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 Can prove bounds on branch-and-cut by proving bounds on Cutting Planes⟹



Today
Lower bounds on the size of Cutting Planes proofs! 

Let’s recall Cutting Planes…
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How? An exciting connection between proofs and circuits!

Unlike other proof systems, there is only one lower bound technique for   
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Where  is an associated monotone function (defined later)fF : {0,1}m → {0,1}
Upshot: computational lower bounds imply proof lower bounds! 
In many cases, a converse is possible as well!
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Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
•  defines an -vertex graph :               iff 

•  defines a -clique in :        iff  is -th member of clique


•  defines a -coloring of :         has color  iff 

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

IF(y) = {0  if Clique(x, α) is unsatisfiable
1  if Color(α, z) is unsatisfiable

Interpolant function: 

Interpolation theorem for  implies -proof of   
-computation separating graphs with -cliques from -colorable graphs

P P Clique(x, y) ∧ Color(y, z)n,k ⟹
CP k (k − 1)



Feasible Interpolation Theorems
[R95]   Boolean circuitsS2

1(α) ⟹



Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a 
general method. Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹



Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a 
general method.
[PS97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹



Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a 
general method.
[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹



Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a 
general method.
[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹
[P97] Cutting Planes  Monotone real circuits⟹



Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a 
general method.
[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹
[P97] Cutting Planes  Monotone real circuits⟹

Only worked for split formulas!



Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹
[P97] Cutting Planes  Monotone real circuits⟹
[FPPR17, HP17] Generalized 
Interpolation to work for any 
unsatisfiable formula

  Monotone circuitsCCO(log n) ⟺
  Monotone real circuitsRCC1 ⟺

[K97] Defined interpolation as a 
general method.



Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹
[P97] Cutting Planes  Monotone real circuits⟹
[FPPR17, HP17] Generalized 
Interpolation to work for any 
unsatisfiable formula

  Monotone circuitsCCO(log n) ⟺
  Monotone real circuitsRCC1 ⟺

[FGGR22] Sherali-Adams  Extended Formulations⟹

[K97] Defined interpolation as a 
general method.



Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution  Monotone circuits⟹

  Boolean circuitsS2
1(α) ⟹

Nullstellensatz  Monotone span programs⟹

Cutting Planes*  Monotone circuits⟹
[P97] Cutting Planes  Monotone real circuits⟹
[FPPR17, HP17] Generalized 
Interpolation to work for any 
unsatisfiable formula

  Monotone circuitsCCO(log n) ⟺
  Monotone real circuitsRCC1 ⟺

[FGGR22]

[FGR22 unpublished]

Sherali-Adams  Extended Formulations⟹
SoS  Semidefinite EFs⟹

[K97] Defined interpolation as a 
general method.
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Feasible Interpolation For CP

[P97] Cutting Planes  Monotone real circuits⟹

Remainder of today:  
1. Prove this theorem

2. Use known lower bounds on monotone real circuits computing clique to obtain  

Cutting Planes lower bounds for Clique − Color
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Lemma: There is a time poly  algorithm which given a split formula 

, a  size  CP proof of  of , and  outputs 
(s)

F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

F = A(x, y) ∧ B(y, z)

Π

0 ≥ 1

A(x, α)

Π0

0 ≥ δ0

B(α, z)

Π1

0 ≥ δ1
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Proof of Lemma:

Lemma: There is a time poly  algorithm which given a split formula 
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Proof of Lemma: Claim allows us to extract from  a proof of  
  if  is unsatisfiable 
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Proof of Lemma: Applying claim to the last line  of , we get

• Derivation of  from 

• Derivation of  from 

0 ≥ 1 Π
0 ≥ δ0 A(x, α)
0 ≥ δ1 B(α, z)

With δ0 + δ1 ≥ 1

Either  and so  is unsatisfiable  
      or  and so  is unsatisfiable
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Proof of Lemma: The poly-time algorithm:  
on input 

1. Constructs  and  in time poly 
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Proof of Lemma: The poly-time algorithm:  
on input 

1. Constructs  and  in time poly 

2. If  then  is unsatisfiable and we output 

3. Otherwise,  and  is unsatisfiable, so output 

α ∈ {0,1}y

δ0 δ1 (s)
δ0 > 0 A(x, α) 0

δ1 > 0 B(α, z) 1

Lemma: There is a time poly  algorithm which given a split formula 
, a  size  CP proof of  of , and  outputs 
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Proof: by induction. Base case: 
• If  belongs to  then   

 Let  and the proof  be the axiom  of  
 Let  and the proof  be the trivial axiom 


• If  is an axiom of  then  
 Let  and  be  
 Let  and  be the axiom  of 

ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

ax + by + cz ≥ d B(y, z) a = 0
→ δ0 = 0 Π0 0 ≥ 0
→ δ1 = d − bα Π1 cz ≥ d − bα B(α, z)

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  
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3.  
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Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα



Feasible Interpolation For CP

Proof: by induction. Base case: 
• If  belongs to  then   

 Let  and the proof  be the axiom  of 

ax + by + cz ≥ d A(x, y) c = 0

→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα



Feasible Interpolation For CP

Proof: by induction. Base case: 
• If  belongs to  then   

 Let  and the proof  be the axiom  of  
 Let  and the proof  be the trivial axiom 


ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα



Feasible Interpolation For CP

Proof: by induction. Base case: 
• If  belongs to  then   

 Let  and the proof  be the axiom  of  
 Let  and the proof  be the trivial axiom 


• If  is an axiom of  then 

ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

ax + by + cz ≥ d B(y, z) a = 0

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

ax + by + cz ≥ d



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

From : A(x, α)
From : B(α, z)



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)

(a′ /t)x ≥ ⌈δ′ 0/t⌉
(c′ /t)z ≥ ⌈δ′ 1/t⌉

 Cut → →
 Cut → →



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:  

δ0 + δ1



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:  

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:  

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉



Invariant:  
δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉ ≥ ⌈(d − bα)/t⌉

Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →



Feasible Interpolation For CP

Proof: Cut:

 
a′ x + b′ y + c′ z ≥ d′ 

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that  is deduced by cut in ax + by + cz ≥ d Π

For  dividing t a′ , b′ , c′ 

And by induction we have derived 
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant: 

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉ ≥ ⌈(d − bα)/t⌉ = ⌈d/t⌉ − bα/t



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

ax + by + cz ≥ d



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

From A(x, α)
From B(α, z)



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′ )x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0
(γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′ )x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′ )x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′ )x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1 = γ′ (δ′ 0 + δ′ 1) + γ′ ′ (δ′ ′ 0 + δ′ ′ 1)

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →



Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

 
a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′ 

(γ′ a′ + γ′ ′ a′ ′ )x + (γ′ b′ + γ′ ′ b′ ′ )y + (γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ d′ + γ′ ′ d′ ′ 

For γ′ , γ′ ′ ≥ 0

And by induction we have derived 
,    a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
,     c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′ )x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′ )z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1 = γ′ (δ′ 0 + δ′ 1) + γ′ ′ (δ′ ′ 0 + δ′ ′ 1) ≥ γ′ (d′ − b′ α) + γ′ ′ (d′ ′ − b′ ′ α)

Claim: For each inequality  in  there are constants  s.t. 

1. There are CP derivations of  from  and  from  

2.  are constructible in poly  time from  and 

3.  

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →



Feasible Interpolation by Real Circuits

This lemma is overkill!  

Lemma: There is a time poly  algorithm which given a split formula 
, a  size  CP proof of  of , and  outputs 

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)
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This lemma is overkill!  
 Don’t need the full power of poly-time algorithms to construct .
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Lemma: There is a time poly  algorithm which given a split formula 
, a  size  CP proof of  of , and  outputs 

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)



Feasible Interpolation by Real Circuits

This lemma is overkill!  
 Don’t need the full power of poly-time algorithms to construct .

 In order to calculate , only need a computational model which supports 

addition, multiplication, division, ceiling

→ δ0, δ1
→ δ0, δ1

Lemma: There is a time poly  algorithm which given a split formula 
, a  size  CP proof of  of , and  outputs 

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)



Feasible Interpolation by Real Circuits

This lemma is overkill!  
 Don’t need the full power of poly-time algorithms to construct .

 In order to calculate , only need a computational model which supports 

addition, multiplication, division, ceiling

→ δ0, δ1
→ δ0, δ1

We will define a computational model can do all of this but is still weak enough to 
prove lower bounds on! 

Lemma: There is a time poly  algorithm which given a split formula 
, a  size  CP proof of  of , and  outputs 

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)
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Monotone Circuits: boolean circuits using only  and  gates — no ∧ ∨ ¬
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Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only  and  gates — no ∧ ∨ ¬

Monotone Real Circuits [P97]: A monotone real circuit computing 
 is a circuit in which gates are any monotone real-valued 

function  on (at most) two inputs! 
f : {0,1}n → {0,1}

g : ℝ × ℝ → ℝ
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Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only  and  gates — no ∧ ∨ ¬

Monotone Real Circuits [P97]: A monotone real circuit computing 
 is a circuit in which gates are any monotone real-valued 

function  on (at most) two inputs! 
f : {0,1}n → {0,1}

g : ℝ × ℝ → ℝ

∨

∧

∨

x1 x2 x3

+

×
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Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .
y A(x, y)

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate  using same argument as in the previous lemma, observing that each 
operation is monotone. 


y A(x, y)
−δ0

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate  using same argument as in the previous lemma, observing that each 
operation is monotone. 

Let  be a line in 


y A(x, y)
−δ0

ax + by + cz ≥ d Π

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate  using same argument as in the previous lemma, observing that each 
operation is monotone. 

Let  be a line in 


 Axiom of : then . Monotone in  as only positive -vars.


y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate  using same argument as in the previous lemma, observing that each 
operation is monotone. 

Let  be a line in 


 Axiom of : then . Monotone in  as only positive -vars.

 Non-neg combo:  From  and  derive 


y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y
→ −δ′ 0 −δ′ ′ 0 −δ0 = γ′ (−δ′ 0) + γ′ ′ (−δ′ ′ 0)

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits
Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Proof: Recall that -variables occurs only positively in .

Calculate  using same argument as in the previous lemma, observing that each 
operation is monotone. 

Let  be a line in 


 Axiom of : then . Monotone in  as only positive -vars.

 Non-neg combo:  From  and  derive 

 Cut: From  derive 


y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y
→ −δ′ 0 −δ′ ′ 0 −δ0 = γ′ (−δ′ 0) + γ′ ′ (−δ′ ′ 0)
→ −δ′ 0 ⌈−δ′ 0/t⌉



Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated  for the last line in . What do we output?−δ0 Π

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated  for the last line in . What do we output?−δ0 Π

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated  for the last line in . What do we output?−δ0 Π

IF(y) = {0  if A(x, α) is unsatisfiable
1  if B(α, z) is unsatisfiable

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated  for the last line in . What do we output?−δ0 Π

IF(y) = {0  if A(x, α) is unsatisfiable
1  if B(α, z) is unsatisfiable

If  then  is satisfiable , so we should output  0 ≥ δ0 A(x, α) 1

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated  for the last line in . What do we output?−δ0 Π

IF(y) = {0  if A(x, α) is unsatisfiable
1  if B(α, z) is unsatisfiable

If  then  is satisfiable , so we should output  
 Let the output gate of the circuit be . 

0 ≥ δ0 A(x, α) 1
⟹ −δ0 ≥ 0

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits
Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing   Cutting 
Planes lower bounds on split formula ! 

IF ⟹
F

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)



Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing   Cutting 
Planes lower bounds on split formula ! 

IF ⟹
F

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Recall  formulaClique − Color

IF(y) = {0  if Clique(x, α) is unsatisfiable
1  if Color(α, z) is unsatisfiable

Interpolant function: 

Upshot: Lower bounds on Clique imply lower bounds on  IF



Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing   Cutting 
Planes lower bounds on split formula ! 

IF ⟹
F

Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Recall  formulaClique − Color

IF(y) = {0  if Clique(x, α) is unsatisfiable
1  if Color(α, z) is unsatisfiable

Interpolant function: 

Upshot: Lower bounds on Clique imply lower bounds on  IF

Thm[P97]: Any monotone real circuit computing Clique requires exponential size



Interpolation for any Formula 
Thm: If there is a size  CP proof  of  then there is a size 
poly  monotone real circuit computing 

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)


