describe these two perspectives.

A conical junta J is a non-negative linear combination of conjunctions over a set of {0, 1}-valued
variables. Given an unsatisfiable CNF formula C = C1 ∧ C2 ∧ · · · ∧ Cm, a Sherali-Adams refutation*

of C is given by a list of m+ 1 conical juntas J1, . . . ,Jm+1 such that

m∑
i=1

−CiJi + Jm+1 = −1

where all operations are done in multilinear polynomial arithmetic (so, x2 = x) over R and Ci is the
negation of the clause Ci. Indeed, if such a list of conical juntas exists then the original CNF formula
must indeed be unsatisfiable, as if x was a satisfying assignment then Ci(x) = 0 for all Ci and the
above expression would reduce to −1 = Jm+1(x) ≥ 0, a contradiction. In this way, Sherali-Adams is
naturally viewed as a proof system for refuting unsatisfiable formulas, and we can discuss complexity
measures of its proofs such as the degree (i.e. the maximum degree of any productCiJi as a multilinear
polynomial) and its size† (the number of distinct monomials occurring in the proof after expanding all
products and before cancellations).

It is also quite natural to study extended formulations as non-uniform computation devices for
boolean functions. The next definition was formally introduced by Hrubeš [40].

Definition 1.2. A separating polytope for f : {0, 1}n → {0, 1, ∗} is a polytope P ∈ Rn such that
conv f−1(1) ⊆ P and P ∩ f−1(0) = ∅. We say a polyhedron P ⊆ Rn is monotone if x ∈ P ⇒ y ∈ P
whenever x ≤ y, and if P ⊆ Rn we let P ∗ := {y ∈ Rn : ∃x ∈ P : x ≤ y} ⊇ P be the monotone
closure of P . A monotone separating polytope for f is a polytope P such that P ∗ is a separating
polytope for f .

Observe that if we have such a separating polytope K, then when given x ∈ {0, 1}n we can test
if f(x) = 1 simply by testing if x ∈ K. One natural way to construct such separating polytope is
as follows, and was introduced by Hrubeš [39] and studied independently by Göös, Jain and Watson
[31]. Given a boolean function f : {0, 1}n → {0, 1} define the polytope Qf,1 by the |f−1(0)| linear
inequalities

∀y ∈ f−1(0) :
n∑
i=1

xi(1− yi) + (1− xi)yi ≥ 1

where we note that
∑

i xi(1 − yi) + (1 − xi)yi =: h(x, y) is exactly the hamming distance between
two {0, 1}-valued vectors x, y. It is easy to see that x ∈ Qf,1 for every x ∈ f−1(1) since x must differ
from every y ∈ f−1(0) on some coordinate; similarly, for any y ∈ f−1(0) we have that y 6∈ Qf,1 as the
hamming distance from y to itself is 0. It therefore follows that any extended formulation of the pair
(conv f−1(1), Qf,1) yields a separating polytope as we described above. One can further specialize

*This encoding of Sherali-Adams is slightly different from the “usual” definition of Sherali-Adams as a refutation system
of linear inequalities or polynomial equations, but is easily seen to be equivalent (cf. Claim 3.32 in [27])

†This measure is sometimes called the monomial size in other works on the Sherali-Adams hierarchy to differentiate from
the bit-length of the encoding of the proof. As this is the natural notion of size for our purposes we simply call it size.

2

conv
(
f−1(1)

)

f−1(0)

P

Figure 1: A monotone separating polytope.

this construction when the function f : {0, 1}n → {0, 1} is monotone (recall f is monotone if x ≤ y
⇒f(x) ≤ f(y), where the first inequality is interpreted coordinate-wise). In this case, we can simplify
the description of Qf,1 and still obtain a separating polytope. Specifically, if f is monotone then define
the polytope Q+

f,1 by the linear inequalities

∀y ∈ f−1(0) :
n∑
i=1

xi(1− yi) ≥ 1.

The fact that an extended formulation of (conv f−1(1), Q+
f,1) is a separating polytope (indeed, now

we can even have a monotone separating polytopes) for monotone f follows by a similar argument as
before, but uses the additional fact that for monotone functions, f(x) = 1 and f(y) = 0 if and only if
there is a coordinate i such that xi = 1, yi = 0. We depict such a pair in Figure 1.

By using the Factorization Theorem (Theorem 1.1), we can relate the size of these extended for-
mulations to the non-negative ranks of certain matrices. Namely, given f : {0, 1}n → {0, 1} define the
f−1(1) × f−1(0) matrix Sf (x, y) :=

∑n
i=1 xi(1 − yi) + (1 − xi)yi, and its “monotone” counterpart

S+
f (x, y) :=

∑n
i=1 xi(1− yi). Define the separation complexity quantities

sep1(f) := rank+(Sf − 1), msep1(f) := rank+(S+
f − 1)

where 1 represents the all-1s matrix of the appropriate complexity. By Theorem 1.1, these two quan-
tities capture the size of the smallest extended formulations for the pairs (conv f−1(1), Qf,1) and
(conv f−1(1), Q+

f,1), respectively.
Now, it is natural to ask: are these interesting complexity measures of boolean computation?

Hrubeš [39] and Göös, Jain and Watson [31] showed that the answer is yes: both of these quantities
yield lower bounds on the formula complexity of computing f !

Theorem 1.3. For any boolean function f : {0, 1}n → {0, 1}, we have sep1(f) = O(n · F(f))
where F(f) is the size of the smallest boolean formula computing f . Furthermore, if f is monotone,
then msep1(f) = O(n · mF(f)) where mF(f) is the size of the smallest monotone boolean formula
computing f .

3

conv
(
f−1(1)

)

f−1(0)

Qf,1
conv

(
f−1(1)

)

f−1(0)

Qf,ε

Figure 2: The left depicts the polytope pair conv f−1(1) and Qf,1; the right depicts conv f−1(1) and
Qf,ε for some ε < 1. By setting ε < 1 it is potentially easier to project a relatively low-facet polytope
separating the 0s from the 1s of f .

Furthermore, observe the following. If our goal is just to separate the 1s of f from the 0s of f by
means of a polytope we can weaken the inequalities

n∑
i=1

xi(1− yi) + (1− xi)yi ≥ 1, ∀y ∈ f−1(0).

Since x ∈ f−1(1) and y ∈ f−1(0) are boolean strings, by integrality it suffices to have the inequalities

∀y ∈ f−1(0) :
n∑
i=1

xi(1− yi) + (1− xi)yi ≥ ε

for any ε > 0 (note we must have ε > 0, since if ε = 0 then y ∈ f−1(0) will occur inside of the
polytope). With this in mind, define the quantities

sep(f) := min
ε>0

rank+(Sf − ε1), msep(f) := min
ε>0

rank+(S+
f − ε1),

which generalize sep1(f) and msep1(f) in the natural way. These quantities were recently studied by
Hrubeš [40], where it was shown that they lower bound the size of boolean circuits computing f .

Theorem 1.4. For any boolean function f : {0, 1}n → {0, 1} we have sep(f) = O(C(f) + n),
where C(f) is the size of the smallest boolean circuit computing f . Furthermore, if f is monotone,
then msep(f) = O(mC(f) + n), where mC(f) is the size of the smallest monotone boolean circuit
computing f .

We also note that the quantity msep(f) was independently studied by Pudlák and de Oliveira
Oliveira, where it was captured by a model of computation they called weak monotone linear pro-
gramming gates [20].

4

To summarize: the Sherali-Adams hierarchy can be interpreted both as a particular family of ex-
tended formulations in optimization, and also as a natural family of proof systems for refuting unsat-
isfiable formulas. If we consider extended formulations more generally, then it is natural to interpret
them as a computational devices whose complexities are related to standard boolean circuit and formula
models. In this way, the known “lifting theorems” from Sherali-Adams proofs to extended formulations
fall naturally in line with other proof-to-circuit lifting theorems [22, 29, 53], as we will show next.

1.2 Our Results

Normal Form for Sherali-Adams. In this work, we systematically relate the complexity of Sherali-
Adams proofs and its fragments with the linear separation quantities sep1(f),msep1(f), sep(f), and
msep(f). Our first main result is the following novel “normal form” for Sherali-Adams proofs. Given a
CNF formula F = C1∧C2∧· · ·∧Cm let violC(x) =

∑m
i=1Ci(x) denote the number of falsified clauses

on an input x. Furthermore, if f : {0, 1}n → R≥0 is a non-negative real-valued boolean function then
let deg+(f) denote the minimum degree of a conical junta J such that f = J .

Theorem 1.5. For any unsatisfiable CNF formula C, if there is a Sherali-Adams refutation of C with
degree d and size s, then there is an ε > 0 and a degree d, size s2d conical junta J such that

violC − ε = J .

Consequently, if SA(C) is the minimum degree of any Sherali-Adams refutation of C, then

SA(C) = min
ε>0

deg+(violC − ε).

Several remarks on this theorem are in order. First, although we have stated this theorem for
CNF formulas, a similar result immediately follows for arbitrary boolean CSPs. This is because if
P : {0, 1}k → {0, 1} is an arbitrary boolean CSP then we can represent P as a width-k unique DNF
of its 1-inputs. This means that ¬P =

∑
iDi for some conjunctions Di (specifically, conjunctions that

recognize the 0s of P). By substituting these sums for the predicates we can immediately deduce a
more general theorem for refuting arbitrary boolean CSPs.

Second, if there is a conical junta J such that violC − ε = J then note that we immediately obtain
a Sherali-Adams refutation by rearranging the expression:

m∑
i=1

−Ci
ε

+
J
ε

= −1.

Thus this truly is a normal form that preserves the degree and the size (although, the size is only
preserved up to a 2d factor).

Third, one should note the similarities between Theorem 1.5 and the definitions of sep(f) and
msep(f) — they are identical up to the substitution of “deg+” for “rank+” and “violC” for “Sf /S+

f ”.
Looking forward, this similarity turns out to be quite important for the rest of our results.

Finally, we remark that the fragment of Sherali-Adams corresponding to deg+(violC − 1) has also
been studied in the literature as an object of interest. Göös, Jain and Watson studied it under the
name of the “∃ − 1 Game”, in which they proved degree lower bounds for Tseitin formulas [31].
Filmus, Mahajan, Sood, and Vinyals studied a further restriction in which the coefficients are required
to be integers; they showed that this restriction was closely related to the complexity of MaxSAT
resolution [24].

5

Feasible Interpolation for Sherali-Adams. Next, inspired by the normal-form theorem, we further
develop the connection between Sherali-Adams and separation complexity by way of monotone feasi-
ble interpolation.

The feasible interpolation method relates the complexity of proofs to the complexity of computa-
tional models. Suppose we are given an unsatisfiable CNF formula of the formA(x, z)∧B(y, z). Then,
under an assignment z 7→ α, at least one of the formulas A(x, α), B(y, α) is unsatisfiable. Thus, we
can associate with A ∧B a partial function I : {0, 1}z → {0, 1}, known as an interpolant, satisfying

I(α) =

{
0 if A(x, α) is satisfiable
1 if B(y, α) is satisfiable

In its original form, introduced at this level of generality in the classic work of Krajiček [45], we say
that a proof system P has feasible interpolation if we can extract a small computation of the interpolant
I in some computational model from any small P -proof of A ∧ B. Furthermore, if A ∧ B satisfies a
certain monotonicity property, namely that all z-literals occur only negatively inA, then the interpolant
function I is monotone and we say that P has monotone feasible interpolation if we can extract from
a P -proof of A ∧ B a computation in some monotone computational model. Instantiations of the
method of (monotone) feasible interpolation have led to a number of important lower bounds in proof
complexity. Razborov [52] showed that from proofs in certain fragments of bounded arithmetic one
could extract Boolean circuits and used this to establish conditional unprovability of P 6= NP in these
systems. The first lower bounds for Cutting Planes were established by Pudlák [48], who showed
that proofs in this system gave rise to monotone real circuits; this built upon earlier work by Bonet,
Pitassi and Raz [8] who showed that low-weight Cutting Planes gave rise to monotone circuits. Pudlák
showed that span programs monotone feasibly interpolate Nullstellensatz [49], and de Oliveira Olivera
and Pudlák showed that proofs in the Lovász-Schijver system convert to monotone linear programming
circuits [20].

Recently, Hrubeš and Pudlák [41] and Fleming et al. [28] showed that the method of monotone
feasible interpolation could be generalized to work for arbitrary unsatisfiable CNF formulas, not only
for split formulas. They showed that from a small Cutting Planes proof of an unsatisfiable CNF formula
C one could extract small monotone circuit computing an associated monotone function, termed the
unsatisfiability certificate by Hrubeš and Pudlák [41]. (Fleming et. al. used a conceptually different,
though ultimately equivalent, function [28]). If C is a clause and X is a subset of its variables we let
CX denote the subclause of C containing only literals over X .

Definition 1.6. Let C = C1∧· · ·∧Cm be an unsatisfiable CNF formula and let (X,Y) be any partition
of its variables. The unsatisfiability certificate associated with C and (X,Y) is the partial function
cert

(X,Y)
C : {0, 1}m → {0, 1, ∗} defined as

cert
(X,Y)
C (α) =

{
0 if {CXi : Ci ∈ C, αi = 1} is satisfiable,
1 if {CYi : Ci ∈ C, αi = 0} is satisfiable,

When it is clear from context, we may suppress the partition (X,Y) or the underlying CNF formula C.

Our second main result is the following monotone feasible interpolation theorem for Sherali-Adams
proofs‡.

‡A similar feasible interpolation result can be proved for Sum-of-Squares proofs; we follow up on this in an upcoming
work.

6

Theorem 1.7. Let C = C1∧C2∧· · ·∧Cm be any unsatisfiable CNF formula. If there is a Sherali-Adams
proof of C with size s then for any partition (X,Y) of the variables of C we have msep(certC) = O(s2).

Several remarks on this theorem are in order. First, as was shown by Pudlák and Hrubeš [41] a
standard interpolation theorem for split formulas follows from this interpolation (simply by “resolving
away” the z variables and taking the natural partition of variables). Second, prior to this result there was
no monotone feasible interpolation theorem known for Sherali-Adams. A recent work of Hakoniemi
gave the first feasible interpolation theorem for Sherali-Adams [37], but, his feasible interpolation result
only applied to the “standard” split formulas A(x, z)∧B(y, z) and it only gave a small non-monotone
Boolean circuit for the interpolant [37]. Finally, as we have remarked before, the model msep(f) was
recently studied by de Oliveira Olivera and Pudlák under the name weak monotone linear programming
gates [20]. They also introduced a model that they called strong monotone linear programming gates,
and showed that “circuits” created out of strong monotone linear programming gates can monotone
feasibly interpolate Lovász-Schrijver proofs. Pudlák and de Oliveira Olivera left as an open problem
whether or not strong monotone linear programming gates can be efficiently simulated by weak mono-
tone linear programming gates. We believe our feasible interpolation result makes this question more
interesting, in light of the lack of separations between Lovász-Schrijver and Sherali-Adams proofs —
the only separation known is due to Atserias and Ochremiak [3] , who showed that degree-6 Lovász-
Schrijver has polynomial-size refutations of Tseitin principles (and, furthermore, there are no good size
lower bounds on Lovász-Schrijver proofs at all!).

Separation Results. Finally, we prove new separation results between the proof and circuit models
described above. In particular, we are interested in the value of ε > 0 that is required in the definition
of msep(f) := minε>0 rank+(S+

f − ε1) and in our new characterization of Sherali-Adams degree
minε>0 deg+(violC − ε). For instance: is it possible that we never need to take ε < 1? Or, in other
words, is it possible that msep(f) = msep1(f), and that Sherali-Adams is already captured by the
conical junta degree of violC − 1?

We give a negative answer to these questions. First, we show that if C is a pebbling formula, then
deg+(violC − 1) must be large. (In fact, our lower bound already holds for deg+(violPEBG − 0.99).)

Theorem 1.8. There is a constant δ > 0 such that for all sufficiently large m there is an in-degree-2
DAG G on m vertices such that

deg+(violPEBG − 1) = mδ,

where PEBG is the pebbling formula associated with G.

Pebbling formulas are well-known to be refutable in Resolution width O(1) and linear size on
graphs of constant in-degree, and thus our result separates deg+(violC − 1) from Resolution, resolv-
ing an open problem asked by Filmus, Mahajan, Sood and Vinyals [24]. Since Sherali-Adams can
efficiently simulate Resolution [18], it follows from combining the previous theorem and Theorem 1.5
that deg+(violC − 1) can be much larger than deg+(violC − ε) for arbitrarily small ε > 0 (although,
we note that the standard simulation of Resolution by Sherali-Adams results in ε that is exponentially
small in the size of the proof!).

Next, by using known lifting theorems from conical junta degree to non-negative rank [33, 43], we
can lift the lower bound in the previous theorem to the following separation between msep1(GENn)
and mC(GENn), where GENn is the Generation function.

Theorem 1.9. The GENn function is computable by polynomial-size monotone circuits, but, there is a
δ > 0 such that msep1(GENn) = 2Ω(nδ).

7

Proof Systems

Circuit Classes

deg+(violC − 1) SA(C) = deg+(violC − ε)

Res

mF(f) mC(f)

msep1(f) = rank+(S+
f − 1) msep(f) = rank+(S+

f − ε1)

Feasible Interpolation

Figure 3: Semialgebraic circuit classes and proof systems considered in this paper. Solid arrows repre-
sent simulation results, while dashed red arrows represent new separations.

Since msep(f) ≤ mC(f), this provides the analogous separation between msep1(f) and msep(f)
(and, indeed, already between msep1(f) and monotone circuit size). Taken together, these results imply
that choosing smaller ε actually does increase the power of the corresponding proof systems and circuit
models.

1.3 Paper Outline

The rest of this paper is outlined as follows. In Section 2 we carefully outline all important proof
systems and non-uniform models of computation that we consider. In Section 3 we prove our new
characterization of Sherali-Adams proofs, as well as our feasible interpolation results. In Section 4 we
prove our new separations between fragments of Sherali-Adams and between separation complexities.

2 Preliminaries

2.1 Proof Systems

We recall some preliminaries from proof complexity. A clause C is a disjunction of boolean literals;
the width of a clause, denoted w(C), is the number of literals in C. If C = C1 ∧ C2 ∧ · · · ∧ Cm is a
CNF formula then the width of C is the largest width of any clause in C.

Resolution Proofs. Fix an unsatisfiable CNF formula C over variables x1, . . . , xn. A Resolution
refutation of C is a sequence of clauses D1, . . . , Ds ending in the empty clause Ds = ∅ such that for
each i ∈ [s], eitherDi is in C or is derived from earlier clausesDj , Dk with j, k < i using the resolution
rule

C ∨ `,D ∨ ` ` C ∨D

where the rule can only be applied if C and D do not contain literals of opposite sign. The size of the
resolution proof is s, the number of clauses, and the width of the proof is the largest width of any clause

8

in the proof. Let SRes(C) denote the minimum size of any resolution refutation of C, and let wRes(C)
denote the smallest width of any resolution refutation of C.

Sherali-Adams and Conical Junta Degree. In this paper we will regularly be doing arithmetic with
real polynomials that represent boolean functions f : {0, 1}n → R. It is well known that each such
function can be represented (uniquely) by multilinear polynomials (that is, the largest degree of any
individual variable is 1). We will exclusively be operating using multilinear arithmetic with these
polynomials — for example, we regard x2

i and xi as representing the same boolean function. Formally,
we work modulo the ideal 〈x2

i − xi〉ni=1.
A d-conjunction J is a conjunction of d boolean literals. We will usually encode conjunctions as

polynomials over the reals, and so if S, T ⊆ [n] are subsets such that S ∩ T = ∅ then we let

JS,T (x) :=
∏
i∈S

xi
∏
j∈T

(1− xj)

be the conjunction that tests if all variables in S are 1 and all variables in T are 0. Similarly, if C is a
clause, we will let C denote the conjunction such that C(x) = 1 if and only if C(x) = 0 — that is, C
tests if the clause C is falsified. To spell it out, if C =

∨
j∈T xj ∨

∨
i∈S xi then C = JS,T . Note that

the empty conjunction J∅,∅ = 1.
A conical junta is any non-negative real combinations of conjunctions J =

∑
i λiJi, where λi ≥ 0

is a real constant and Ji is a conjunction. The degree of a conical junta is the maximum degree of
any conjunction in the conical junta representation, and the size of a conical junta is the number of
monomials obtained after expanding all juntas but before cancellation. If f : {0, 1}n → R≥0 is a non-
negative real boolean function, then the conical junta degree of f , denoted deg+(f), is the minimum
integer d such that we can write

f =
∑
i

λiJi

where λi ≥ 0 is a non-negative real constant and Ji is a ≤ d-conjunction for each i. Note that, unlike
polynomial degree, the representation of f as a conical junta is not necessarily unique.

A Sherali-Adams refutation of an unsatisfiable CNF formula C = C1 ∧ · · · ∧ Cm is given by a
sequence of conical juntas J1,J2, . . . ,Jm,Jm+1 such that

m∑
i=1

−CiJi + Jm+1 = −1.

The degree of the proof is the maximum degree of any of the polynomials −Cipi,J before cancella-
tion. The size of the proof is the number of distinct monomials that occurs in the proof (after expanding
all polynomials and before cancellation). Let SA(C) denote the minimum degree of any Sherali-Adams
refutation of C. We note that CNF formulas are often encoded as linear inequalities rather than juntas;
this is equivalent to the above definition up to increasing the degree by an additive factor of w(C) (see
e.g., [27, Claim 3.32]). If C = C1∧C2∧· · ·∧Cm is a CNF formula then define violC : {0, 1}n → R≥0

by

violC(x) :=

m∑
i=1

Ci(x).

That is, violC(x) counts the number of falsified clauses of C on input x. It follows that C is unsatisfiable
if and only if violC(x) ≥ 1 for all x ∈ {0, 1}n — indeed, if and only if violC(x) ≥ ε for any ε > 0.
Thus, a conical junta representation of violC−ε for any ε > 0 constitutes a proof that C is unsatisfiable.

9

In fact, conical junta representations of violC − ε correspond naturally to fragments of Sherali-
Adams proofs. This is easy to see: suppose that violC − ε = J where J is a conical junta. Explicitly,
this means that

m∑
j=1

−Cj + J = −ε

which, dividing by ε, yields
m∑
j=1

−1

ε
Cj +

J
ε

= −1.

Conversely, suppose that we have a Sherali-Adams refutation of C of the form

m∑
j=1

−αjCj + J = −1

where 0 ≤ αj ≤ 1/ε for all j. Since Cj is a conjunction and 1/ε ≥ αj , this means that

m∑
j=1

−1

ε
Cj + J +

m∑
j=1

(
1

ε
− αj

)
Cj = −1

is also a Sherali-Adams refutation of C. Multiplying through by ε yields the following:

Lemma 2.1. Let C = C1∧C2∧· · ·∧Cm be an unsatisfiable CNF formula. If there is a Sherali-Adams
refutation of the form

m∑
j=1

−αjCj + J = −1

where J is a conical junta of degree d and size s and with 0 ≤ αj ≤ 1/ε for each αj , then there is a
degree-max {d,w(C)} conical junta J ′ such that violC − ε = J ′.

Conversely, if violC − ε = J ′ for some degree-d, size s conical junta J ′, then there is a Sherali-
Adams proof of the above form with αj ≤ 1/ε and where J = J ′.

As we will show in Section 3.1, it turns out that this fragment of Sherali-Adams is actually complete,
in the sense that any Sherali-Adams proof can be put into this form without changing the degree and
without (badly) changing the size.

2.2 Circuit Complexity and Extended Formulations.

Boolean Circuit Complexity. A partial boolean function is a function f : {0, 1}n → {0, 1, ∗} (the
∗ represents that we “don’t care” what the function’s output is). Given two partial boolean functions
f, g we say that g extends f if for all x such that f(x) 6= ∗, g(x) = f(x). A (total) boolean function
f : {0, 1}n → {0, 1} is monotone if x ≤ y ⇒ f(x) ≤ f(y) (where the first inequality is taken
coordinate-wise); a partial boolean function f : {0, 1}n → {0, 1, ∗} is monotone if there is a total
monotone boolean function g extending f .

We assume familiarity with standard boolean circuit models in complexity theory — e.g. boolean
formulas, boolean circuits, etc. All circuits considered in this paper will be composed of AND (∧)
and OR (∨) gates, and will be De-Morgan in the sense that if any negations appear they appear at the
inputs of the circuit. A boolean circuit is monotone if it does not contain any negation gates. We say

10

that a circuit C computes a partial function f : {0, 1}n → {0, 1, ∗} if f(x) = 1 ⇒ C(x) = 1 and
f(x) = 0 ⇒ C(x) = 0 for all x ∈ {0, 1}n (in other words, the total function computed by C extends
f). For any partial boolean f we let

• C(f) := the size of the smallest boolean circuit computing f ,

• mC(f) := the size of the smallest monotone boolean circuit computing f ,

• F(f) := the size of the smallest boolean formula computing f ,

• mF(f) := the size of the smallest monotone boolean formula computing f .

Non-negative Rank and Extended Formulations. Let B be a non-negative real matrix. The non-
negative rank of B, denoted rank+(B), is the smallest integer r such that B can be written as the sum
of r rank-1 non-negative matrices.

Non-negative rank is a very well-studied parameter in theoretical computer science, owing to its
close relationship with polytopes in convex optimization. We, however, will be particularly interested
in the connection between non-negative rank and circuit complexity.

Let 1m,n denote the m× n all-1s matrix (we may suppress the m,n when it is clear from context).
Let f : {0, 1}n → {0, 1, ∗} be a partial boolean function, let U = f−1(1) and let V = f−1(0). We let
Sf be the |U | × |V | matrix defined by, for each x ∈ U, y ∈ V ,

Sf (x, y) =
n∑
i=1

Jxi 6= yiK

where JP K is the {0, 1}-indicator function for the predicate P . That is, the matrix Sf counts the number
of witnesses that x 6= y for each x ∈ f−1(1), y ∈ f−1(0). If the function f is furthermore monotone,
we define the matrix S+

f by

S+
f =

n∑
i=1

Jxi = 1 ∧ yi = 0K.

Observe that both Sf (x, y), S+
f (x, y) ≥ 1 for all x ∈ U, y ∈ V . Because of this, we can say that for

any 0 < ε ≤ 1 the matrices Sf − ε1 and S+
f − ε1 are both non-negative. With this in mind, we make

the following definitions (the second two, of course, only make sense for monotone f):

sep1(f) := rank+(Sf − 1)

sep(f) := min
ε>0

rank+(Sf − ε1)

msep1(f) := rank+(S+
f − 1)

msep(f) := min
ε>0

rank+(S+
f − ε1)

We note the similarity between the definition of sep(f) and deg+(violC − ε) — the restriction of
Sherali-Adams — which was introduced in the previous section. Furthermore, as we have discussed in
detail in Section 1, each of these parameters can be interpreted as the minimum size of any extended
formulation separating 0s of a function from 1s of a function, and they are closely related to circuit and
formula size (cf. Theorem 1.3, Theorem 1.4).

11

3 Upper Bounds

3.1 A New Characterization of Sherali-Adams Degree

In this section we provide our new characterization of Sherali-Adams degree, which is recorded next.

Theorem 1.5. For any unsatisfiable CNF formula C, if there is a Sherali-Adams refutation of C with
degree d and size s, then there is an ε > 0 and a degree d, size s2d conical junta J such that

violC − ε = J .

Consequently, if SA(C) is the minimum degree of any Sherali-Adams refutation of C, then

SA(C) = min
ε>0

deg+(violC − ε).

Proof. Let
m∑
i=1

−CiJi +
∑
j

λjJj = −1

be a degree-d, size-s Sherali-Adams refutation of C, where each Ji are conical juntas. By expanding
each of the Ji into their monomials, we can re-write this proof as

t∑
k=1

−αkCikmk +
∑
j

λjJj = −1 (1)

for some t where αk ≥ 0 is a non-negative real constant and mk is a monomial for each k.
Now, fix some 1 ≤ u ≤ t. Assume w.l.o.g. that the variables occurring in mu are x1, x2, . . . , x`

for some ` — explicitly, since mu is a monomial we therefore have mu =
∏`
i=1 xi = J[`],∅. The main

claim we use is the following.

Claim. Let x1, x2, . . . , xn be any set of boolean variables. Then∑
S⊆[n]

JS,[n]\S = 1.

Proof of Claim. By induction on n. If n = 0 then the only term in the sum is J∅,∅, which is 1. If n > 0,
then

∑
S⊆[n] JS,[n]\S = xn(

∑
S⊆[n−1] JS,[n−1]\S)+(1−xn)(

∑
S⊆[n−1] JS,[n−1]\S) = x1+(1−x1) = 1

where we applied the induction hypothesis twice.

Define the conical junta

Ju :=
∑

S⊆[`],S 6=[`]

JS,[`]\S =
∑
S⊆[`]

JS,[`]\S − J[`],∅.

By the Claim and the definition of Ju we have mu + Ju = J[`],∅ + Ju = 1. This means that

−αumuCiu = −αuCiuJ[`],∅ + αuCiuJu − αuCiuJu
= −αuCiu + αuCiuJu.

12

Since αu > 0 and Ciu is a conjunction it follows that αuCiuJu is a conical junta. By repeating this
construction for every polynomial −αkCikmk it follows that we can rewrite the Sherali-Adams proof
from Equation 1 as

t∑
k=1

−αkCik +

∑
j

λjJj +

t∑
k=1

αkCikJk

 = −1.

Replacing −αkCkmk by αkCikJk preserves the degree but increases the monomial size of the proof
by a 2d factor. By applying Lemma 2.1 it follows that there is a ε > 0 such that violC − ε = J for
some size at most s2d, degree-d conical junta J .

3.2 Feasible Interpolation for Sherali-Adams

In this section, we give a monotone interpolation theorem for Sherali-Adams in terms of the unsatis-
fiability certificate (cf. Definition 1.6). For our purposes, the important property of the unsatisfiability
certificate is the following connection it shares with violC .

Lemma 3.1. Let C be an unsatisfiable CNF formula on m clauses, let (X,Y) be any partition of
the variables of C, and let cert be the corresponding unsatisfiability certificate. There are surjections
µ : {0, 1}X → cert−1(1) and ν : {0, 1}Y → cert−1(0) such that

S+
cert(µ(x), ν(y)) = violC(xy)

where xy denotes the concatenation of x, y.

Proof. We define µ and ν by their evaluations on assignments to the X and Y variables as follows.
For any x ∈ {0, 1}X define µx ∈ {0, 1}m by µxi = 1 − CXi (x) — that is, µix is 1 iff CXi (x) is
falsified. Similarly, for any y ∈ {0, 1}Y define νy ∈ {0, 1}m by µyi = CYi (y) — so, νiy is 1 iff CYi (y)
is satisfied. It follows by definition that cert(µx) = 1 and cert(νy) = 0, and furthermore it is clear
that x 7→ µx and y 7→ νy are surjective maps since every 1 and 0 assignment to cert must have some
witnessing assignments to the underlying variables. Finally, observe that if µxi = 1 and νyi = 0 then
CXi (x) = CYi (y) = 0, and thus the combined assignment xy violates the clause Ci. The converse also
clearly holds, proving the lemma.

By combining this fact with Theorem 1.5, we can immediately prove the following monotone
feasible interpolation theorem for Sherali-Adams proofs. This next theorem is slightly weaker (in that
we lose a 2d factor in the size) than the interpolation theorem stated in Section 1, but, has the benefit of
admitting a completely transparent proof. We show how to remove the 2d factor in Appendix A.

Theorem 3.2. For any unsatisfiable CNF C and any partition of its variables (X,Y), if there is a
conical junta J of size s and an ε > 0 such that violC − ε = J then

rank+(certC − ε) ≤ s.

Consequently, if there is a degree-d, size-s Sherali-Adams refutation of C then msep(certC) ≤ s2d.

Proof. The “Consequently” statement of the theorem is just an application of Theorem 1.5, so we focus
on proving the non-negative rank upper bound for certC .

Write violC − ε =
∑

i λiJi where each Ji is a conjunction. Under the partition of variables
(X,Y), we regard this as a {0, 1}X × {0, 1}Y matrix, where the (x, y)th entry of the matrix is ex-
actly violC(xy)− ε. By Lemma 3.1 it follows immediately that rank+(certC − ε) = rank+(violC − ε),

13

since the existence of the two surjections implies that the matrix violC−ε is exactly the matrix certC−ε
with some extra copies of rows and columns padded in. Thus if we show rank+(violC − ε) ≤ s the
proof of the theorem will be completed.

To show this, we use the expression of violC−ε as a conical junta. Observe that if Ji is a conjunction
over X and Y variables, then we can interpret any term zi or 1 − zi in the product Ji as a rank-1
2|X|× 2|Y | non-negative matrix (indeed, it is rank-1 since each term depends only on the x assignment
or the y assignment). If we let A ◦ B denote the Hadamard (i.e. entrywise) product of two matrices
A and B, it follows that the conjunction Ji is simply the Hadamard product of a number of rank-
1 non-negative matrices. Since rank+(A ◦ B) ≤ rank+(A) rank+(B) — a fact easily verified by
taking non-negative rank decompositions — it follows that rank+(Ji) = 1. Therefore, if we can write
violC − ε = J where J is a non-negative combination of s conjunctions, it immediately follows by the
subadditivity of rank+ that rank+(violC − ε) ≤ s, proving the theorem.

4 Lower Bounds

In this section we prove our new separation between fragments of Sherali-Adams and Resolution and
then show how to lift this separation to a new separation between extension complexity (particularly,
msep1) and monotone circuit complexity. First, we show that the well-studied Pebbling formulas PEBG
require large conical junta degree to represent violPEBG − 1 (cf. Theorem 1.8). However, our eventual
goal is to apply a lifting theorem to get a strong lower bound on msep1(f) := rank+(S+

f − 1) from
the lower bound on deg+(violPEBG − 1) for some specially tailored monotone boolean function f .
Unfortunately, the known lifting theorems from conical junta degree to non-negative rank [33,43] only
apply to approximate conical junta degree, which complicates the lower bound slightly.

Definition 4.1 (Approximate conical junta degree). For a non-negative function f : {0, 1}n → R≥0 we
define its ε-approximate conical junta degree d̃eg+

ε (f), as the minimum degree of a conical junta J
such that J (x) ∈ f(x)± ε for all inputs x.

For convenience, instead of proving lower bounds on the conical junta degree of PEBG directly,
we will instead work with the slightly more flexible Iteration problem ITERn (this is also sometimes
known as the Housesitting Principle) [4, 12]. An easy reduction from ITERn to PEBG will then yield
the degree lower bound for Pebbling formulas.

4.1 Conical Junta Lower Bound for Iteration

We study the Iteration problem ITERn on an n-by-n grid. An input to this problem consists of n2 input
variables xv, one for each grid node v ∈ [n] × [n]. The variables take values from an alphabet of
size O(n). Namely, for each v ∈ [n−1]× [n], we have xv ∈ [n]∪{⊥}. If xv ∈ [n], we say v is active,
and it points to the xv-th node on the next row. If xv = ⊥, we say v is disabled. For each node on the
final row v ∈ {n}× [n] there is a boolean variable xv ∈ {>,⊥} where xv = > means xv is active and
xv = ⊥ means v is disabled. The goal is to output one of the following types of solution.

(i) the distinguished source node (1, 1) is disabled (x1,1 = ⊥), or
(ii) an active node that points to a disabled node (xi,j = k ∈ [n] and xi+1,k = ⊥), or

(iii) an active node on the final row (xn,j = >).

For larger-than-boolean alphabets, we generalise the definition of a conjunction J naturally to be
a partial assignment of pointers to nodes; for example, J = [x1,1 = 3;x2,3 = ⊥;x4,1 = 6] is a

14

⊥ > ⊥ >

⊥ 4 2 ⊥

⊥ ⊥ 2 3

3 ⊥ 4 ⊥

1 2 3 4

4

3

2

1

Figure 4: An example outcome of the random variable X2 on ITER4.

conjunction of degree 3. We prove strong lower bounds against the conical junta degree of violITERn−1;
indeed, we are even able to prove lower bounds against the conical junta degree of violITERn − 0.99,
which will turn out to be crucial for later results.

Theorem 4.2. d̃eg+
1/20(violITERn − 1) ≥ Ω(n).

Proof. We define three random inputs X1, X2, X3 that admit 1, 2, or 3 solutions, all of type (iii). The
inputs are constructed from given data (vji), j ∈ [2], i ∈ [n], that specifies for each row i ∈ [n], two
(or three in the case of X3) nodes v1

i , v
2
i ∈ {i} × [n]. The resulting input, call it X(vji), is obtained by

activating all the nodes vji , pointing vji to vji+1, and disabling all other nodes.

X1 = “two random paths merging at the last row.” We choose vji for j ∈ [2], i ∈ [n] uniformly at
random subject to v1

1 = (1, 1), v1
i 6= v2

i for i ∈ [n− 1], v1
n = v2

n. Then X1 = X(vji).

X2 = “two random disjoint paths.” We choose vji for j ∈ [2], i ∈ [n] uniformly at random subject
to v1

1 = (1, 1), v1
i 6= v2

i for i ∈ [n]. Then X2 = X(vji).

X3 = “three random disjoint paths.” We choose vji for j ∈ [3], i ∈ [n] uniformly at random subject
to v1

1 = (1, 1), vji 6= vj
′

i for j 6= j′, i ∈ [n]. Then X3 = X(vji).

Suppose for the sake of contradiction thatJ =
∑

i λiJi is a degree-o(n) conical junta that for every
input x outputs J (x) ∈ violITERn(x)− 1± ε where ε := 1/20. We may assume that each conjunction
J in J is such that if it reads an active node v on row n − 1 (meaning that the conjunction contains
[xn−1,j = k] for some k and v is node (n − 1, j)) then it also reads the boolean variable associated
with node (n, xv) on the last row. (Indeed, we may always replace J containing [xn−1,j = k] with the
equivalent conic combination J · [xn,k = >] + J · [xn,k = ⊥].) We call a conjunction J paired if it
reads at least two active nodes on the last row, that is, J witnesses at least two solutions of type (iii).

Claim 4.3. If J is not paired, then E[J(X2)] ≤ 2 · E[J(X1)].

Claim 4.4. If J is paired, then E[J(X3)] ≥ (3− o(1)) · E[J(X2)].

15

We prove the claims shortly after we first complete the proof of the theorem assuming them. We
write J =

∑
i λiJi = Jnot + Jpair where Jpair consists of conjunctions that are paired and Jnot

consists of those that are not. We calculate

1− ε ≤ E[J (X2)] (J approximates viol− 1)

= E[Jnot(X2)] + E[Jpair(X2)]

≤ 2E[Jnot(X1)] + E[Jpair(X2)] (Claim 4.3 and linearity of E)

≤ 2ε+ E[Jpair(X2)] (J approximates viol− 1)

≤ 2ε+ E[Jpair(X3)]/(3− o(1)) (Claim 4.4 and linearity of E)

≤ 2ε+ (2 + ε)/(3− o(1)) (J approximates viol− 1)

< 1− ε. (ε < 1/10)

This is the desired contradiction that concludes the proof (modulo the Claims).

Proof of Claim 4.3. The claim says that Pr[J(X1) = 1] ≥ Pr[J(X2) = 1]/2 for a non-paired J .
Consider any fixed setting of the vji such that X(vji) is in the support of X2 and such that J accepts
X(vji). Since J is not paired, it does not read the nodes {vbn−1, v

b
n} for some b ∈ [2], and hence if we

pick b ∈ [2] uniformly at random, Prb[J((vji)i∈[n−1], v
b
n, v

b
n) = 1] ≥ 1/2. Moreover, if (vji)i∈[n] is

distributed as in the process for X2, then ((vji)i∈[n−1], v
b
n, v

b
n) (for random b ∈ [2]) is distributed as in

the process for X1. Hence J’s acceptance probability can decrease by at most a factor of 1/2.

Proof of Claim 4.4. The claim says that Pr[J(X3) = 1] ≥ (3 − o(1)) Pr[J(X2) = 1] for a paired J .
Since J reads at most o(n) nodes, there is some middle row i∗ ∈ [n/3, 2n/3] from which J reads no
nodes. Split any input x into three parts so that x = (xT, xM, xB) where xT is the pointer assignment
for nodes in topmost i∗ − 1 rows, xM is for nodes in row i∗, and xB is for nodes in the remaining
bottommost rows. Write also J(x) = J T(xT) · JB(xB). Note that for both i = 2, 3, the variables XT

i

and XB
i are independent and thus

Pr[J(Xi) = 1] = Pr[J T(XT
i) = 1 ∧ JB(XB

i) = 1] = Pr[J T(XT
i) = 1] · Pr[JB(XB

i) = 1]. (2)

We will prove the following estimates, which, when plugged into (2), would complete the proof:

Pr[J T(XT
3) = 1] ≥ (1− o(1)) Pr[J T(XT

2) = 1], (3)

Pr[JB(XB
3) = 1] ≥ (3− o(1)) Pr[JB(XB

2) = 1]. (4)

Let us prove (3). Consider generating a sample from XT
3 as follows: (i) sample xT ∼ XT

2 , and (ii)
add to xT a random third path which is disjoint from the existing two. We argue that if the sample xT in
step (i) is accepted by J T, then the conjunction continues to accept after step (ii) with high probability.
Indeed, conditioned on the first step being accepting for J T, we note that the probability that any one
node is picked to lie on the third path is at most 1/(n−2) and hence (by a union bound) the probability
that some node read by J T lies on the third path is at most deg(J)/(n − 2) = o(n)/(n − 2) = o(1).
Hence J T continues to accept with probability 1− o(1), which proves (3).

Let us finally prove (4). Note how XB
2 (resp. XB

3) is distributed: it consists of two (three) uniformly
random disjoint paths down the grid. Consider the following bipartite graph (L ∪R,E) where

• Left vertices L are outcomes of XB
2 (pairs of disjoint paths).

• Right vertices R are outcomes of XB
3 (triples of disjoint paths).

16

• There is an edge (l, r) ∈ E iff the two paths of l are a subset of the three paths of r.

Note that this graph is biregular with right degree dR := 3 and the left degree dL := 3|R|/|L|. Denote
by L′ ⊆ L (resp. R′ ⊆ R) the set of l ∈ L (resp. r ∈ R) accepted by JB. Let E(L′, R′) := L′×R′∩E
denote the set of edges between L′ and R′. Note that if r ∈ R′, then at most one of r’s neighbours
is in L′; this is because JB is paired and hence it requires a prescribed pair of the three paths in
r to be present. Consequently |E(L′, R′)| ≤ |R′|. On the other hand, if l ∈ L′, then 1 − o(1)
fraction of its neighbours are in R′; this is because of the same argument as in the preceding paragraph
(condition on XB

2 = l ∈ L′ in step (i) and choose a random neighbour of l in step (ii)). Hence
|E(L′, R′)| ≥ (1− o(1))dL|L′|. We now put these observations together to prove (4):

Pr[JB(XB
3) = 1] = |R′|/|R|

≥ |E(L′, R′)|/|R|
≥ (1− o(1))dL|L′|/|R|
= (3− o(1))|L′|/|L|
= (3− o(1)) Pr[JB(XB

2) = 1].

4.2 Lower bound for Pebbling

The Pebbling problem PEBG is defined relative to a DAG G = (V,E, v∗) where v∗ is a distinguished
source node (in-degree 0) and where every node has out-degree at most 2 (but in-degree may be un-
bounded). The input to PEBG is y ∈ {0, 1}E , that is, an boolean assignment to the edges of G. Such
an assignment y naturally defines a subgraph Gy of G consisting of all the edges e such that ye = 1,
which we call the active edges. The goal is to output one of the following types of solution.

(i) the distinguished source node is a sink (out-degree 0) in Gy.
(ii) a node v ∈ V that is a proper sink in Gy, meaning v has in-degree ≥ 1 and out-degree 0.

Note that the presence of any solution can be certified by reading at most 3 bits, and hence PEBG
corresponds to the canonical search problem of an unsatisfiable 3-CNF formula. Moreover, if G has m
edges then this 3-CNF formula has at most m+ 1 clauses, as every possible violation in PEBG is either
the violation of the first type, or can be identified with an incoming edge to a node. It follows that for
all z ∈ {0, 1}m

violPEBG(z)− 1 ≤ m, (5)

which we have recorded for later use.
We prove the following theorem, which is a strengthening of Theorem 1.8.

Theorem 4.5. There is a DAG G with m edges such that d̃eg+
1/20(violPEBG − 1) ≥ mΩ(1).

Proof. We describe a simple reduction from ITERn to PEBG whereG hasO(n3) edges. The goal of the
reduction is to show that any degree-d conical junta approximating violPEBG − 1 can be translated into
a degree-d conical junta approximating violITERn − 1. Hence the theorem follows from Theorem 4.2.

The DAG G = (V,E, v∗) is defined as follows. First, V includes all nodes in the grid [n] × [n]
underlying ITERn. We naturally set v∗ := (1, 1). Observe that naively connecting each grid node to all
its possible n successors on the subsequent row would result in a DAG of unbounded out-degree. To
circumvent this, we instead include in G for every node v = (i, j) ∈ [n−1]× [n], a log n-depth binary
tree Tv with n leaves `v1, . . . , `

v
n. We identify the root of Tv with v and we identify each leaf `vk with the

17

grid node (i+ 1, k) ∈ [n]× [n]. Finally, we include in V an extra bottom row of nodes {n+ 1} × [n].
For every grid node (n, j) on the n-th row, we include the single edge ev := ((n, j), (n + 1, j)). This
completes the description of G.

Given an input x to ITERn we define an input y = y(x) to PEBG as follows. Consider a node
v ∈ [n− 1]× [n]. If xv = k ∈ [n] we activate all edges on the unique root-to-`vk path in Tv and disable
the other edges in Tv. If xv = ⊥ we disable all edges in Tv. Finally, for a node v = (n, j) on the last
row, we activate its associated edge ev iff xv = >.

Note that y = y(x) faithfully “models” the input x in the sense that the solutions of x appear asso-
ciated with the same nodes as solutions in y. In particular, violITERn(x) = violPEBG(y). Moreover, each
variable ye of PEBG is a function of a single variable of ITERn. Thus every degree-d conjunction J(y)
can be translated into a degree-d conjunction J ′(x) such that J ′(x) = J(y(x)). Applying this trans-
lation to the conjunctions in a conical junta, we conclude that if there is a conical junta approximating
violPEBG − 1, there is one for approximating violITERn − 1 of the same degree.

4.3 Separating Extended Formulations from Monotone Circuits

As we have seen in Section 2, if f : {0, 1}n → {0, 1, ∗} is a partial monotone boolean function then

msep(f) := min
ε>0

rank+(S+
f − ε1) ≤ mC(f),

and
msep1(f) := rank+(S+

f − 1) ≤ mF(f),

where mC(f) (mF(f)) is the size of the smallest monotone circuit (formula, resp.) computing f . It is
natural to wonder if it is necessary to chose ε < 1 in order to simulate monotone circuits — in other
words, whether or not msep1(f) is already upper bounded by mC(f). In this section, we show that the
separation proven in Section 4.2 implies that such a bound is not possible. In particular, we prove the
following theorem:

Theorem 1.9. The GENn function is computable by polynomial-size monotone circuits, but, there is a
δ > 0 such that msep1(GENn) = 2Ω(nδ).

Let us begin by defining the GENn function, which was originally introduced by Raz and McKen-
zie [51] and has now been the subject of a number of works in circuit complexity [13,22,23,34,51,54].

Definition 4.6. Let n be a positive integer. A set of triples T ⊆ [n]3 is said to generate k ∈ [n] if k = 1
or if there is a triple (i, j, k) ∈ T such that T generates both i and j.

The GENn function is a monotone boolean function defined as follows. As input, the function
receives a list of triples T ⊆ [n]3 encoded as a binary string of length {0, 1}n

3

. It then outputs 1 if and
only if n can be generated from T .

It is well known that GENn has polynomial-size monotone circuits [51], so, we focus on proving
the lower bound in Theorem 1.9. To do this we apply the following lifting theorem from conical junta
degree to non-negative rank due to Kothari, Meka, and Raghavendra [43] (we note that applying the
lifting theorem from Göös et. al. would also yield an essentially identical result [33]). In order to state
the theorem we introduce the important notion of a pattern matrix:

Definition 4.7. Let f : {0, 1}n → R be a boolean function, and let g : X × Y → {0, 1} be any
function. Define the pattern matrix f ◦ gn : X n × Yn → R for any x ∈ X n, y ∈ Yn by

(f ◦ gn)(x, y) := f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

18

We note that even though we have defined it as a function, we think of f ◦ gn as a X n × Yn matrix in
the natural way.

The next theorem is a slight modification of Theorem 1.7 in [43], and follows immediately from
the proof of [43].

Theorem 4.8. Let f : {0, 1}n → R≥0 be any boolean function with E[f] = 1, and suppose that
deg+(f+1/100n) ≥ 9 deg(f). For any b ≥ 100 log n there is a gadget function g : {0, 1}b×{0, 1}b →
{0, 1} such that

rank+(f ◦ gn) = 2Ω(b deg+(f+1/100n)).

We combine this theorem with our lower bound for PEBG from the previous section (Theorem 4.5)
and an embedding argument to prove the Theorem 1.9.

Theorem 4.9. There is a constant δ > 0 such that for all sufficiently large n, msep1(GENn) ≥ 2Ω(nδ).

Proof. LetG be the DAG withm edges guaranteeing the approximate conical junta degree lower bound
from Theorem 4.5, and let g be the gadget function guaranteed by Theorem 4.8. We begin by showing
that

rank+((violPEBG − 1) ◦ gm) = 2Ω(mδ)

for some universal constant δ > 0. Once we have this, we show that the pattern matrix (violPEBG − 1) ◦
gm can be embedded as a submatrix of the slack matrix S+

U,V associated with GENn (cf. Section 2);
since non-negative rank is monotone decreasing with respect to taking submatrices this immediately
implies msep1(GENn) ≥ 2Ω(nδ), proving the theorem.

Let f = violPEBG−1, with the goal of applying the previous lifting theorem, and note f : {0, 1}m →
R≥0 and furthermore that f(x) ≤ m by Equation 5. It follows that Ef ≤ m, and thus there is some
ε ≤ 1/100 such that

deg+(f/Ef + 1/100m) = deg+(violPEBG − 1 + Ef/100m)

= deg+(violPEBG − (1− ε))
≥ d̃eg+

ε (violPEBG − 1) ≥ mδ

where we have used the fact that deg+ is invariant under multiplying by positive constants, and also
Theorem 4.5. Finally, since violPEBG can be represented as a sum of violations of a 3-CNF formula it
follows that deg(f) = 3. We can therefore apply Theorem 4.8 and conclude that

rank+((violPEBG − 1) ◦ gm) = 2Ω(mδ).

So, in the remainder of the proof we show, for any DAG G with m edges, (violPEBG − 1) ◦ gm
can be embedded as a submatrix of the slack matrix S+

GENn
associated with the GENn function for

some n = poly(m). This is the same embedding argument that has been used in many works relating
“lifted” PEBG to GENn [22, 34, 51, 54]; for this reason, we only sketch the argument for the sake of
completeness. Recall from Section 2 the definition of S+

f : if f : {0, 1, ∗}n → {0, 1} is a partial
monotone boolean function and U = f−1(1), V = f−1(0), then S+

f is the |U | × |V | matrix defined by

S+
f (x, y) =

n∑
i=1

Jxi = 1 ∧ yi = 0K

19

for all x ∈ U, y ∈ V . To construct our embedding we create two mappings µ : {0, 1}mb → GEN−1
n (1)

and ρ : {0, 1}mb → GEN−1
n (0) such that S+

GENn
(µ(x), ρ(y)) = (violPEBG ◦ gm)(x, y).

Let G be any DAG with m edges, and assume without loss of generality that G has a single distin-
guished source node s∗ with a single outgoing edge, and sink nodes u1, . . . , ut. We define an auxiliary
graphGaux as follows. The nodes of the auxiliary graphGaux are the edges ofG. Then, if (u, v), (v, w)
are edges of G that share a node v, we add a directed edge ((v, w), (u, v)) to Gaux (note the reverse
in the edge direction). Note the sink node of Gaux corresponds to the unique edge leaving the source
node of s∗, and the source nodes of Gaux correspond to the edges that enter sinks of G.

Letting N = 2b, for each node in Gaux we create N points in the resulting GEN instance, and
we index each such point as ex for each x ∈ {0, 1}b. We also create a designated start node 1 and a
designated target node n.

Now we describe the functions µ, ρ in the embedding.

• Definition of µ : {0, 1}mb → GEN−1
n (1). Let x ∈ {0, 1}mb and write x = x1x2 · · ·xm where

xi ∈ {0, 1}b. Order the edges e1, e2, . . . , em, and we regard e1 as the unique edge leaving the
distinguished source node. We regard each xi ∈ {0, 1}b as selecting the point eixi from the
resulting GEN instance; we then plant a copy of Gaux inside the GEN instance on these points.
That is, whenever a node u = ei in Gaux has two incoming edges from v = ej , w = ek, we
plant the triple (eixi , e

j
xj , e

k
xk

); when u has only a single incoming edge from v we plant the triple
(ejxj , e

j
xj , e

i
xi). Finally, for each of source nodes u = ei of Gaux we add the triple (1,1, eixi).

It is easy to see that the result is in GEN−1(1), since we have explicitly planted the graph Gaux

connecting the source node 1 to the target node n.

• Definition of ρ : {0, 1}mb → GEN−1
n (0). Given y ∈ {0, 1}mb we similarly write y = y1y2 · · · ym

and add triples to the instance as follows. For any constraint of PEBG enforcing that a node v
in G is not a proper sink (for example, by preventing the case where ei = (u, v) is in G and
ej = (v, w1), ek = (v, w2) are not in G), and for any xi, xj , xk ∈ {0, 1}b, we add the triple
(ejxj , e

k
xk
, eixi) to the instance iff the constraint is satisfied by the assignment ei = g(xi, yi), e

j =

g(xj , yj), e
k = g(xk, yk). We apply a similar construction for each of the constraints corre-

sponding to the source node of s∗ having an outgoing edge and set all other triples to 0. This is a
0-instance of GENn since if it was a 1-instance it must contain an embedding of Gaux (as in the
construction of µ above), but this would imply that the corresponding assignment x embedding
Gaux would satisfy every constraint of PEBG, which is a contradiction.

Finally, to see that S+
GENn

(µ(x), µ(y)) = violPEBG(gm(x, y)) observe that, by construction, each triple
in µ(x) which does not occur in µ(y) corresponds exactly to a unique violated constraint of PEBG.

A Monotone Feasible Interpolation for Sherali-Adams

In this appendix we prove a refinement of Theorem 3.2, showing that Sherali-Adams is interpolated
by non-negative span programs, a model introduced by de Oliveira Oliveira and Publák [20] as an
extension of the classic span program of Karchmer and Wigderson [42].

Non-negative Span Programs. A non-negative span program (over the reals) is defined by a matrix
M ∈ Rk×t, a labelling ρ ∈ {1, zi,¬zi}k of the rows, and a “target” vector b ∈ Rt. The program is
monotone if no row is labelled by ¬zi. The non-negative span program accepts an input z ∈ {0, 1}n if

20

b is a conic combination of the rows of M labelled by 1 under z. That is, letting Mρ(z) be the matrix
obtained from M by replacing each column c ∈ [k] for which ρj(z) = 0 by the all-0 row, the non-
negative span program accepts iff there is non-negative vector y ∈ Rk such that y>Mρ(z) = b. A span
program computes a function f : {0, 1}n → {0, 1} if

f(z) = 1 ⇐⇒ ∃y ∈ Rk≥0, y>Mρ(z) = b.

The size of a non-negative span program is the size of the matrix M .

It is known that non-negative span programs are simulated by msep. Therefore, the following
interpolation theorem improves upon Theorem 3.2 in two ways: it provides a tighter connection of
Sherali-Adams proofs to a computational model, and it removes the pesky blow-up of 2d.

Theorem A.1. Let C be any unsatisfiable CNF formula and (X,Y) be any partition of its variables. If
there is a Sherali-Adams refutation of C of size s then there is a O(s2)-size non-negative span program
computing cert

(X,Y)
C .

We begin with some definitions that will be used throughout this section. A set of polynomials P
is unsatisfiable (modulo the ideal 〈x2

i = xi〉ni=1) if there is no x ∈ {0, 1}n such that p(x) ≥ 0 for
all p ∈ P . For this section it will be convenient to define Sherali-Adams refutations for more general
unsatisfiable sets of polynomials, rather than only CNF formulas. We state this generalization next, in
a manner that will be convenient for this section.

A Sherali-Adams refutation of an unsatisfiable set of polynomials P on variables x1, . . . , xn is
given by a set of polynomials R such that

• R contains only polynomials of the form pJ , or J , for p ∈ P and J a non-negataive junta.

• The constant −1 is in the cone generated by taking non-negative linear combinations of the
polynomials in R.

The size of a Sherali-Adams derivation is the number of distinct monomials occurring in the (monomial
expansion of) the polynomials in R.

We will work with a slight generalization of interpolant functions for polynomials. For an unsatis-
fiable set of polynomials A(x, z) ∪B(y, z) let

IA∪B(α) =

{
0 if A(x, α) is satisfiable,
1 if B(y, α) is satisfiable.

be the associated interpolant function.
The proof of Theorem A.1 will proceed as follows. First, we will reduce the task of constructing a

computation of an unsatisfiability certificate certC from a refutation of a CNF formula C to the task of
constructing an interpolant IAC∧BC from a refutation of an associated split formulaAC∧BC . Following
this, we show how to extract a small non-negative span program computing the monotone interpolant.
We will do this in two steps. First, we will show that a feasible disjunction property holds for Sherali-
Adams: from any refutation of an unsatisfiable system of polynomials A(x, z) ∧B(y, z) and a {0, 1}-
assignment α to the z-variables, we can extract a refutation of A(x, α) or B(y, α) of roughly the same
size. Second, we will use this feasible disjunction property to construct a monotone non-negative span
program which has the same size as the Sherali-Adams refutation and searches for a refutation of
A(x, α).

21

Reduction to Interpolant Formulas. Given any unsatisfiable CNF formula C we will describe a
transformation of C into a monotone split formula due to Hrubeš and Pudlák [41]. Then, we will argue
that any computation of the interpolant IC of the split formula associated with C is also a computation
of certC . Recall that we say that a split (CNF) formulaA(x, z)∧B(y, z) is monotone if every z-variable
in A occurs negatively.

From a CNF formula C = C1 ∧ . . . ∧Cm and a partition (X,Y) of its variables, we will define the
monotone CNF formula AC(X,Z) ∧ BC(Y, Z) as follows. Introduce m new variables z1, . . . , zm and
define

AC(x, z) := (CX1 ∨ ¬z1) ∧ . . . ∧ (CXm ∨ ¬zm)

BC(y, z) := (CY1 ∨ z1) ∧ . . . ∧ (CYm ∨ zm)

Let I(X,Y)
C be the interpolant associated with the split formula for AC ∧BC :

I
(X,Y)
C (α) =

{
0 if {CXi : αi = 1} is satisfiable,
1 if {CYi : αi = 0} is satisfiable.

Observe that I(X,Y)
C is exactly cert

(X,Y)
C . Finally, we record the following observation, which relates

the complexity of C and AC(x, z) ∧BC(y, z).

Observation A.2. There is a Sherali-Adams derivation of C from AC(x, z) ∧BC(y, z) of size |C|.

Thus, a lower bound on the size of refutations of the split formula would imply a lower bound on
the size of refutations of C.

Feasible Disjunction. We will show that from a Sherali-Adams refutation R of an unsatisfiable set
of polynomials A(x, z) ∪B(y, z) and assignment α 7→ z we can extract a refutation of either A(x, α)
or B(y, α) of the same size. In fact, we will first argue that simply restricting the polynomials in
R(x, y, z) to either the x-variables or the y-variables will constitute a refutation of either A(x, α) or
B(y, α). Let RA(x, z) be the set of polynomials obtained by projecting R onto the (x, y)-variables.
That is, RA is formed by first removing any polynomial involving an axiom from B (i.e., polynomials
of the form p(y, z)J(x, y, z) for p ∈ B) and discarding the y-juntas from the remaining polynomials
(i.e., p(x, z)J(x, z)J ′(y) is replaced by p(x, z)J(x, z) for p ∈ A. LetRB(y, z) be defined analogously.

Lemma A.3. Let α be any {0, 1}-assignment to the variables z. If there is a Sherali-Adams refutation
R of an unsatisfiable set of polynomials A(x, z)∪B(y, z) of size s then there is a refutation of A(x, α)
or B(y, α) using only the polynomials in RA(x, α) or RB(y, α) respectively.

The proof of this lemma is similar to a main lemma from [37]. It will be convenient to recall the
following notion of a pseudo-expectation for a set of polynomials R ⊆ R[x].

Definition A.4. Let R be a set of polynomials. A pseudo-expectation for R is a linear function Ẽ :
R[x]→ R satisfying

1. Ẽ[1] = 1,

2. Ẽ[p] ≥ 0 for every p ∈ R.

22

It is easy to see that −1 is a conic combination of the polynomials in R if and only if there is no
pseudo-expectation for R.

Claim. R is a Sherali-Adams refutation if and only if there is no pseudo-expectation for R.

Proof of Claim. Suppose for contradiction that R is a Sherali-Adams refutation and that there exists a
pseudo-expectation Ẽ for R. By the first assumption, there exists λ1, . . . , λ|R| ∈ R≥0 such that∑

pi∈R
λipi = −1.

Applying Ẽ to both sides of this equation yields a contradiction.
For the other direction, define the following sets

T1 := {p ∈ R[x] : p is a conic combination of polynomials R},
T2 := {−1}.

Since these sets are disjoint and convex, the hyperplane separation theorem yields a linear function
L : R[x]→ R such that L[p] ≥ 0 for every p ∈ T1 and L[−1] < 0. By linearity of L, L[1] > 0. Define
Ẽ as follows: for any polynomial p ∈ R[x] let

Ẽ[p] := L[p]/L[1]

and observe that the desired properties hold.

We are now ready to prove Lemma A.3.

Proof of Lemma A.3. Let R(x, y, z) be a Sherali-Adams refutation of A(x, z) ∪ B(y, z) and hence
R(x, y, α) is a refutation of A(x, α) ∪ B(y, α). Suppose that neither RA(x, α) nor Ry(y, α) is a
refutation; that is, −1 cannot be formed as a conic combination of the polynomials RA or RB . By the
previous claim there exists pseudo-expectations Ẽx and Ẽy for RA(x, α) and RB(y, α) respectively.
Define a linear function Ẽ : R[x, y]→ R as follows: for every monomial m(x)m′(y) let

Ẽ[m(x)m′(y)] := Ẽx[m(x)] · Ẽy[m′(y)],

and extend Ẽ linearly. We claim that Ẽ is a pseudo-expectation for R(x, y, α). Indeed, the following
holds by construction

Ẽ[p(x)J(x)J ′(y)] = Ẽx[p(x)J(x)] · Ẽy[J(y)] ≥ 0,

for every p(x)J(x)J ′(y) ∈ R(x, y, α), and similarly for q(y)J(x)J ′(y) ∈ R(x, y, α). Thus, Ẽ is a
pseudo-expectation for R(x, y, α), which by the previous claim is a contradiction.

Interpolation by Non-negative Span Programs. We now turn to showing that Sherali-Adams refu-
tations of split formulas are interpolated by (monotone) non-negative span programs.

Recall that we say that a CNF formula A(x, z) ∧B(y, z) on variables is monotone if only negative
z-literals appear in A. More generally, we say an unsatisfiable set of polynomials A(x, z) ∪B(y, z) is
monotone if every p ∈ A(x, z) can be written as polynomial

p(x, z) :=
∏
i∈I

zip(x)

for some (potentially empty) set of indices I and p ∈ R[x].

23

Theorem A.5. LetA(x, z)∪B(y, z) be an unsatisfiable set of polynomials. If there is a Sherali-Adams
refutation of A(x, z) ∪ B(y, z) of size s then there is a non-negative span program M of size poly(s)
such that M computes the interpolant IA∪B . Furthermore, if A(x, z) ∪B(y, z) is monotone then so is
M .

We will first prove our interpolation theorem for sets of polynomials A(x, z) ∪ B(y, z) satisfying
the following normal form from [49]. Afterwards, we will argue that this normal form assumption is
without loss of generality.

Definition A.6. A set of polynomials A(x, z) ∪ B(y, z) is in normal form if every polynomial either
does not contain a variable from z or is of the form zip(x) + p′(x) for a variable zi.

The high-level idea is that from a refutation R of A ∪ B we will construct a non-negative span
program which, on input α, searches for a refutation in RA(x, α). The columns of the non-negative
span program will be labelled by all monomials restricted to the x-variables in R and each row of the
non-negative span program will be a polynomial from RA(x, α). Therefore, there will exist a non-
negative linear combination of the rows equalling (−1, 0, . . . , 0), where the first column is corresponds
to the monomial 1, if and only if RA(x, α) is a Sherali-Adams refutation.

Lemma A.7. If there is a Sherali-Adams refutation of an (monotone) unsatisfiable set of polynomials
A(x, z) ∪ B(y, z) in normal form of size s then there is a (monotone) non-negative span program M
of size O(s2) computing the interpolant IA∪B .

Proof. Let R be a refutation of A(x, z) ∪ B(y, z). We will construct a non-negative span program
(M,ρ, b) which, given an assignment α, searches for a refutation in RA(x, α). Denote by Sx the set
of monomials in the variables x that occur in the polynomials R, including the constant 1. That is,
m(x) ∈ Sx iff there exists a monomial m′(y, z) and polynomial p ∈ RA such that mm′ occurs in the
expansion of p as a sum of monomials. The columns of the matrix M will index all monomials in Sx.

The rows of M will be all polynomials in RA(x, y), more formally the coefficients vectors of those
polynomials. We will accomplish this as follows:

• For each polynomial (zip(x) + p′(x))J(x)J ′(z) in RA, if zi = 1 ; J ′(z) = 0 create a row
containing the coefficient vector of the polynomial (p(x)+p′(x))J(x) and label the row with zi.
As well, if zi = 0 ; J ′(z) = 0 create a row containing the coefficient vector of p′(x)J(x) and
label it ¬zi.

• For each polynomial p(x)J(x)J ′(y) ∈ RA which does not depend on a z-variable, create a row
containing the coefficient vector of p(x)J(x) and label it 1.

Let ρ be the labelling that results, and define b := (−1, 0, . . . , 0), where we have assumed that the first
column of M corresponds to the monomial 1. Observe that the non-negative span program (M,ρ, b)
accepts if and only if −1 is a non-negative linear combination of the rows labelled 1 under an assign-
ment α ∈ {0, 1}n. That is, the non-negative span program tests whether there is a Sherali-Adams
refutation of A(x, α) using the polynomials RA. Furthermore, if A is monotone, then we no longer
have any rows labelled by ¬zi and the non-negative span program is monotone.

It remains to argue that (M,ρ, b) computes IA∪B correctly. That is, if it accepts α ∈ {0, 1}n then
A(x, α) is unsatisfiable and if it rejects α then B(y, α) is unsatisfiable. This follows from Lemma A.3,
noting that the rows of Mρ(α) are exactly coefficient vectors of the polynomials in R(x, α). The non-
negative span program has at most |Sx| columns and |RA| rows, and is therefore of size ofO(|R|2).

24

To prove Theorem A.5 it remains to show that the normal form assumption is without loss of
generality; for this, we will use the transformations of Pudlák and Sgall [49]. In particular, any set of
polynomials A(x, z) can be transformed into normal form via the following process:

1. Introduce |z| new variables w.

2. Replace each polynomial p(x, z) for p ∈ A by the polynomial p(x,w).

3. For each zi, introduce the constraint wi − zi = 0.

It is easy to see that the resulting formula is satisfiable iff the original formula is satisfiable. Next, we
show that Sherali-Adams can efficiently deduce the original formula from this normal form.

Claim. The constraints of A(x, z) can be deduced in Sherali-Adams in size poly(|A|) from the con-
straints which result from the aforementioned transformation.

Proof of Claim. Consider any monomial m(x,w) that is present in the monomial expansion of the
constraints resulting from the transformation; we will deduce m(x, z) as follows. Denote by m(x,w \
wi) the monomial obtained by discarding variable wi. Sequentially, for each variable wi in m(x,w, z),
replacem(x,w) bym(x,w)+m(x,w\wi)(xi−wi) ifm occurs positively inA(x, z) and bym(x,w)+
m(x,w \ wi)(wi − xi) if m occurs negatively.

Unfortunately, for monotone sets of polynomials A(x, z) this transformation destroys the mono-
tonicity. We will circumvent this by using an alternative transformation for monotone formulas:

1. For each monotone polynomial
∏k
i=1 zip(x) in A, introduce new variables wi for i ∈ [k].

2. Replace
∏k
i=1 zip(x) by the following set of polynomial inequalities

z1

(
p(x) +

k∑
i∈2

wi

)
= 0, z2w2 = 0, . . . , zkwk = 0.

It is not difficult to see that this transformation preserves satisfiability. One direction follows by
soundness and the observation that the constraints of the monotone normal form can be derived from the
constraints of the original formula in Sherali-Adams. For the other direction, consider any satisfying
assignment (x, z) to

∏k
i=1 zip(x) and note that either some zi = 0 or p(x) = 0. In the first case, set

wi = −p(x) and wj = 0 for j 6= i. In the second case, set wj = 0 for all j.

Claim. The constraints of A(x, z) can be deduced in Sherali-Adams from the constraints which result
from the transformation in size poly(|A|).

Proof of Claim. We will prove that each polynomial
∏k
i=1 zip(x) A(x, z) can be deduced in poly-

nomial size from the constraints that result from its monotone transformation as follows: For each
2 ≤ i ≤ k deduce z1 . . . zkwi = 0 and add it to z1 . . . zk(p(x) + w1 + . . .+ wk) = 0.

We can now prove Theorem A.5.

Proof of Theorem A.5. Let A(x, z) ∧ B(y, z) be a (monotone) unsatisfiable set of polynomials. By
the previous claims we can assume without loss of generality that these formulas are in normal form.
Applying Lemma A.7 completes the proof.

25

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem A.1. Suppose that there is a Sherali-Adams refutation of C of size s. Then, by Ob-
servation A.2, there is a refutation of the associated split formula AC ∧ BC of size O(s). Applying
Theorem A.5 to AC ∪BC , produces a monotone non-negative span program of size poly(s) computing
I

(X,Y)
C , which is equivalent to cert

(X,Y)
F .

References

[1] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving integrality gaps
without knowing the linear program. Theory Comput., 2(2):19–51, 2006.

[2] Albert Atserias and Elitza N. Maneva. Sherali-adams relaxations and indistinguishability in count-
ing logics. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012, pages 367–379. ACM, 2012.

[3] Albert Atserias and Joanna Ochremiak. Proof complexity meets algebra. ACM Trans. Comput.
Log., 20(1):1:1–1:46, 2019.

[4] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
relative complexity of NP search problems. In Frank Thomson Leighton and Allan Borodin,
editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29
May-1 June 1995, Las Vegas, Nevada, USA, pages 303–314. ACM, 1995.

[5] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for lov[a-acute]sz–schrijver
systems and beyond follow from multiparty communication complexity. SIAM J. Comput.,
37(3):845–869, 2007.

[6] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP gaps from
pairwise independence. Theory Comput., 8(1):269–289, 2012.

[7] Christoph Berkholz. The relation between polynomial calculus, sherali-adams, and sum-of-
squares proofs. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, vol-
ume 96 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[8] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. J. Symb. Log., 62(3):708–728, 1997.

[9] Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer. Approximation limits of
linear programs (beyond hierarchies). Math. Oper. Res., 40(3):756–772, 2015.

[10] Gábor Braun and Sebastian Pokutta. Common information and unique disjointness. Algorithmica,
76(3):597–629, 2016.

[11] Mark Braverman and Ankur Moitra. An information complexity approach to extended formula-
tions. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 161–170. ACM,
2013.

26

[12] Samuel R. Buss. Lower bounds on nullstellensatz proofs via designs. In Paul Beam and Samuel R.
Buss, editors, Proof Complexity and Feasible Arithmetics, Proceedings of a DIMACS Workshop,
New Brunswick, New Jersey, USA, April 21-24, 1996, volume 39 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 59–71. DIMACS/AMS, 1996.

[13] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via fourier
analysis. Theory Comput., 10:389–419, 2014.

[14] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[15] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global tradeoffs in metric
embeddings. SIAM J. Comput., 39(6):2487–2512, 2010.

[16] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting using low-discrepancy gadgets. SIAM J. Comput., 50(1):171–210, 2021.

[17] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
theorems via pseudorandom properties. CoRR, abs/1704.06807, 2017.

[18] Stefan S. Dantchev, Barnaby Martin, and Mark Nicholas Charles Rhodes. Tight rank lower
bounds for the sherali-adams proof system. Theor. Comput. Sci., 410(21-23):2054–2063, 2009.

[19] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relaxations of
maxcut. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, pages 53–61. SIAM, 2007.

[20] Mateus de Oliveira Oliveira and Pavel Pudlák. Representations of monotone boolean functions
by linear programs. ACM Trans. Comput. Theory, 11(4):22:1–22:31, 2019.

[21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is np-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, Virtual Event, Italy, June 21-25, 2021, pages 209–222. ACM, 2021.

[22] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc
Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 24–30. IEEE, 2020.

[23] Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In Irit Dinur, editor,
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October
2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 295–304. IEEE Computer Society,
2016.

[24] Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. Maxsat resolution and subcube
sums. In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing
- SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume
12178 of Lecture Notes in Computer Science, pages 295–311. Springer, 2020.

27

[25] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. Ex-
ponential lower bounds for polytopes in combinatorial optimization. J. ACM, 62(2):17:1–17:23,
2015.

[26] Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan,
and Avi Wigderson. On the power and limitations of branch and cut. In Valentine Kabanets, editor,
36th Computational Complexity Conference, CCC 2021, volume 200 of LIPIcs, pages 6:1–6:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[27] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algorithm
design. Electron. Colloquium Comput. Complex., 26:106, 2019.

[28] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-CNFs are
hard for cutting planes. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 109–120, 2017.

[29] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018.

[30] Mika Goos. Communication Lower Bounds via Query Complexity. PhD thesis, University of
Toronto (Canada), 2016.

[31] Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set polytopes.
SIAM J. Comput., 47(1):241–269, 2018.

[32] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is np-
hard. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020.

[33] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016.

[34] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. SIAM
J. Comput., 47(5):1778–1806, 2018.

[35] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
SIAM J. Comput., 49(4), 2020.

[36] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity.
Theor. Comput. Sci., 259(1-2):613–622, 2001.

[37] Tuomas Hakoniemi. Feasible interpolation for polynomial calculus and sums-of-squares. In Ar-
tur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), volume 168 of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

28

[38] Samuel B. Hopkins, Tselil Schramm, and Luca Trevisan. Subexponential lps approximate max-
cut. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 943–953. IEEE, 2020.

[39] Pavel Hrubes. On the nonnegative rank of distance matrices. Inf. Process. Lett., 112(11):457–461,
2012.

[40] Pavel Hrubes. On ε-sensitive monotone computations. Comput. Complex., 29(2):6, 2020.

[41] Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In Chris
Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society, 2017.

[42] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages 102–
111. IEEE Computer Society, 1993.

[43] Pravesh Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by juntas and
weakly-exponential lower bounds for LP relaxations of csps. CoRR, abs/1610.02704, 2016.

[44] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower
bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 132–145. ACM, 2017.

[45] Jan Krajı́cek. Interpolation theorems, lower bounds for proof systems, and independence results
for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

[46] Claire Mathieu and Alistair Sinclair. Sherali-adams relaxations of the matching polytope. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 293–302. ACM,
2009.

[47] Ryan O’Donnell and Tselil Schramm. Sherali - adams strikes back. In Amir Shpilka, editor, 34th
Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA,
volume 137 of LIPIcs, pages 8:1–8:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[48] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
J. Symb. Log., 62(3):981–998, 1997.

[49] Pavel Pudlák and Jirı́ Sgall. Algebraic models of computation and interpolation for algebraic
proof systems. In Paul Beam and Samuel R. Buss, editors, Proof Complexity and Feasible Arith-
metics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24,
1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 279–295. DIMACS/AMS, 1996.

[50] Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations of UNIQUE
GAMES. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, pages 575–585. IEEE Computer Society, 2009.

29

[51] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403–435,
1999.

[52] Alexander A Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya: mathematics, 59(1):205, 1995.

[53] Robert Robere. Unified lower bounds for monotone computation. PhD thesis, University of
Toronto (Canada), 2018.

[54] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower
bounds for monotone span programs. In Irit Dinur, editor, IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, pages 406–415. IEEE Computer Society, 2016.

[55] Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. Math. Pro-
gram., 142(1-2):255–268, 2013.

[56] Thomas Rothvoss. The matching polytope has exponential extension complexity. J. ACM,
64(6):41:1–41:19, 2017.

[57] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadel-
phia, PA, USA, pages 593–602. IEEE Computer Society, 2008.

[58] Xiaodi Wu, Penghui Yao, and Henry S. Yuen. Raz-mckenzie simulation with the inner product
gadget. Electron. Colloquium Comput. Complex., page 10, 2017.

[59] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. Syst. Sci., 43(3):441–466, 1991.

30

	Introduction
	Sherali-Adams as Proofs and Extended Formulations as Circuits
	Our Results
	Paper Outline

	Preliminaries
	Proof Systems
	Circuit Complexity and Extended Formulations.

	Upper Bounds
	A New Characterization of Sherali-Adams Degree
	Feasible Interpolation for Sherali-Adams

	Lower Bounds
	Conical Junta Lower Bound for Iteration
	Lower bound for Pebbling
	Separating Extended Formulations from Monotone Circuits

	Monotone Feasible Interpolation for Sherali-Adams

