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Today: Interpolation for any Formula
Goal for today: remove the “split” assumption!

Search Problem: A relation   
Given , output  such that 

S ⊆ I × O
x ∈ I y ∈ O (x, y) ∈ S

e.g. 

Falsified Clause search problem: for an unsatisfiable CNF 
, given , output  such that F = C1 ∧ … ∧ Cm x ∈ {0,1}n i ∈ [m] Ci(x) = 0

Take a different view of the connection between proofs and circuits

 Proofs and circuits as computations of search problems→
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Monotone Karchmer-Wigdreson: 

Given ,  output  such that  and 

𝗆𝖪𝖶f ⊆ f −1(1) × f −1(0) × {0,1}n

x ∈ f −1(1) y ∈ f −1(0) i ∈ [n] xi = 1 yi = 0
Intuition: any monotone circuit computing  must must differentiate between 0-
inputs  and 1-inputs 

f
(y) (x)
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Alice Bob

Knows x ∈ f −1(1) Knows y ∈ f −1(0)

Communicate bits of information to find a solution  such that i ∈ [m] (x, y, i) ∈ 𝗆𝖪𝖶f

⟺
A
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The communication complexity of  will characterize monotone formulas𝗆𝖪𝖶

View cc-protocol as a tree:
Protocols as rectangle partitions: 

If Bob sends a bit, partitions columns
If Alice sends a bit, partitions rows

 Every node in the protocol tree is associated with a rectangle⟹
 Leaves are monochromatic rectangles→
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ȳy

A tree-like resolution proof implies a cc-protocol for 𝖲𝖾𝖺𝗋𝖼𝗁X,Y
F

Thm:



The False Clause Search Problem

   (x2 ∨ y) (x̄1 ∨ ȳ) (x̄2) (x1 ∨ ȳ)
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ȳy

Invariant: If  is the current clause C C(x, y) = 0
If  was derived from  by resolving on

•  then Alice sends  to Bob

•  then Bob sends  to Alice

C C′￼, C′￼′￼

xi xi
yi yi

Move to the child  or  containing the 
falsified literal

C′￼ C′￼′￼

A tree-like resolution proof implies a cc-protocol for 𝖲𝖾𝖺𝗋𝖼𝗁X,Y
F

Thm:

Proof: On input  walk 
from the root to a leaf

(x, y) ∈ {0,1}X × {0,1}Y



The False Clause Search Problem

   (x2 ∨ y) (x̄1 ∨ ȳ) (x̄2) (x1 ∨ ȳ)
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ȳy

Invariant: If  is the current clause C C(x, y) = 0
If  was derived from  by resolving on

•  then Alice sends  to Bob

•  then Bob sends  to Alice

C C′￼, C′￼′￼

xi xi
yi yi

Move to the child  or  containing the 
falsified literal

C′￼ C′￼′￼

0 1

Proof: On input  walk 
from the root to a leaf

(x, y) ∈ {0,1}X × {0,1}Y
x = [0,1], y = [0]



The False Clause Search Problem

A tree-like resolution proof implies a cc-protocol for 𝖲𝖾𝖺𝗋𝖼𝗁X,Y
F

Thm:

   (x2 ∨ y) (x̄1 ∨ ȳ) (x̄2) (x1 ∨ ȳ)
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• Real communication dags = Cutting Planes, monotone real circuits

• Communication in expectation = Sherali-Adams, extended formulations
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Then  is !
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𝖼𝖾𝗋𝗍X,Y
F
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We saw that for every  there is  such that F fF 𝗌𝖾𝖺𝗋𝖼𝗁F = 𝗆𝖪𝖶f

Yes!

-proofsCC1

Lines: any function  such that  can be evaluated 
with a single bit of communication

L : {0,1}X×Y → {0,1} f(x, y)
Let  be a partition of X × Y [n]

Semantic Inference rule: From  derive any  satisfying 

Soundness:  for every 

L1, L2 L
L1(x, y) ∧ L2(x, y) ⟹ L(x, y) (x, y) ∈ {0,1}X×Y

 proofs are equivalent to cc-protocols computing CC1 𝗌𝖾𝖺𝗋𝖼𝗁X,Y
F

And cc-protocols for  are equivalent to monotone formulas for 𝗆𝖪𝖶( fF) fF


