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Where A, B are CNF and all 7 variables occur positively in A
The Function Computed
Let a € {0,1}’ be any assignment to y = A(x, a) or B(y, a) is unsatisfiable

0 ifA(x, a) is satisfiable

Define monotone “interpolant” function IF(z) = { | if B( )i vsfiabl
If b(y, ) Is satisfiable

Interpolation for CP [P97]: Let [ be a split formula

Monotone Real Circuit
CP pro.of of % computing /
of size § of size pon(sf




Today: Interpolation for any Formula

Goal for today: remove the “split” assumption!



Today: Interpolation for any Formula

Goal for today: remove the “split” assumption!

Take a different view of the connection between proofs and circuits
— Proofs and circuits as computations of search problems



Today: Interpolation for any Formula

Goal for today: remove the “split” assumption!

Take a different view of the connection between proofs and circuits
— Proofs and circuits as computations of search problems

Search Problem: Arelation S C I X O
Givenx € I, output y € O such that (x,y) € $



Today: Interpolation for any Formula

Goal for today: remove the “split” assumption!

Take a different view of the connection between proofs and circuits
— Proofs and circuits as computations of search problems

Search Problem: Arelation S C I X O
Givenx € I, output y € O such that (x,y) € $
e.g.

Falsified Clause search problem: for an unsatisfiable CNF
F=C/A...ANC,,givenx € {0,1}", output i € [m] such that C:(x) = 0



Today: Interpolation for any Formula

First, we will characterize the complexity of circuits and proofs in terms of the
complexity of search problems
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The Karchmer-Wigderson search problem characterizes models of monotone
circuit complexity

Monotone Karchmer-Wigdreson: mKW, C 1) x~1(0)x {0,1}"
Givenx € f~1(1),y € f1(0) output i € [n] suchthatx; = 1andy, =0

Intuition: any monotone circuit computing f must must differentiate between 0-
inputs (y) and 1-inputs (x)
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The communication complexity of mKW will characterize monotone formulas
Communication Complexity: Two players
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The communication complexity of mKW will characterize monotone formulas
Communication Complexity: Two players

—

Communicate bits of information to find a solution i € [m] such that (x, y, 1) € MKW

View cc-protocol as a tree: -
. o/ \

Protocols as rectangle partitions:

If Alice sends a bit, partitions rows |:| ‘ ;‘)\

If Bob sends a bit, partitions columns O/ \4
05 03 0, —

Bob
Knows y € £~ 1(0)

Alice

Knows x € £~ (1)

—> Every node in the protoc.:ol tree Is associated with a rec:’cangle:I ==
— Leaves are monochromatic rectangles



Karchmer-Wigderson and Circuits

Monotone Formula: A tree-like circuit using only A and V gates
— Can only compute monotone functions

/’\/Q\

Ay Xy X3
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Karchmer-Wigderson:
Letf: 10,1}" — {0,1} be monotone. A cc-protocol for mKW(is equivalent a

monotone formula computing .

Proof—: From a protocol construct a monotone formula
o [f Alice speaks at node v label it with V

o |[f Bob speaks at node v label it with A
Correctness: Let R, be the rectangle at node v. /4 \ S \
— Show sub-circuit C, has C,(x) = 1, C\(y) = Ofor (x,y) € R,

XXy A3
By induction suppose this holds for Cul, CM2

» |f v = A Bob speaks, partitioning R, on columns.
o If v =V Alice speaks partitioning R,, on rows; symmetric argument.
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The False Clause Search Problem

The False Clause search problem characterizes the complexity of proof systems

False Clause Search Problem: Let F'= C; A ... A C,, be an unsat CNF.
Let X X Y be a partition of [n]. Search)]g’y C {0,1}* x {0,1}" X [m]:
Given (x,y) € {0,1}*! output i € [m] such that C.(x,y) =0

Intuition: Every refutation must prove that for every assignment x to F there is a
falsified clause of F
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Thm: For any unsatisfiable CNF formula /" = C; A ... A C,, and any partition

X X Y of [n] there is a monotone function f : {0,1}™ — {0,1} and mappings
A {01V = D), R: {0,1} = £~1(0) such that

(x,y,i) € searchy’ < (A(x),R(Y),1) € mKW;
Proof: Specify A(x) of accepting inputs and R(y) of rejecting inputs

The function: Let f be a monotone function which accepts A(x) for all x € {0,1}* and
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() . What is this function explicitly?
. A(x) € {0,1}":setA(x), = liffexists y € {0,1}' sit. C(x,y) =0
.« R(y) € {0,1}™ set R(y), = Oiffexists x € {0,1}*s.t. Ci(x,y) =0
Let Cl.X be obtained by discarding the Y-variables from C; Cl.Y analogous
vy 0 ifC}: a, = 1is satisfiable
[HP17] unsat certificate:  cert " (a) = .
1 ifC; : a; =0 is satisfiable

|[FPPR17] proved same theorem using a function containing cert as a projection
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Thm: For any unsatisfiable CNF formula /" = C; A ... A C,, and any partition
X X Y of [n] there is a monotone function f : {0,1}™ — {0,1} and mappings
A: {01 = LD, R: {0,1} = £~1(0) such that

(x,y,i) € searchy’ < (A(x),R(Y),1) € mKW;

Changing the underlying model of computation from cc-protocols to other
models changes the different interpolation theorems we get!

« Communication dags/PLS“ protocols = Resolution, monotone circuits
* Real communication dags = Cutting Planes, monotone real circuits
 Communication in expectation = Sherali-Adams, extended formulations
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() . How does cert relate to the interpolant function for split formulas?

0 ifC*: a = 1is satisfiable
certy ' (@) = { !
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