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Abstract. Restarts are a widely-used class of techniques integral to
the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT
solvers. While the utility of such policies has been well-established em-
pirically, a theoretical explanation of whether restarts are indeed crucial
to the power of CDCL solvers is lacking.
In this paper, we prove a series of theoretical results that characterize the
power of restarts for various models of SAT solvers. More precisely, we
make the following contributions. First, we prove an exponential separa-
tion between a drunk randomized CDCL solver model with restarts and
the same model without restarts using a family of satisfiable instances.
Second, we show that the configuration of CDCL solver with VSIDS
branching and restarts (with activities erased after restarts) is exponen-
tially more powerful than the same configuration without restarts for
a family of unsatisfiable instances. To the best of our knowledge, these
are the first separation results involving restarts in the context of SAT
solvers. Third, we show that restarts do not add any proof complexity-
theoretic power vis-a-vis a number of models of CDCL and DPLL solvers
with non-deterministic static variable and value selection.

1 Introduction

Over the last two decades, Conflict-Driven Clause Learning (CDCL) SAT solvers
have had a revolutionary impact on many areas of software engineering, security
and AI. This is primarily due to their ability to solve real-world instances con-
taining millions of variables and clauses [15,16,6,18,2], despite the fact that the
Boolean SAT problem is known to be an NP-complete problem and is believed
to be intractable in the worst case.

This remarkable success has prompted complexity theorists to seek an expla-
nation for the efficacy of CDCL solvers, with the aim of bridging the gap between
theory and practice. Fortunately, a few results have already been established that
lay the groundwork for a deeper understanding of SAT solvers viewed as proof
systems [3,11,8]. Among them, the most important result is the one by Pipatsri-
sawat and Darwiche [18] and independently by Atserias et al. [2], that shows that
an idealized model of CDCL solvers with non-deterministic branching (variable
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selection and value selection), and restarts is polynomially equivalent to the gen-
eral resolution proof system. However, an important question that remains open
is whether this result holds even when restarts are disabled, i.e., whether config-
urations of CDCL solvers without restarts (when modeled as proof systems) are
polynomial equivalent to the general resolution proof system. In practice there
is significant evidence that restarts are crucial to solver performance.

This question of the “power of restarts” has prompted considerable theoretical
work. For example, Bonet, Buss and Johannsen [7] showed that CDCL solvers
with no restarts (but with non-deterministic variable and value selection) are
strictly more powerful than regular resolution. Despite this progress, the central
questions, such as whether restarts are integral to the efficient simulation of
general resolution by CDCL solvers, remain open.

In addition to the aforementioned theoretical work, there have been many
empirical attempts at understanding restarts given how important they are to
solver performance. Many hypotheses have been proposed aimed at explaining
the power of restarts. Examples include, the heavy-tail explanation [10], and
the “restarts compact assignment trail and hence produce clauses with lower
literal block distance (LBD)” perspective [14]. Having said that, the heavy-tailed
distribution explanation of the power of restarts is not considered valid anymore
in the CDCL setting [14].

1.1 Contributions

In this paper we make several contributions to the theoretical understanding of
the power of restarts for several restricted models of CDCL solvers:

1. First, we show that CDCL solvers with backtracking, non-deterministic dy-
namic variable selection, randomized value selection, and restarts4 are ex-
ponentially faster than the same model, but without restarts, with high
probability (w.h.p)5. A notable feature of our proof is that we obtain this
separation on a family of satisfiable instances. (See Section 4 for details.)

2. Second, we prove that CDCL solvers with VSIDS variable selection, phase
saving value selection and restarts (where activities of variables are reset
to zero after restarts) are exponentially faster (w.h.p) than the same solver
configuration but without restarts for a class of unsatisfiable formulas. This
result holds irrespective of whether the solver uses backtracking or back-
jumping. (See Section 5 for details.)

3. Finally, we prove several smaller separation and equivalence results for var-
ious configurations of CDCL and DPLL solvers with and without restarts.
For example, we show that CDCL solvers with non-deterministic static vari-
able selection, non-deterministic static value selection, and with restarts, are

4 In keeping with the terminology from [1], we refer any CDCL solver with randomized
value selection as a drunk solver.

5 We say that an event occurs with high probability (w.h.p.) if the probability of that
event happening goes to 1 as n → ∞.
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polynomially equivalent to the same model but without restarts. Another
result we show is that for DPLL solvers, restarts do not add proof theoretic
power as long as the solver configuration has non-deterministic dynamic
variable selection. (See Section 6 for details.)

2 Definitions and Preliminaries

Below we provide relevant definitions and concepts used in this paper. We refer
the reader to the Handbook of Satisfiability [6] for literature on CDCL and
DPLL solvers and to [12,4] for literature on proof complexity.

We denote by [c] the set of natural numbers {1, . . . , c}. We treat CDCL
solvers as proof systems. For proof systems A and B, we use A ∼p B to denote
that they are polynomially equivalent (p-equivalent). Throughout this paper it
is convenient to think of the trail π of the solver during its run on a formula F
as a restriction to that formula. We call a function π : {x1, . . . , xn} → {0, 1, ∗} a
restriction, where ∗ denotes that the variable is unassigned by π. Additionally,
we assume that our Boolean Constraint Propagation (BCP) scheme is greedy,
i.e., BCP is performed till “saturation”.
Restarts in SAT solvers. A restart policy is a method that erases part of
the state of the solver at certain intervals during the run of a solver [10]. In
most modern CDCL solvers, the restart policy erases the assignment trail upon
invocation, but may choose not to erase the learnt clause database or variable
activities. Throughout this paper, we assume that all restart policies are non-
deterministic, i.e., the solver may (dynamically) non-deterministically choose its
restart sequence. We refer the reader to a paper by Liang et al. [14] for a detailed
discussion on modern restart policies.

3 Notation for Solver Configurations Considered

In this section, we precisely define the various heuristics used to define SAT
solver configurations in this paper. By the term solver configuration we mean a
solver parameterized with appropriate heuristic choices. For example, a CDCL
solver with non-deterministic variable and value selection, as well as asserting
learning scheme with restarts would be considered a solver configuration.

To keep track of these configurations, we denote solver configurations by the
notation ME,R

A,B , where M indicates the underlying solver model (we use C for
CDCL and D for DPLL solvers); the subscript A denotes a variable selection
scheme; the subscript B is a value selection scheme; the superscript E is a
backtracking scheme, and finally the superscript R indicates whether the solver
configuration comes equipped with a restart policy. That is, the presence of
the superscript R indicates that the configuration has restarts, and its absence
indicates that it does not. A ∗ in place of A,B or E denotes that the scheme is
arbitrary, meaning that it works for any such scheme. See Table 1 for examples
of solver configurations studied in this paper.
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Table 1. Solver configurations in the order they appear in the paper. ND stands for
non-deterministic dynamic.

Model Variable Selection Value Selection Backtracking Restarts

CT,R
ND,RD CDCL ND Random Dynamic Backtracking Yes

CT
ND,RD CDCL ND Random Dynamic Backtracking No

CJ,R
VS,PS CDCL VSIDS Phase Saving Backjumping Yes

CJ
VS,PS CDCL VSIDS Phase Saving Backjumping No

CJ,R
S,S CDCL Static Static Backjumping Yes

CJ
S,S CDCL Static Static Backjumping No

DT
ND,∗ DPLL ND Arbitrary Backtracking No

DT,R
ND,ND DPLL ND ND Backtracking Yes

DT
ND,ND DPLL ND ND Backtracking No

DT,R
ND,RD DPLL ND Random Dynamic Backtracking Yes

DT
ND,RD DPLL ND Random Dynamic Backtracking No

CJ,R
ND,ND CDCL ND ND Backjumping Yes

CJ
ND,ND CDCL ND ND Backjumping No

3.1 Variable Selection Schemes

1. Static (S): Upon invocation, the S variable selection heuristic returns the
unassigned variable with the highest rank according to some predetermined,
fixed, total ordering of the variables.
2. Non-deterministic Dynamic (ND): The ND variable selection scheme
non-deterministically selects and returns an unassigned variable.
3. VSIDS (VS) [16]: Each variable has an associated number, called its ac-
tivity, initially set to 0. Each time a solver learns a conflict, the activities of
variables appearing on the conflict side of the implication graph receive a con-
stant bump. The activities of all variables are decayed by a constant c, where
0 < c < 1, at regular intervals. The VSIDS variable selection heuristic returns
the unassigned variable with highest activity, with ties broken randomly.

3.2 Value Selection Schemes

1. Static (S): Before execution, a 1-1 mapping of variables to values is fixed.
The S value selection heuristic takes as input a variable and returns the value
assigned to that variable according to the predetermined mapping.
2. Non-deterministic Dynamic (ND): The ND value selection scheme non-
deterministically selects and returns a truth assignment.
3. Random Dynamic (RD): A randomized algorithm that takes as input a
variable and returns a uniformly random truth assignment.
4. Phase Saving (PS): A heuristic that takes as input an unassigned variable
and returns the previous truth value that was assigned to the variable. Typically
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solver designers determine what value is returned when a variable has not been
previously assigned. For simplicity, we use the phase saving heuristic that returns
0 if the variable has not been previously assigned.

3.3 Backtracking and Backjumping Schemes

To define different backtracking schemes we use the concept of decision level
of a variable x, which is the number of decision variables on the trail prior to
x. Backtracking (T): Upon deriving a conflict clause, the solver undoes the
most recent decision variable on the assignment trail. Backjumping (J): Upon
deriving a conflict clause, the solver undoes all decision variables with decision
level higher than the variable with the second highest decision level in the conflict
clause.
Note on Solver Heuristics. Most of our results hold irrespective of the choice
of deterministic asserting clause learning schemes (except for Proposition 22).
Additionally, it goes without saying that the questions we address in this paper
make sense only when it is assumed that solver heuristics are polynomial time
methods.

4 Separation for Drunk CDCL with and without Restarts

Inspired by Alekhnovich et al. [1], where the authors proved exponential lower
bound for drunk DPLL solvers over a class of satisfiable instances, we studied
the behavior of restarts in a drunken model of CDCL solver. We introduce a class
of satisfiable formulas, Laddern, and use them to prove the separation between
CT,RND,RD and CTND,RD . At the core of these formulas is a formula which is hard for
general resolution even after any small restriction (corresponding to the current
trail of the solver). For this, we use the well-known Tseitin formulas.

Definition 1 (Tseitin Formulas). Let G = (V,E) be a graph and f : V →
{0, 1} a labelling of the vertices. The formula Tseitin(G, f) has variables xe for
e ∈ E and constraints

⊕
uv∈E xuv = f(v) for each v ∈ V .

For any graph G, Tseitin(G, f) is unsatisfiable iff
⊕

v∈V f(v) = 1, in which case
we call f an odd labelling. The specifics of the labelling are irrelevant for our
applications, any odd labelling will do. Therefore, we often omit defining f , and
simply assume that it is odd.

The family of satisfiable Laddern formulas are built around the Tseitin for-
mulas, unless the variables of the formula are set to be consistent to one of two
satisfying assignments, the formula will become unsatisfiable. Furthermore, the
solver will only be able to backtrack out of the unsatisfiable sub-formula by first
refuting Tseitin, which is a provably hard task for any CDCL solver [20].

The Laddern formulas contain two sets of variables, `ij for 0 ≤ i ≤ n− 2, j ∈
[log n] and cm for m ∈ [log n], where n is a power of two. We denote by `i

the block of variables {`i1, . . . , `ilogn}. These formulas are constructed using the
following gadgets.
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Ladder gadgets: Li := (`i1 ∨ . . . ∨ `ilogn) ∧ (¬`i1 ∨ . . . ∨ ¬`ilogn).
Observe that Li is falsified only by the all-1 and all-0 assignments.
Connecting gadgets: Ci := (c

bin(i,1)
1 ∧ . . . ∧ cbin(i,logn)logn ).

Here, bin(i,m) returns the mth bit of the binary representation of i, and c1m :=
cm, while c0m := ¬cm. That is, Ci is the conjunction that is satisfied only by the
assignment encoding i in binary.
Equivalence gadget: EQ :=

∧n−2
i,j=0

∧logn
m,k=1(`

i
k ⇐⇒ `jm).

These clauses enforce that every `-variable must take the same value.

Definition 2 (Ladder formulas). For G = (V,E) with |E| = n − 1 where n
is a power of two, let Tseitin(G, f) be defined on the variables {`01, . . . , `n−21 }.
Laddern(G, f) is the conjunction of the clauses representing

Li ⇒ Ci, ∀0 ≤ i ≤ n− 2

Ci ⇒ Tseitin(G, f), ∀0 ≤ i ≤ n− 2

Cn−1 ⇒ EQ.

Observe that the Laddern(G, f) formulas have polynomial size provided that the
degree ofG is O(log n). As well, this formula is satisfiable only by the assignments
that sets cm = 1 and `ij = `pq for every m, j, q ∈ [log n] and 0 ≤ i, p ≤ n− 2.

These formulas are constructed so that after setting only a few variables, any
drunk solver will enter an unsatisfiable subformula w.h.p. and thus be forced to
refute the Tseitin formula. Both the ladder gadgets and equivalence gadget act as
trapdoors for the Tseitin formula. Indeed, if any c-variable is set to 0 then we have
already entered an unsatisfiable instance. Similarly, setting `ij = 1 and `pq = 0
for any 0 ≤ i, p ≤ n−2, j, q ∈ [log n] causes us to enter an unsatisfiable instance.
This is because setting all c-variables to 1 together with this assignment would
falsify a clause of the equivalence gadget. Thus, after the second decision of the
solver, the probability that it is in an unsatisfiable instance is already at least
1/2. With these formulas in hand, we prove the following theorem, separating
backtracking CTND,RD solvers with and without restarts.

Theorem 3. There exists a family of O(log n)-degree graphs G such that

1. Laddern(G, f) can be decided in time O(n2) by CT,RND,RD , except with expo-
nentially small probability.

2. CTND,RD requires exponential time to decide Laddern(G, f), except with prob-
ability O(1/n).

The proof of the preceding theorem occupies the remainder of this section.

4.1 Upper Bound on Ladder Formulas Via Restarts.

We present the proof for part (1) of Theorem 3. The proof relies on the following
lemma, stating that given the all-1 restriction to the c-variables, CTND,RD will
find a satisfying assignment.
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Lemma 4. For any graph G, CTND,RD will find a satisfying assignment to
Laddern(G, f)[c1 = 1, . . . , clogn = 1] in time O(n log n).

Proof. When all c variables are 1, we have Cn−1 = 1. By the construction of
the connecting gadget, Ci = 0 for all 0 ≤ i ≤ n− 2. Under this assignment, the
remaining clauses belong to EQ, along with ¬Li for 0 ≤ i ≤ n − 2. It is easy
to see that, as soon as the solver sets an `-variable, these clauses will propagate
the remaining `-variables to the same value. ut

Put differently, the set of c variables forms a weak backdoor [23,24] for
Laddern formulas. Part (1) of Theorem 3 shows that, with probability at least
1/2, CT,RND,RD can exploit this weak backdoor using only O(n) number of restarts.

Proof (of Theorem 3 Part (1)). By Lemma 4, if CT,RND,RD is able to assign all c
variables to 1 before assigning any other variables, then the solver will find a
satisfying assignment in time O(n log n) with probability 1. We show that the
solver can exploit restarts in order to find this assignment. The strategy the
solver adopts is as follows: query each of the c-variables; if at least one of the
c-variables was assigned to 0, restart. We argue that if the solver repeats this
procedure k = n2 times then it will find the all-1 assignment to the c-variables,
except with exponentially small probability. Because each variable is assigned 0
and 1 with equal probability, the probability that a single round of this procedure
finds the all-1 assignment is 2− logn. Therefore, the probability that the solver
has not found the all-1 assignment after k rounds is

(1− 1/n)k ≤ e−k/n = e−n. ut

4.2 Lower Bound on Ladder Formulas Without Restarts

We now prove part (2) of Theorem 3. The proof relies on the following three tech-
nical lemmas. The first claims that the solver is well-behaved (most importantly
that it cannot learn any new clauses) while it has not made many decisions.

Lemma 5. Let G be any graph of degree at least d. Suppose that CTND,RD has
made δ < min(d− 1, log n− 1) decisions since its invocation on Laddern(G, f).
Let πδ be the current trail, then

1. The solver has yet to enter a conflict, and thus has not learned any clauses.
2. The trail πδ contains variables from at most δ different blocks `i.

We defer the proof of this lemma to the arXiv version of the paper [13].
The following technical lemma states that if a solver with backtracking has

caused the formula to become unsatisfiable, then it must refute that formula
before it can backtrack out of it. For a restriction π and a formula F , we say
that the solver has produced a refutation of an unsatisfiable formula F [π] if it has
learned a clause C such that C is falsified under π. Note that because general
resolution p-simulates CDCL, any refutation of a formula F [π] implies a general
resolution refutation of F [π] of size at most polynomial in the time that the
solver took to produce that refutation.
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Lemma 6. Let F be any propositional formula, let π be the current trail of the
solver, and let x be any literal in π. Then, CTND,ND backtracks x only after it has
produced a refutation of F [π].

Proof. In order to backtrack x, the solver must have learned a clause C asserting
the negation of some literal z ∈ π that was set before x. Therefore, C must only
contain the negation of literals in π. Hence, C[π] = ∅. ut

The third lemma reduces proving a lower bound on the runtime of CTND,ND

on the Laddern formulas under any well-behaved restriction to proving a general
resolution lower bound on an associated Tseitin formula.

Definition 7. For any unsatisfiable formula F , denote by Res(F ` ∅) the min-
imal size of any general resolution refutation of F .

We say that a restriction (thought of as the current trail of the solver) π to
Laddern(G, f) implies Tseitin if π either sets some c-variable to 0 or π[`ij ] = 1
and π[`pq ] = 0 for some 0 ≤ i, q ≤ n − 2, j, q ∈ [log n]. Observe that in both of
these cases the formula Laddern(G, f)[π] is unsatisfiable.

Lemma 8. Let π be any restriction that implies Tseitin and such that each
clause of Laddern(G, f)[π] is either satisfied or contains at least two unassigned
variables. Suppose that π sets variables from at most δ blocks `i. Then there is
a restriction ρ∗π that sets at most δ variables of Tseitin(G, f) such that

Res(Laddern(G, f)[π] ` ∅) ≥ Res(Tseitin(G, f)[ρ∗π] ` ∅).

We defer the proof of this lemma to the arXiv version of the paper [13], and
show how to use them to prove part (2) of Theorem 3. We prove this statement
for any degree O(log n) graph G with sufficient expansion.

Definition 9. The expansion of a graph G = (V,E) is

e(G) := min
V ′⊆V,|V ′|≤|V |/2

|E[V ′, V \ V ′]|
|V ′|

,

where E[V ′, V \ V ′] is the set of edges in E with one endpoint in V ′ and the
other in V \ V ′.
For every d ≥ 3, Ramanujan Graphs provide an infinite family of d-regular
expander graphs G for which e(G) ≥ d/4. The lower bound on solver runtime
relies on the general resolution lower bounds for the Tseitin formulas [20]; we
use the following lower bound criterion which follows immediately6 from [5].

Corollary 10 ([5]). For any connected graph G = (V,E) with maximum degree
d and odd weight function f ,

Res(Tseitin(G, f) ` ∅) = exp

(
Ω

(
(e(G)|V |/3− d)2

|E|

))
6 In particular, this follows from Theorem 4.4 and Corollary 3.6 in [5], noting that the
definition of expansion used in their paper is lower bounded by 3e(G)/|V | as they
restrict to sets of vertices of size between |V |/3 and 2|V |/3.
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We are now ready to prove the theorem.

Proof (of part (2) Theorem 3). Fix G = (V,E) to be any degree-(8 log n) graph
on |E| = n− 1 edges such that e(G) ≥ 2 log n. Ramanujan graphs satisfy these
conditions.

First, we argue that within δ < log n−1 decisions from the solver’s invocation,
the trail πδ will imply Tseitin, except with probability 1− /2δ−1. By Lemma 5,
the solver has yet to backtrack or learn any clauses, and it has set variables from
at most δ blocks `i. Let x be the variable queried during the δth decision. If x
is a c variable, then with probability 1/2 the solver sets ci = 0. If x is a variable
`ij , then, unless this is the first time the solver sets an `-variable, the probability
that it sets `ij to a different value than the previously set `-variable is 1/2.

Conditioning on the event that, within the first log n−2 decisions the trail of
the solver implies Tseitin (which occurs with probability at least (n− 8)/n), we
argue that the runtime of the solver is exponential in n. Let δ < log n− 1 be the
first decision level such that the current trail πδ implies Tseitin. By Lemma 6
the solver must have produced a refutation of Laddern(G, f)[πδ] in order to
backtrack out of the unsatisfying assignment. If the solver takes t steps to refute
Laddern(G, f)[πδ] then this implies a general resolution refutation of size poly(t).
Therefore, in order to lower bound the runtime of the solver, it is enough to lower
bound the size of general resolution refutations of Laddern(G, f)[πδ].

By Lemma 5, the solver has not learned any clauses, and has yet to enter
into a conflict and therefore no clause in Laddern(G, f)[πδ] is falsified. As well,
πδ sets variables from at most δ < log n− 1 blocks `i. By Lemma 8 there exists
a restriction ρ∗π such that Res(Laddern(G, f)[π] ` ∅) ≥ Res(Tseitin(G, f)[ρ∗π] `
∅). Furthermore, ρ∗π sets at most δ < log n − 1 variables and therefore cannot
falsify any constraint of Tseitin(G, f), as each clause depends on 8 log n variables.
Observe that if we set a variable xe of Tseitin(G, f) then we obtain a new
instance of Tseitin(Gρ∗π , f

′) on a graph Gρ∗π = (V,E \ {e}). Therefore, we are
able to apply Corollary 10 provided that we can show that e(Gρ∗π ) is large enough.

Claim 11. Let G = (V,E) be a graph and let G′ = (V,E′) be obtained from G
by removing at most e(G)/2 edges. Then e(G′) ≥ e(G)/2.

Proof. Let V ′ ⊆ V with |V ′| ≤ |V |/2. Then, E′[V ′, V \V ′] ≥ e(G)|V ′|−e(G)/2 ≥
(e(G)/2)|V ′|. ut

It follows that e(Gρ∗π ) ≥ log n. Note that |V | = n/8 log n. By Corollary 10,

Res(Laddern(G, f)[π] ` ∅) = exp(Ω(((n− 1)/24− 8 log n)2/n)) = exp(Ω(n)).

Therefore, the runtime of CTND,ND is exp(Ω(n)) on Laddern(G,F ) w.h.p. ut

5 CDCL+VSIDS Solvers with and without Restarts

In this section, we prove that CDCL solvers with VSIDS variable selection,
phase saving value selection and restarts (where activities of variables are reset
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to zero after restarts) are exponentially more powerful than the same solver
configuration but without restarts, w.h.p.

Theorem 12. There is a family of unsatisfiable formulas that can be decided in
polynomial time with CJ,RVS ,PS but requires exponential time with CJVS ,PS , except
with exponentially small probability.

We show this separation using pitfall formulas Φ(Gn, f, n, k), designed to be
hard for solvers using the VSIDS heuristic [22]. We assume that Gn is a constant-
degree expander graph with n vertices and m edges, f : V (Gn) → {0, 1} is a
function with odd support as with Tseitin formulas, we think of k as a constant
and let n grow. We denote the indicator function of a Boolean expression B with
JBK. These formulas have k blocks of variables named Xj , Yj , Zj , Pj , and Aj ,
with j ∈ [k], and the following clauses:

–
(⊕

e3v xj,e = f(v)
)
∨
∨n
i=1 zj,i, expanded into CNF, for v ∈ V (Gn) and j ∈

[k];
– yj,i1 ∨ yj,i2 ∨ ¬pj,i3 for i1, i2 ∈ [n], i1 < i2, i3 ∈ [m+ n], and j ∈ [k];
– yj,i1 ∨

∨
i∈[m+n]\{i2} pj,i∨

∨i2−1
i=1 xj,i∨¬xj,i2 for i1 ∈ [n], i2 ∈ [m], and j ∈ [k];

– yj,i1∨
∨
i∈[m+n]\{m+i2} pj,i∨

∨m
i=1 xj,i∨

∨i2−1
i=1+Ji2=nK zj,i∨¬zj,i2 for i1, i2 ∈ [n]

and j ∈ [k];
– ¬aj,1 ∨ aj,3 ∨ ¬zj,i1 , ¬aj,2 ∨ ¬aj,3 ∨ ¬zj,i1 , aj,1 ∨ ¬zj,i1 ∨ ¬yj,i2 , and aj,2 ∨
¬zj,i1 ∨ ¬yj,i2 for i1, i2 ∈ [n] and j ∈ [k]; and

–
∨
j∈[k] ¬yj,i ∨ ¬yj,i+1 for odd i ∈ [n].

To give a brief overview, the first type of clauses are essentially a Tseitin
formula and thus are hard to solve. The next four types form a pitfall gadget,
which has the following easy-to-check property.

Claim 13. Given any pair of variables yj,i1 and yj,i2 from the same block Yj,
assigning yj,i1 = 0 and yj,i2 = 0 yields a conflict.

Furthermore, such a conflict involves all of the variables of a block Xj , which
makes the solver prioritize these variables and it becomes stuck in a part of the
search space where it must refute the first kind of clauses. Proving this formally
requires a delicate argument, but we can use the end result as a black box.

Theorem 14 ([22, Theorem 3.6]). For k fixed, Φ(Gn, f, n, k) requires time
exp(Ω(n)) to decide with CJVS ,PS , except with exponentially small probability.

The last type of clauses, denoted by Γi, ensure that a short general resolution
proof exists. Not only that, we can also prove that pitfall formulas have small
backdoors [23,24], which is enough for a formula to be easy for CJ,RVS ,PS .

Definition 15. A set of variables V is a strong backdoor for unit-propagation if
every assignment to all variables in V leads to a conflict, after unit propagation.

Lemma 16. If F has a strong backdoor for unit-propagation of size c, then
CJ,RVS ,PS can solve F in time nO(c), except with exponentially small probability.
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Proof. We say that the solver learns a beneficial clause if it only contains vari-
ables in V . Since there are 2c possible assignments to variables in V and each
beneficial clause forbids at least one assignment, it follows that learning 2c ben-
eficial clauses is enough to produce a conflict at level 0.

Therefore it is enough to prove that, after each restart, we learn a beneficial
clause with large enough probability. Since all variables are tied, all decisions
before the first conflict after a restart are random, and hence with probability
at least n−c the first variables to be decided before reaching the first conflict are
(a subset of) V . If this is the case then, since V is a strong backdoor, no more
decisions are needed to reach a conflict, and furthermore all decisions in the trail
are variables in V , hence the learned clause is beneficial.

It follows that the probability of having a sequence of n2c restarts without
learning a beneficial clause is at most

(1− n−c)n
2c

≤ exp(−n−c · n2c) = exp(−nc) (1)

hence by a union bound the probability of the algorithm needing more than
2c · n2c restarts is at most 2c · exp(−nc). ut

We prove Theorem 12 by showing that Φ(Gn, f, n, k) contains a backdoor of
size 2k(k + 1).

Proof (of Theorem 12). We claim that the set of variables V = {yj,i | (j, i) ∈
[k]×[2k+2]} is a strong backdoor for unit-propagation. Consider any assignment
to V . Each of the k+1 clauses Γ1, Γ3, . . . , Γ2k+1 forces a different variable yj,i to
0, hence by the pigeonhole principle there is at least one block with two variables
assigned to 0. But by Claim 13, this is enough to reach a conflict.

The upper bound follows from Lemma 16, while the lower bound follows from
Theorem 14. ut

6 Minor Equivalences and Separations for CDCL/DPLL
Solvers with and without Restarts

In this section, we prove four smaller separation and equivalence results for
various configurations of CDCL and DPLL solvers with and without restarts.

6.1 Equivalence between CDCL Solvers with Static Configurations
with and without Restarts

First, we show that CDCL solvers with non-deterministic static variable and
value selection without restarts (CJS ,S ) is as powerful as the same configuration
with restarts (CJ,RS ,S ) for both satisfiable and unsatisfiable formulas. We assume
that the BCP subroutine for the solver configurations under consideration is
“fixed” in the following sense: if there is more than one unit clause under a
partial assignment, the BCP subroutine propagates the clause that is added to
the clause database first.
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Theorem 17. CJS ,S ∼p CJ,RS ,S provided that they are given the same variable
ordering and fixed mapping of variables to values for the variable selection and
value selection schemes respectively.

We prove this theorem by arguing for any run of CJ,RS ,S , that restarts can be
removed without increasing the run-time.

Proof. Consider a run of CJ,RS ,S on some formula F , and suppose that the solver
has made t restart calls. Consider the trail π for CJ,RS ,S up to the variable l from
the second highest decision from the last learnt clause before the first restart
call. Now, observe that because the decision and variable selection orders are
static, once CJ,RS ,S restarts, it will force it to repeat the same decisions and unit
propagations that brought it to the trail π. Suppose that this is not the case and
consider the first literal on which the trails differ. This difference could not be
caused by a unit propagation as the solver has not learned any new clauses since
the restart. Thus, it must have been caused by a decision. However, because the
clause databases are the same, this would contradict the static variable and value
order. Therefore, this restart can be ignored, and we obtain a run of CJ,RS ,S with
d − 1 restarts without increasing the run-time. The proof follows by induction.
Once all restarts have been removed, the result is a valid run of CJS ,S . ut

Note that in the proof of Theorem 17, not only we argue that CJS ,S is p-
equivalent to CJ,RS ,S , we also show that the two configurations produce the same
run. The crucial observation is that given any state of CJ,RS ,S , we can produce a
run of CJS ,S which ends in the same state. In other words, our proof not only
suggests that CJ,RS ,S is equivalent to CJS ,S from a proof theoretic point of view, it
also implies that the two configurations are equivalent for satisfiable formulas.

6.2 Equivalence between DPLL Solvers with ND Variable Selection
on UNSAT Formulas

We show that when considered as a proof system, a DPLL solver with non-
deterministic dynamic variable selection, arbitrary value selection and no restarts
(DT

ND,∗) is p-equivalent to DPLL solver with non-deterministic dynamic variable
and value selection and restarts (DT,R

ND,ND), and hence, transitively p-equivalent
to tree-like resolution—the restriction of general resolution where each conse-
quent can be an antecedent in only one later inference.

Theorem 18. DT
ND,∗ ∼p DT

ND,ND .

Proof. To show that DT
ND,ND p-simulates DT

ND,∗, we argue that every proof
of DT

ND,ND can be converted to a proof of same size in DT
ND,∗. Let F be an

unsatisfiable formula. Recall that a run of DT
ND,ND on F begins with non-

deterministically picking some variable x to branch on, and a truth value to
assign to x. W.l.o.g. suppose that the solver assigns x to 1. Thus, the solver will
first refute F [x = 1] before backtracking and refuting F [x = 0].
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To simulate a run of DT
ND,ND with DT

ND,∗, since variable selection is non-
deterministic, DT

ND,∗ also chooses the variable x as the first variable to branch
on. If the value selection returns x = α for α ∈ {0, 1}, then the solver focus
on the restricted formula F [x = α] first. Because there is no clause learning,
whether F [x = 1] or F [x = 0] is searched first does not affect the size of the
search space for the other. The proof follows by recursively calling DT

ND,∗ on
F [x = 1] and F [x = 0]. The converse direction follows since every run of DT

ND,∗
is a run of DT

ND,ND . ut

Corollary 19. DT
ND,∗ ∼p D

T,R
ND,ND .

Proof. This follows from the fact that DT,R
ND,ND ∼p DT

ND,ND . Indeed, with non-
deterministic branching and without clause learning, restarts cannot help. If ever
DT,R

ND,ND queries a variable x = α for α ∈ {0, 1} and then later restarts to assign
it to 1− α, then DT

ND,ND ignores the part of the computation when x = α and
instead immediately non-deterministically chooses x = 1− α. ut

It is interesting to note that while the above result establishes a p-equivalence
between DPLL solver models DT

ND,∗ and DT,R
ND,ND , the following corollary im-

plies that DPLL solvers with non-deterministic variable and randomized value
selection are exponentially separable for satisfiable instances.

6.3 Separation Result for Drunk DPLL Solvers

We show that DPLL solvers with non-deterministic variable selection, random-
ized value selection and no restarts (DT

ND,RD) is exponentially weaker than the
same configuration with restarts (DT,R

ND,RD).

Corollary 20. DT
ND,RD runs exponentially slower on the class of satisfiable for-

mulas Laddern(G, f) than D
T,R
ND,RD , with high probability.

The separation follows from the fact that our proof of the upper bound from The-
orem 3 does not use the fact the solver has access to clause learning, which means
the solver DT,R

ND,RD can also find a satisfying assignment for Laddern(G, f) in
time O(n2), except with exponentially small probability. On the other hand, the
lower bound from Theorem 3 immediately implies an exponential lower bound
for DT

ND,RD , since DT
ND,RD is strictly weaker than CTND,RD .

6.4 Separation Result for CDCL Solvers with WDLS

Finally, we state an observation of Robert Robere [19] on restarts in the context
of the Weak Decision Learning Scheme (WDLS).

Definition 21 (WDLS). Upon deriving a conflict, a CDCL solver with WDLS
learns a conflict clause which is the disjunction of the negation of the decision
variables on the current assignment trail.
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Theorem 22. CJND,ND+WDLS is exponentially weaker than CJ,RND,ND+WDLS.

Proof. The solver model CJND,ND with WDLS is only as powerful as DT
ND,ND ,

since each learnt clause will only be used once for propagation after the solver
backtracks immediately after learning the conlict clause, and remains satisfied for
the rest of the solver run. This is exactly how DT

ND,ND behaves under the same
circumstances. On the other hand, WDLS is an asserting learning scheme [17],
and hence satisfies the conditions of the main theorem in [18], proving that CDCL
with any asserting learning scheme and restarts p-simulates general resolution.
Thus, we immediately have CJ,RND,ND with WDLS is exponentially more powerful
than the same solver but with no restarts (for unsatisfiable instances). ut

7 Related Work

Previous Work on Theoretical Understanding of Restarts: Buss et al. [8]
and Van Gelder [21] proposed two proof systems, namely regWRTI and pool
resolution respectively, with the aim of explaining the power of restarts in CDCL
solvers. Buss et al. proved that regWRTI is able to capture exactly the power
of CDCL solvers with non-greedy BCP and without restarts and Van Gelder
proved that pool resolution can simulate certain configurations of DPLL solvers
with clause learning. As both pool resolution and regWRTI are strictly more
powerful than regular resolution, a natural question is whether formulas that
exponentially separate regular and general resolution can be used to prove lower
bounds for pool resolution and regWRTI, thus transitively proving lower bounds
for CDCL solvers without restarts. However, since Bonet et al. [7] and Buss
and Kołodziejczyk [9] proved that all such candidates have short proofs in pool
resolution and regWRTI, the question of whether CDCL solvers without restarts
are as powerful as general resolution still remains open.
Previous Work on Empirical Understanding of Restarts: The first pa-
per to discuss restarts in the context of DPLL SAT solvers was by Gomes and
Selman [10]. They proposed an explanation for the power of restarts popularly
referred to as “heavy-tailed explanation of restarts”. Their explanation relies on
the observation that the runtime of randomized DPLL SAT solvers on satisfi-
able instances, when invoked with different random seeds, exhibits a heavy-tailed
distribution. This means that the probability of the solver exhibiting a long run-
time on a given input and random seed is non-negligible. However, because of
the heavy-tailed distribution of solver runtimes, it is likely that the solver may
run quickly on the given input for a different random seed. This observation was
the motivation for the original proposal of the restart heuristic in DPLL SAT
solvers by Gomes and Selman [10].

Unfortunately, the heavy-tailed explanation of the power of restarts does not
lift to the context of CDCL SAT solvers. The key reason is that, unlike DPLL
solvers, CDCL solvers save solver state (e.g., learnt clauses and variable activ-
ities) across restart boundaries. Additionally, the efficacy of restarts has been
observed for both deterministic and randomized CDCL solvers, while the heavy-
tailed explanation inherently relies on randomness. Hence, newer explanations
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have been proposed and validated empirically on SAT competition benchmarks.
Chief among them is the idea that “restarts compact the assignment trail during
its run and hence produce clauses with lower literal block distance (LBD), a key
metric of quality of learnt clauses” [14].
Comparison of Our Separation Results with Heavy-tailed Explanation
of Restarts: A cursory glance at some of our separation results might lead
one to believe that they are a complexity-theoretical analogue of the heavy-
tailed explanation of the power of restarts, since our separation results are over
randomized solver models. We argue this is not the case. First, notice that our
main results are for drunk CDCL solvers that save solver state (e.g., learnt
clauses) across restart boundaries, unlike the randomized DPLL solvers studied
by Gomes et al. [10]. Second, we make no assumptions about independence (or
lack thereof) of branching decisions across restarts boundaries. In point of fact,
the variable selection in the CDCL model we use is non-deterministic. Only the
value selection is randomized. More precisely, we have arrived at a separation
result without relying on the assumptions made by the heavy-tailed distribution
explanation, and interestingly we are able to prove that the “solver does get
stuck in a bad part of the search space by making bad value selections”. Note
that in our model the solver is free to go back to “similar parts of the search
space across restart boundaries”. In fact, in our proof for CDCL with restarts,
the solver chooses the same variable order across restart boundaries.

8 Conclusions

In this paper, we prove a series of results that establish the power of restarts (or
lack thereof) for several models of CDCL and DPLL solvers. We first showed that
CDCL solvers with backtracking, non-deterministic dynamic variable selection,
randomized dynamic value selection, and restarts are exponentially faster than
the same model without restarts for a class of satisfiable instances. Second, we
showed CDCL solvers with VSIDS variable selection and phase saving without
restarts are exponentially weaker than the same solver with restarts, for a family
of unsatisfiable formulas. Finally, we proved four additional smaller separation
and equivalence results for various configurations of DPLL and CDCL solvers.

By contrast to previous attempts at a “theoretical understanding the power
of restarts” that typically assumed that variable and value selection heuristics in
solvers are non-deterministic, we chose to study randomized or real-world models
of solvers (e.g., VSIDS branching with phase saving value selection). The choices
we made enabled us to more effectively isolate the power of restarts in the solver
models we considered. This leads us to the belief that the efficacy of restarts
becomes apparent only when the solver models considered have weak heuristics
(e.g., randomized or real-world deterministic) as opposed to models that assume
that all solver heuristics are non-deterministic.
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Appendix

1. Proof of Lemma 5 (See page 7)

Lemma 5. Let G be any graph of degree at least d. Suppose that CND,RD has
made δ < min(d− 1, log n− 1) decisions since its invocation on Laddern(G, f).
Let πδ be the current trail, then

1. The solver has yet to enter a conflict, and thus has not learned any clauses.
2. The trail πδ contains variables from at most δ different blocks `i.

To prove this lemma, we will first argue that solver CND,RD is well-behaved
on the formula

F := {Li ⇒ Ci : 0 ≤ i ≤ n− 2} ∪ {Cn−1 ⇒ EQ}.

Lemma 23. Let πδ−1 be the trail of CND,RD after δ− 1 < min(log n− 2, d− 2)
decisions from invocation on F . Suppose that the solver has yet to encounter a
conflict. Let πδ be obtained from πδ−1 by deciding some literal x and applying
unit propagation. Then,

1. The solver does not encounter a conflict from deciding x and propagating.
2. If πδ does not contain an assignment ci = 0, then πδ contains assignments

to at most δ c-variables.
3. The trail πδ contains variables from at most δ different blocks `i.

We will delay the proof, and first argue that until the solver has made at least
min(log n − 1, d) decisions from its invocation, the clauses Ci ⇒ Tseitin(G, f)
will not impact its behaviour. That is, until the solver has made min(log n−1, d)
decisions, the solver will behave on Laddern(G, f) as if it were run on F .

Definition 24. We say that CND,RD behaves identically on two formulas F and
F ′ if given a trail π, a decision variable x, and an assignment α, they produce
the same trail π′ and learned clauses after setting x = α.

Claim 25. Let πδ−1 be any trail of CND,RD after δ − 1 < min(log n− 2, d− 2)
decisions from invocation on Laddern(G, f). Suppose that the solver has yet to
encounter a conflict, and πδ−1 sets variables from at most δ− 1 blocks `i. Then,
for any (x, α), CND,RD behaves identically on Laddern(G, f) and F .

Proof. Let πδ be a trail (closed under unit propagations) which sets variables
from less than min(log n − 2, d − 2) blocks `i and let x be the current decision
variable and α be its assignment. Observe that the clauses of Ci ⇒ Tseitin(G, f)
each depend on variables from d different blocks `i. Thus, these clauses cannot
cause any conflicts or propagations (and thus cause the behaviour on F and
Laddern(G, f) to differ on decision x = α) unless the clauses of Laddern(G, f) \
{Ci ⇒ Tseitin(G, f) : 0 ≤ i ≤ n − 2} = F cause the solver to set more than
a single literal from a previously untouched block `i. Because this propagation
would depend only on the clauses of F , this would contradict Lemma 23. ut
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Proof (of Lemma 5). The proof follows by combining Lemma 23 and Claim 25
together with induction on the number δ of decisions made thus far. Note that
the hypotheses of Lemma 23 and Claim 25 are satisfied for δ = 0. ut

It remains to prove Lemma 23. The proof of the first point will rely on the
following lemma which says that F is satisfiable provided we have not set all
c-variables to 1. This will be crucial in the proof of statement 1 in Lemma 23.
Indeed, the unit propagator cannot propagate a formula into a conflict if there
is a satisfying assignment.

Claim 26. Let π be a partial assignment to the variables of F such that π is
closed under unit propagation, π does not falsify any clause of F , and either
π sets some ci = 0 or there are at least two c-variables that have not been set
by π. Then, for any variable x not set by π, F [π, x = α] is satisfiable for any
α ∈ {0, 1}.
Proof. First, observe that F [π] is satisfiable by the assignment ρ extending π:

ρ(`ij) :=


π(`ij) if π sets `ij
β if there exists k ∈ [log n] such that π(`ik) = β.
0 otherwise

ρ(cm) :=

{
π(cm) if π sets cm
0 otherwise

To see that this is satisfying, first note that Cn−1 is falsified as ρ sets some ci = 0.
Therefore, the clauses of Cn−1 ⇒ EQ are satisfied. To see that the clauses of
Li ⇒ Ci are satisfied, first observe that if ρ sets all variables in a block `i to the
same value then this falsifies Li and satisfies Li ⇒ Ci.

Claim 27. There can be at most a single 0 ≤ i ≤ n − 2 for which there is
j, k ∈ [log n] such that π[`ij ] = 0 and π[`ik] = 1. Furthermore, the existence of
such a pair `ik, `

i
j forces π to set π(cm) = bin(i,m) for all m ∈ [log n].

Proof. This follows because the clausal expansion of Li ⇒ Ci contains (`ij∨¬`ik∨
c
bin(i,m)
m ) for all m ∈ [log n]. Because π is closed under unit propagation, these
clauses must have forced π to set cm = bin(i,m) for all m ∈ [log n]. Therefore,
if there was a h 6= i for which some π[`hp ] = 0 and π[`hq ] = 1, then the clause
(`hp ∨¬`hq ∨ c

bin(h,m)
m ) for which bin(h,m) 6= bin(i,m) would be falsified by π. ut

Therefore, there is at most one block `i that for which all variables are not set
to the same value by ρ. In which case π(cm) = bin(i,m) for all m ∈ [log n] and
Li ⇒ Ci is satisfied.

Next, we construct a satisfying assignment for F [π, x = α]. If x = cm∗ for
some m∗ ∈ [log n], then define

ρc(`
i
j) := ρ(`ij) ∀ 0 ≤ i ∈ n− 2, j ∈ [log n]

ρc(cm) :=

{
ρ(cm) if m 6= m∗

α otherwise
∀ m ∈ [log n]
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By Claim 27, does not exist 0 ≤ i ≤ n − 2, j, k ∈ [log n] such that π[`ij ] = 0

and π[`ik] = 1, as this would imply that all c-variables had already been set by
π. Thus, ρ, and therefore ρc, must set all variables in each block `i to the same
value. As well, because π has at least two c-variables unset (one of which is x)
ρc must set at least one ci = 0 and therefore satisfy Cn−1 ⇒ EQ.

Next, suppose that x = `i
∗

j∗ for some 0 ≤ i∗ ≤ n − 2, j∗ ∈ [log n]. If every
variable in block `i

∗
either has not been set by π, or has its value set to α, then

ρ is a satisfying assignment to F [π, x = α]. So, suppose that this is not the case.
Assume wlog that α = 0 and let k∗ ∈ [log n] be such that π[`i

∗

k∗ ] = 1. Then,
we claim that there does not exist i 6= i∗ such that there is p, q ∈ [log n] for
which π[`ip] = 0 and π[`iq] = 0. Indeed, by Claim 27 this would imply that the
π(ci) = bin(i,m) for all i ∈ [log n]. Let m∗ be such that bin(i,m) 6= bin(i,m∗)
then, because π sets cm∗ and `i

∗

k∗ the clause of Li
∗ ⇒ Ci

∗
,

(`i
∗

j∗ ∨ ¬`i
∗

k∗ ∨ c
bin(i,m∗)
m∗ )[π] = (`i

∗

j∗)

That is, it is unitary under π, contradicting our assumption that π is closed
under unit propagation. Next, observe that for every cm for m ∈ [log n] that π
has set, we must have π[cm] = bin(i∗,m), for every p ∈ [log n], otherwise the
clause of Li

∗ ⇒ Ci
∗
,

(`i
∗

p ∨ ¬`i
∗

k ∨ cbin(i
∗,m)

m )[π] = (`i
∗

j∗),

which contradicts our assumption that π is closed under unit propagation. Define
ρ` extending π as

ρ`(`
j
k) := ρ(`jk) ∀j 6= i∗, 0 ≤ j ≤ n− 2, k ∈ [log n]

ρ`(`
i∗

k ) :=


π(`i

∗

k ) if π sets `i
∗

k

α if `i
∗

k = x

0 otherwise
∀k ∈ [log n]

ρ`(cm) := bin(i∗,m) ∀m ∈ [log n]

We claim that ρ` is a satisfying assignment. Indeed, as argued previously all
clauses Li ⇒ Ci for i 6= i∗ are satisfied because ρ` sets all variables in the block
`i to the same value. Li

∗ ⇒ Ci∗ is satisfied because we have set cm = bin(i∗,m)
for all m ∈ [log n]. Finally, Cn−1 is falsified because i∗ 6= n − 1 and therefore
Cn−1 ⇒ EQ is satisfied. ut

Finally, we are ready to prove Lemma 23.

Proof (of Lemma 23). The proof is by induction on δ. That it holds for δ = 0 is
trivial because F does not contain any unit clauses.

To prove (1), observe that the trail πδ−1 satisfies the hypothesis of Claim 26.
Therefore, F [π, x = α] is satisfiable for every α ∈ {0, 1}. Because thee unit
propagator is sound, the unit propagator will not falsify a clause of the formula
and cause the solver to enter a conflict.
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To prove (2), suppose that πδ−1 sets at most δ − 1 < min(log n − 2, d − 2)
many c-variables, all of which are set to 1. We argue that if πδ does not set some
ci = 0, then it sets at most one additional c-variable to 1. First, observe that
because each clause of Cn−1 ⇒ EQ depends on at least log n c-variables, these
clauses cannot cause any propagations unless setting x = α causes the clauses of
{Ci ⇒ Li : i ∈ [n− 2]} to propagate more than one c-variable in the δth during
this decision level (i.e. πδ sets at least 2 more c-variables than πδ−1). Therefore,
we will restrict attention to the clauses of {Ci ⇒ Li : i ∈ [n− 2]} and show that
these clauses cannot cause the solver to set more than a single c-variable in the
δth decision level without setting some ci to 0.

First, because πδ does not set any ci = 0, there cannot exist 0 ≤ i ≤ n − 2,
j, k ∈ [log n] such that πδ[`ij ] = 0 and πδ[`ik] = 1. This is because there existsm ∈
[log n] such that bin(i,m) = 0 as i < n−1, and so the clause (`ij ∨¬`ik∨c

bin(i,m)
m )

of Li ⇒ Ci would propagate some cm = bin(i,m) = 0. Therefore, if x is a
variable `ij then all variables in `i that have been set by πδ−1 must take the
same value α ∈ {0, 1}. If no variable in `i has previously been set, then x may
be set freely. In the second case, x must be set to α so as to not propagate some
ci to 0. This cannot cause a propagation either, as if we can only set `i variables
to the same value, then each clause (`ij ∨¬`ik ∨ c

bin(i,m)
m ) of Li ⇒ Ci must either

contain an unset `i-variable, or be satisfied. In both of these cases, we have set
not set any additional c-variables.

Finally, suppose that x = cm∗ for some m∗ ∈ [log n]. We claim that setting
x = 1 cannot propagate any c-variables without setting some ci = 0. The only
way that setting a c-variable can propagate another c-variable is if there exists
0 ≤ i ≤ n − 2, k, h ∈ [log n] such that πδ−1[`ik] = 1 and π[`ih] = 0 for which
bin(i,m∗) = 0. In this case, consider the pair of clauses from Li ⇒ Ci,

(`ij ∨ ¬`ik ∨ c
bin(i,m∗)
m∗ ), (`ih ∨ ¬`ij ∨ cbin(i,m)

m ).

Then, setting x = cm∗ = 1 will propagate cm = bin(i,m). However, in the
clausal expansion of Li ⇒ Ci there exists a clause (`ih ∨¬`ij ∨ c

bin(i,p)
p ) for every

p ∈ [log n], and so this would propagate every c-variable. Because 0 ≤ i ≤ n− 2,
there exists some q ∈ [log n] such that bin(i, q) = 0. Thus, this would set some
cq = 0, contradicting our assumption that πδ does not set any c-variable to 0.

To prove (3), assume by induction that πδ−1 has set variables from at most
δ − 1 different blocks `i. Let i∗ be such that πδ−1 does not set any variables in
block `i

∗
. The only clauses that involve variables from `i

∗
belong to Li

∗ ⇒ Ci
∗

and Cn−1 ⇒ EQ. The clauses of the latter each depend on all log n c-variables.
Either some c-variable has been set to 0 by πδ or by (2), at most δ < log n − 1
c-variables have been set by πδ. In the first case, Cn−1 is falsified and thus all
clauses of Cn−1 ⇒ EQ are satisfied. In the second case, πδ has not set enough
c-variables for these clauses to cause any propagations.

Next, consider the clauses of Li
∗ ⇒ Ci

∗
which are all of the form (`i

∗

j ∨¬`i
∗

k ∨
c
bin(i∗,m)
m ) for some j, k,m ∈ [log n]. By assumption, both `i

∗

j and `i
∗

k have not
been set by πδ, and therefore cannot be unit propagated unless some variable
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from the block `i
∗
is set. Therefore, variables from block `i

∗
will be set by πδ

only if x belongs to `i
∗
. As x can only belong to at most one block `i, variables

from at most one additional block `i can be set by πδ than were set by πδ−1. ut

2. Proof of Lemma 8 (See page 8)

Lemma 8. Let π be any restriction such each clause of Laddern(G, f)[π] is ei-
ther satisfied or contains at least two unassigned variables, and π implies Tseitin.
Suppose that π sets variables from at most δ blocks `i. Then there exists a re-
striction ρ∗π that sets at most δ variables of Tseitin(G, f) such that

Res(Laddern(G, f)[π] ` ∅) ≥ Res(Tseitin(G, f)[ρ∗π] ` ∅).

The proof of this lemma will rely on the fact that the size of Resolution
proofs is closed under both restrictions and projections.

Definition 28. Let F be any formula over the variables {x1, . . . , xn} define a
projection as any map I : {x1, . . . , xn} → {x1, . . . , xk} for k ≤ n. Define the
projected formula projI(F ) under the projection I by replacing each occurrence
of a variable xj in F by I(xj).

That is, a projection may identify several variables as a single variable.

Lemma 29. Let F be any CNF formula. Then,

– For any restriction ρ ∈ {0, 1, ∗}n, Res(F ` ∅) ≥ Res(F [ρ] ` ∅).
– For any projection I, Res(F ` ∅) ≥ Res(projI(F ) ` ∅).

We omit the proof, but remark that it is folklore.

Proof (of Lemma 8). Let π be any restriction that implies Tseitin and such that
each clause of Laddern(G, f)[π] is either satisfied or contains at least two unset
literals (one should think of π as a trail produced by CND,RD). Furthermore,
suppose that π sets variables from at most δ blocks `i. To prove the lemma we
will construct a restriction and projection pair ρπ, Iπ consistent with π such that

projIπ
(
Laddern(G, f)[ρπ]

)
= Tseitin(G, f)[ρ∗π], (2)

for an associated restriction ρ∗π which sets at most δ variables. The Lemma 8
will follow by applying Lemma 29.

Define ρπ to be the restriction consistent with π which sets all remaining c-
variables, and sets the remaining variables in any block `i that has been partially
set by π to the same value. Formally,

ρπ(`
i
j) :=


∗ if π does not set any variable in block `i

0 if there exists p, q ∈ [log n] such that π[`ip] 6= π[`iq] 6= ∗
β if π[`ik] ∈ {β, ∗} for every k ∈ [log n], for some β ∈ {0, 1}

ρπ(cm) :=

{
π(cm) if π sets cm
0 otherwise
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Define the restriction ρ∗π as the projection of ρπ to the variables {`11, . . . , `n−11 }
of Tseitin(G, f),

ρ∗π(`
i
1) :=

{
∗ if π does not assign any variable in block `i

ρπ(`
i
1) otherwise.

Observe that |(ρ∗π)−1(1)|+ |(ρ∗π)−1(0)| ≤ δ because π sets variables from at most
δ blocks `i. Finally, define the projection Iπ as

Iπ(`
i
j) := `i1,

which contracts each variable in the block `i of Laddern(G, f)[ρπ] to the single
variable `i1 from block `i that Tseitin(G, f)[ρ∗π] depends on.

Next, we argue that none of the clauses {Li ⇒ Ci : 0 ≤ i ≤ n−2}∪{Cn−1 ⇒
EQ in Laddern(G, f)[ρπ] are falsified (it is okay if a clause Ci ⇒ Tseitin(G, f) is
falsified as the same clause will be falsified in Tseitin(G, f)[ρ∗π] by construction
and so the conclusion of Lemma 8 holds vacuously). Each clause of Li ⇒ Ci

is satisfied by any assignment that sets `ij to the same value β. Therefore, we
need only consider the case when π[`ip] = 0 and π[`iq] = 1 for some p, q ∈
[log n]. We claim that there can be at most one such i for which this occurs.
The constraint Li =⇒ Ci consists of clauses (`ip ∨ ¬`iq ∨ c

bin(i,m)
m ) for every

m ∈ [log n]. Thus, π(cm) = bin(i,m) for every m ∈ [log n] as otherwise this
would contradict our assumption that all clauses are either satisfied or contain
at least 2 unassigned variables. Therefore, the existence of some j 6= i and
p′, q′ ∈ [log n] such that π[`jp′ ] = 0 and π[`jq′ ] = 1 would mean that the clauses

(`jp′ ∨ ¬`
j
q′ ∨ c

bin(j,m)
m ) for m ∈ [log n] would contradict our assumption, as there

must exist some m′ ∈ [log n] such that bin(j,m) 6= bin(i,m). Thus, ρπ does
not falsify any Li ⇒ Ci. Finally, observe that Cn−1 ⇒ EQ is falsified only
by assignments that set ci = 1 for all i ∈ [log n]. Indeed, the clauses of this
constraint consist of (¬c1 ∨ . . . ∨ ¬clogn ∨ `ij ∨ ¬`pq) for every 0 ≤ i, p ≤ n − 2,
j, q ∈ [log n]. Under our assumption that there is some `ij , `pq such that π[`ip] = 0

and π[`iq] = 1 and that π does not falsify any clause, π cold not have set ci = 0
for all i ∈ [log n]. Thus, Cn−1 ⇒ EQ is satisfied under ρπ.

It remains to argue that (2) holds. All clauses of Li ⇒ Ci that are not
satisfied by ρπδ have all of their `-variables unset. These clauses are of the form
(`ij ∨ ¬`ik ∨ c

bin(i,m)
m ). Under the projection Iπδ this clause becomes (`i1 ∨ ¬`i1 ∨

c
bin(i,m)
m ), which is the identically 1 clause (it contains both `i1 and ¬`i1). ut
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