Integer Programming and IP Proof Systems Part 2

Noah Fleming University of California, San Diego

 P_F with no integer points

$$F = C_1 \land \dots \land C_m \implies P_F =$$

For each $C_i = \bigvee_{i \in I} x_i \lor \bigvee_{j \in J} \neg x_j$
Include in $Ax \ge b$
$$\sum_{i \in I} x_i + \sum_{j \in J} (1 - x_j) \ge 1 \text{ and } x_i \ge 0$$

Encode unsatisfiable CNF formulas F as polytopes (systems of linear inequalities) P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$

Encode unsatisfiable CNF formulas F as polytopes (systems of linear inequalities) P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$

Consider proof systems for proving that a polytope does not contain integer points

 P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$

Consider proof systems for proving that a polytope does not contain integer points

- Cutting Planes captures Cutting Planes method
- → Stabbing Planes captures branch-and-cut

Encode unsatisfiable CNF formulas F as polytopes (systems of linear inequalities)

 \bigcirc

- \bigcirc

 P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$ Consider proof systems for proving that a polytope does not contain integer points

- Cutting Planes captures Cutting Planes method
- → Stabbing Planes captures branch-and-cut
- **Last time:** Cutting Planes \leq Stabbing Planes

- Encode unsatisfiable CNF formulas F as polytopes (systems of linear inequalities)
 - \bigcirc

 P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$

Consider proof systems for proving that a polytope does not contain integer points

- → Cutting Planes captures Cutting Planes method
- → Stabbing Planes captures branch-and-cut

Last time: Cutting Planes \leq Stabbing Planes

Thm [FGI+21]

translated into Cutting Planes with a quasi-polynomial blow-up in the size.

Any Stabbing Planes proof with coefficients at most 2^{polylog n} (SP*) can be

 P_F with no integer points

 $F = C_1 \land \ldots \land C_m \implies P_F = \{x : Ax \ge b\}$

Consider proof systems for proving that a polytope does not contain integer points

- → Cutting Planes captures Cutting Planes method
- → Stabbing Planes captures branch-and-cut

Last time: Cutting Planes \leq Stabbing Planes

Thm [FGI+21]

Any Stabbing Planes proof with coefficients at most 2^{polylog n} (SP*) can be translated into Cutting Planes with a quasi-polynomial blow-up in the size.

- ⇒ Can prove bounds on branch-and-cut by proving bounds on Cutting Planes

Lower bounds on the size of Cutting Planes proofs!

Let's recall Cutting Planes...

Cutting Planes Proofs Suppose $Ax \ge b$ has no integer solutions

Suppose $Ax \ge b$ has **no integer solutions**

 \rightarrow **Prove** this fact using cutting planes!

Suppose $Ax \ge b$ has no integer solutions

 \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has **no integer solutions**

 \rightarrow **Prove** this fact using cutting planes! **Rules**

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has **no integer solutions**

→ Prove this fact using cutting planes!
Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, cx \ge d$$

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Suppose $Ax \ge b$ has no integer solutions

 \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

 $ax \ge b, \ cx \ge d$ $(\alpha a + \beta c)x \ge \alpha b + \beta d$

Preserves all points in P

- Suppose $Ax \ge b$ has **no integer solutions**
- \rightarrow **Prove** this fact using cutting planes! **Rules**
- Deduce new inequalities from old ones by:
- Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

) divides a

- Suppose $Ax \ge b$ has **no integer solutions**
- \rightarrow **Prove** this fact using cutting planes! **Rules**

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ar > h cr > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

) divides a

- Suppose $Ax \ge b$ has **no integer solutions**
- \rightarrow **Prove** this fact using cutting planes! **Rules**

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ar > h cr > d

• Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

$\alpha, \beta \in \mathbb{Z}^{\geq 0}$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

divides a o equivalently, the empty polytope

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

Derivation of $0 \ge 1$ from $Ax \ge b$

divides a o equivalently, the empty polytope

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

- Suppose $Ax \ge b$ has no integer solutions

 \rightarrow **Prove** this fact using cutting planes! \bigcirc \bigcirc Rules Deduce new inequalities from old ones by: P • Non-negative linear Combination: \bigcirc ar > h cr > d

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

$\alpha,\beta\in\mathbb{Z}^{\geq 0}$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

divides a o equivalently, the empty polytope

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! **Rules**

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

ar > h cr > d

Cut: Ο

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

\bigcirc \bigcirc \bigcirc

$\alpha, \beta \in \mathbb{Z}^{\geq 0}$

Cutting Planes Proof

Derivation of $0 \ge 1$ from $Ax \ge b$

divides a o equivalently, the empty polytope

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! **Rules**

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Cut: Ο

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

- Suppose $Ax \ge b$ has no integer solutions
- \rightarrow **Prove** this fact using cutting planes! Rules

Deduce new inequalities from old ones by:

• Non-negative linear Combination:

$$ax \ge b, \ cx \ge d$$
$$(\alpha a + \beta c)x \ge \alpha b + \beta d'$$

Ο Cut:

$$\frac{ax \ge b}{(a/d)x \ge \lceil b/d \rceil}, \text{ if } d \in \mathbb{Z}^{\ge 0}$$

Lower bounds on the size of Cutting Planes proofs!

Today

Lower bounds on the size of Cutting Planes proofs!

 \rightarrow Unlike other proof systems, there is only one lower bound technique for Cutting Planes

Today

Lower bounds on the size of Cutting Planes proofs!

 \rightarrow Unlike other proof systems, there is only one lower bound technique for Cutting Planes

How? An exciting connection between proofs and circuits!

For many (all?) proof systems P it is possible to relate their complexity to the complexity of circuits in some associated model C_P of monotone computation

For many (all?) proof systems P it is possible to relate their complexity to the complexity of circuits in some associated model C_P of monotone computation

P-proof of F of size s

Where $f_F : \{0,1\}^m \rightarrow \{0,1\}$ is an associated monotone function (defined later)

For many (all?) proof systems P it is possible to relate their complexity to the complexity of circuits in some associated model C_P of monotone computation

> P-proof of Fof size s

Where $f_F : \{0,1\}^m \rightarrow \{0,1\}$ is an associated monotone function (defined later)

Upshot: computational lower bounds imply proof lower bounds!

For many (all?) proof systems P it is possible to relate their complexity to the complexity of circuits in some associated model C_P of monotone computation

> P-proof of Fof size s

Upshot: computational lower bounds imply proof lower bounds!

In many cases, a converse is possible as well!

Where $f_F : \{0,1\}^m \rightarrow \{0,1\}$ is an associated monotone function (defined later)

Split Formulas P-proof of F of size s

For simplicity, we'll restrict to the case of **split** formulas: $F(x, y, z) = A(x, y) \land B(y, z)$

Where A, B are CNF and all y variables occur positively in A

Split Formulas P-proof of F of size s

For simplicity, we'll restrict to the case of **split** formulas: $F(x, y, z) = A(x, y) \land B(y, z)$ Where A B are CNE and all a variables occur positively in A

Where *A*, *B* are CNF and all *y* variables occur positively in *A* **The Function Computed** Let $\alpha \in \{0,1\}^y$ be any assignment to $y \Longrightarrow A(x, \alpha)$ or $B(\alpha, z)$ is unsatisfiable

Split Formulas P-proof of Fof size s

For simplicity, we'll restrict to the case of **split** formulas: $F(x, y, z) = A(x, y) \wedge B(y, z)$ Where A, B are CNF and all y variables occur positively in A

The Function Computed

Let $\alpha \in \{0,1\}^y$ be any assignment to $y \Longrightarrow A(x,\alpha)$ or $B(\alpha,z)$ is unsatisfiable

Define monotone "interpolant" function $I_F(y) = \begin{cases} 0 & \text{if } A(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } B(\alpha, z) \text{ is unsatisfiable} \end{cases}$

Split Formulas P-proof of split F of size S

For simplicity, we'll restrict to the case of **split** formulas: $F(x, y, z) = A(x, y) \land B(y, z)$ Where *A*, *B* are CNF and all *y* variables occur positively in *A*

Where *A*, *B* are CNF and all *y* variables occur positively in *A* **The Function Computed** Let $\alpha \in \{0,1\}^y$ be any assignment to $y \Longrightarrow A(x, \alpha)$ or $B(\alpha, z)$ is unsatisfiable

Define monotone "interpolant" function $I_F(y) = \begin{cases} 0 & \text{if } A(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } B(\alpha, z) \text{ is unsatisfiable} \end{cases}$

Split Formulas

E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$

"There is a graph containing both a k-clique and a (k - 1)-coloring"

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Split Formulas

E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$

"There is a graph containing both a k-clique and a (k - 1)-coloring"

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Split Formulas E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E):

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Split Formulas $F(x, y, z) = A(x, y) \land B(y, z)$ E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E \text{ iff } y_e = 1$

Split Formulas $F(x, y, z) = A(x, y) \land B(y, z)$ E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E \text{ iff } y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y):

Split Formulas E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

Split Formulas E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y):

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

Split Formulas $F(x, y, z) = A(x, y) \land B(y, z)$ E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

Unsatisfiable!

Unsatisfiable!

e.g. suppose n = 3, k = 3

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Unsatisfiable!

e.g. suppose n = 3, k = 3If y = [1, 1, 1]

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Unsatisfiable!

e.g. suppose n = 3, k = 3If y = [1, 1, 1] $\rightarrow x = [1,0,0,0,1,0,0,0,1]$ satisfies the *Clique*(x, y) constraints

 $F(x, y, z) = A(x, y) \land B(y, z)$

Unsatisfiable!

e.g. suppose n = 3, k = 3If y = [1, 1, 0]

 $F(x, y, z) = A(x, y) \wedge B(y, z)$

Split Formulas E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

Unsatisfiable!

e.g. suppose n = 3, k = 3If y = [1, 1, 0] $\rightarrow z = [1,0,1,0,1,0]$ satisfies the Color(y,z) constraints

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

• $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique

Split Formulas E.g. $Clique(x, y) \wedge Color(y, z)_{n,k}$ "There is a graph containing both a k-clique and a (k - 1)-coloring" • $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

Constraints of Clique(x, y)

• $\forall t \in [k]$: $\bigvee_{v \in [n]} x_{v,t}$

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

some vertex is the *t*-th clique member

Constraints of Clique(x, y)

- $\forall t \in [k]$: $\bigvee_{v \in [n]} X_{v,t}$
- $\forall v, \forall t \neq \ell$: $\neg x_{v,t} \lor \neg x_{v,\ell}$

$$F(x, y, z) = A(x, y) \land B(y, z)$$

• $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

some vertex is the *t*-th clique member

— no vertex is the *t*-th and ℓ -th clique member

Constraints of Clique(x, y)

- $\forall t \in [k]$: $\bigvee_{v \in [n]} X_{v,t}$
- $\forall v, \forall t \neq \ell$: $\neg x_{v,t} \lor \neg x_{v,\ell}$
- $\forall u \neq v, \forall t \neq \ell: \neg x_{u,t} \lor \neg x_{v,\ell} \lor \neg y_{uv}$ if u, v are in the clique then edge uv must be present

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

- some vertex is the *t*-th clique member
- no vertex is the *t*-th and ℓ -th clique member

Constraints of Color(y, z)

• $\forall v \in [n]$: $\bigvee_{c \in [k-1]} Z_{v,c}$

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

• $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

every vertex gets a color

Constraints of Color(y, z)

- $\forall v \in [n]$: $\bigvee_{c \in [k-1]} Z_{v,c}$
- $\forall v, \forall c \neq d$: $\neg z_{v,c} \lor \neg z_{v,d}$

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

• $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

every vertex gets a color

no vertex gets two different colors

Constraints of Color(y, z)

- $\forall v \in [n]$: $\bigvee_{c \in [k-1]} Z_{v,c}$
- $\forall v, \forall c \neq d$:
- $\forall u \neq v, \forall c$:

$$\neg z_{v,c} \lor \neg z_{v,d} -$$

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

• $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$

every vertex gets a color

- no vertex gets two different colors
- $\neg z_{u,c} \lor \neg z_{v,c} \lor y_{uv}$ adjacent vertices must receive different colors

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

- $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$
 - Interpolant function: $I_F(y) = \begin{cases} 0 & \text{if } Clique(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } Color(\alpha, z) \text{ is unsatisfiable} \end{cases}$

$$F(x, y, z) = A(x, y) \wedge B(y, z)$$

- $y \in \{0,1\}^{\binom{n}{2}}$ defines an *n*-vertex graph G(y) = (V, E): $e \in E$ iff $y_e = 1$ • $x \in \{0,1\}^{nk}$ defines a k-clique in G(y): $x_{v,t} = 1$ iff v is t-th member of clique • $z \in \{0,1\}^{n(k-1)}$ defines a (k-1)-coloring of G(y): v has color c iff $z_{v,c} = 1$
 - Interpolant function: $I_F(y) = \begin{cases} 0 & \text{if } Clique(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } Color(\alpha, z) \text{ is unsatisfiable} \end{cases}$

Interpolation theorem for P implies P-proof of $Clique(x, y) \wedge Color(y, z)_{n,k} \Longrightarrow$ C_P -computation separating graphs with k-cliques from (k-1)-colorable graphs

[R95] Feasible Interpolation Theorems $S_1^2(\alpha) \Longrightarrow$ Boolean circuits

[K97] Defined interpolation as a general method.

[R95]

[K97] Defined interpolation as a general method.

[PS97]

[R95]

[K97] Defined interpolation as a general method.

[PS97]

[BPR97]

$S_1^2(\alpha) \Longrightarrow$ Boolean circuits
Resolution \Longrightarrow Monotone circuits
Nullstellensatz \Longrightarrow Monotone span progr
Cutting Planes* \implies Monotone circuits
Cutting Planes \implies Monotone real circuits

Only worked for split formulas!

[K97] Defined interpolation as a general method.

[PS97]

[BPR97]

[P97]

[FPPR17, HP17] Generalized Interpolation to work for **any** unsatisfiable formula

Feasible Interpola

[K97] Defined interpolation as a general method.

[PS97]

[BPR97]

[P97]

[FPPR17, HP17] Generalized Interpolation to work for any unsatisfiable formula

[FGGR22]

tion Theorems
$S_1^2(\alpha) \Longrightarrow$ Boolean circuits
Resolution \Longrightarrow Monotone circuits
Nullstellensatz \Longrightarrow Monotone span progra
Cutting Planes* \implies Monotone circuits
Cutting Planes \Longrightarrow Monotone real circuits
$CC_{O(\log n)} \iff Monotone \ circuits$ $RCC_1 \iff Monotone \ real \ circuits$
Sherali-Adams \implies Extended Formulation

[K97] Defined interpolation as a general method.

[PS97]

[BPR97]

[P97]

[FPPR17, HP17] Generalized Interpolation to work for **any** unsatisfiable formula

[FGGR22]

[FGR22 unpublished]

Remainder of today: Prove this theorem

Remainder of today:

- 1. Prove this theorem
- Cutting Planes lower bounds for *Clique Color*

2. Use known lower bounds on monotone real circuits computing clique to obtain

[P97]

We will first prove the following simpler lemma

- Cutting Planes \implies Monotone real circuits

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

The following claim will allow us to define our algorithm

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

The following claim will allow us to define our algorithm

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$
- **Claim:** For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t.

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

The following claim will allow us to define our algorithm

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

The following claim will allow us to define our algorithm

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

[P97]

We will first prove the following simpler lemma

Lemma: There is a time poly(s) algorithm which given a split formula

The following claim will allow us to define our algorithm

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

- Cutting Planes \implies Monotone real circuits
- $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma:

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma: Claim allows us to extract from Π a proof of $\rightarrow A(x, \alpha)$ if $A(x, \alpha)$ is unsatisfiable $\rightarrow B(\alpha, z)$ if $B(\alpha, z)$ is unsatisfiable

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma: Claim allows us to extract from Π a proof of $\rightarrow A(x, \alpha)$ if $A(x, \alpha)$ is unsatisfiable $\rightarrow B(\alpha, z)$ if $B(\alpha, z)$ is unsatisfiable Indeed, ...

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma: Applying claim to the last line $0 \ge 1$ of Π , we get

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α

3.
$$\delta_0 + \delta_1 \ge d - b\alpha$$

Proof of Lemma: Applying claim to the last line $0 \ge 1$ of Π , we get

- Derivation of $0 \ge \delta_0$ from $A(x, \alpha)$
- Derivation of $0 \ge \delta_1$ from $B(\alpha, z)$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α

3.
$$\delta_0 + \delta_1 \ge d - b\alpha$$

Proof of Lemma: Applying claim to the last line $0 \ge 1$ of Π , we get

- Derivation of $0 \ge \delta_0$ from $A(x, \alpha)$
- Derivation of $0 \ge \delta_1$ from $B(\alpha, z)$

e last line $0 \ge 1$ of Π , we get With $\delta_0 + \delta_1 \ge 1$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α 3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma: Applying claim to the last line $0 \ge 1$ of Π , we get

- Derivation of $0 \ge \delta_0$ from $A(x, \alpha)$
- Derivation of $0 \ge \delta_1$ from $B(\alpha, z)$ Either $\delta_0 > 0$ and so $A(x, \alpha)$ is unsatisfiable or $\delta_1 > 0$ and so $B(\alpha, z)$ is unsatisfiable

e last line $0\geq 1$ of $\Pi,$ we get With $\delta_0+\delta_1\geq 1$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \land B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(*s*) time from Π and α

3. $\delta_0 + \delta_1 \ge d - b\alpha$

Proof of Lemma: The poly-time algorithm:

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof of Lemma: The poly-time algorithm: on input $\alpha \in \{0,1\}^y$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof of Lemma: The poly-time algorithm: on input $\alpha \in \{0,1\}^y$

1. Constructs δ_0 and δ_1 in time poly(*s*)

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof of Lemma: The poly-time algorithm: on input $\alpha \in \{0,1\}^y$

- 1. Constructs δ_0 and δ_1 in time poly(s)
- 2. If $\delta_0 > 0$ then $A(x, \alpha)$ is unsatisfiable and we output 0

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \ge \delta_0$ from $A(x, \alpha)$ and $cz \ge \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof of Lemma: The poly-time algorithm: on input $\alpha \in \{0,1\}^y$

- 1. Constructs δ_0 and δ_1 in time poly(s)
- 2. If $\delta_0 > 0$ then $A(x, \alpha)$ is unsatisfiable and we output 0
- 3. Otherwise, $\delta_1 > 0$ and $B(\alpha, z)$ is unsatisfiable, so output 1

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

- If $ax + by + cz \ge d$ belongs to A(x, y) then c = 0 \rightarrow Let $\delta_0 = d - b\alpha$ and the proof Π_0 be the axiom $ax \ge d - b\alpha$ of $A(x, \alpha)$ \rightarrow Let $\delta_1 = 0$ and the proof Π_1 be the trivial axiom $0 \ge 0$
- If $ax + by + cz \ge d$ is an axiom of B(y, z) then a = 0 \rightarrow Let $\delta_0 = 0$ and Π_0 be $0 \ge 0$ \rightarrow Let $\delta_1 = d - b\alpha$ and Π_1 be the axiom $cz \ge d - b\alpha$ of $B(\alpha, z)$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

• If $ax + by + cz \ge d$ belongs to A(x, y)

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

• If $ax + by + cz \ge d$ belongs to A(x, y) then c = 0

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

• If $ax + by + cz \ge d$ belongs to A(x, y) then c = 0

\rightarrow Let $\delta_0 = d - b\alpha$ and the proof Π_0 be the axiom $ax \ge d - b\alpha$ of $A(x, \alpha)$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

- If $ax + by + cz \ge d$ belongs to A(x, y) then c = 0

 \rightarrow Let $\delta_0 = d - b\alpha$ and the proof Π_0 be the axiom $ax \ge d - b\alpha$ of $A(x, \alpha)$ \rightarrow Let $\delta_1 = 0$ and the proof Π_1 be the trivial axiom $0 \geq 0$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: by induction. **Base case:**

- If $ax + by + cz \ge d$ belongs to A(x, y) then c = 0 \rightarrow Let $\delta_0 = d - b\alpha$ and the proof Π_0 be the axiom $ax \ge d - b\alpha$ of $A(x, \alpha)$ \rightarrow Let $\delta_1 = 0$ and the proof Π_1 be the trivial axiom $0 \ge 0$
- If $ax + by + cz \ge d$ is an axiom of B(y, z) then a = 0

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Cut: Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$ For t dividing a', b', c' $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

$$z \ge d$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

And by induction we have derived From $A(x, \alpha)$: $a'x \ge \delta'_0$ From $B(\alpha, z)$: $c'z \ge \delta'_1$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

And by induction we have derived From $A(x, \alpha)$: $a'x \ge \delta'_0$

From $B(\alpha, z)$: $c'z \ge \delta'_1$

With $\delta'_0 + \delta'_1 \ge d' - b'\alpha$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge [d'/t]$

And by induction we have derived From $A(x, \alpha)$: $a'x \ge \delta'_0$ \rightarrow Cut From $B(\alpha, z)$: $(c'z \ge \delta'_1)$ \rightarrow Cut

With $\delta'_0 + \delta'_1 \ge d' - b' \alpha$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \lceil \delta'_0/t \rceil \\ \rightarrow \qquad (c'/t)z \ge \lceil \delta'_1/t \rceil$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge [d'/t]$

And by induction we have derived From $A(x, \alpha)$: $a'x \ge \delta'_0$ $\rightarrow Cut$ From $B(\alpha, z)$: $(c'z \ge \delta'_1)$ \rightarrow Cut

With $\delta'_0 + \delta'_1 \ge d' - b' \alpha$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \lceil \delta'_0/t \rceil = \delta_0 \\ \rightarrow \qquad (c'/t)z \ge \lceil \delta'_1/t \rceil = \delta_1$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Invariant:

 $\delta_0 + \delta_1$

- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge [d'/t]$

And by induction we have derived

$a'x \ge \delta'_0$	\rightarrow Cut
$c'z \geq \delta'_1$	\rightarrow Cut

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \lceil \delta'_0/t \rceil = \delta_0 \\ \rightarrow \qquad (c'/t)z \ge \lceil \delta'_1/t \rceil = \delta_1$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge [d'/t]$

And by induction we have derived

- $a'x \geq \delta'_0$ $\rightarrow Cut$ $c'z \geq \delta'_1$ \rightarrow Cut
- $\delta_0 + \delta_1 = \left[\delta'_0 / t \right] + \left[\delta'_1 / t \right]$

Invariant:

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \lceil \delta'_0/t \rceil = \delta_0 \\ \rightarrow \qquad (c'/t)z \ge \lceil \delta'_1/t \rceil = \delta_1$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

And by induction we have derived

 \rightarrow Cut $a'x \geq \delta'_0$ $c'z \geq \delta'_1$ \rightarrow Cut **Invariant:** $\delta_0 + \delta_1 = \left\lceil \delta'_0/t \right\rceil + \left\lceil \delta'_1/t \right\rceil \ge \left\lceil (\delta'_0 + \delta'_1)/t \right\rceil$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \left[\delta_0'/t\right] = \delta_0$$
$$\rightarrow \qquad (c'/t)z \ge \left[\delta_1'/t\right] = \delta_1$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

And by induction we have derived

 \rightarrow Cut $a'x \geq \delta'_0$ $c'z \geq \delta'_1 \longrightarrow Cut$ **Invariant:** $\delta_0 + \delta_1 = \left[\delta'_0/t \right] + \left[\delta'_1/t \right] \ge \left[(\delta'_0 + \delta'_1)/t \right]$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \left\lceil \delta_0'/t \right\rceil = \delta_0 \\ \rightarrow \qquad (c'/t)z \ge \left\lceil \delta_1'/t \right\rceil = \delta_1 \\ -\delta_1')/t \right\rceil \ge \left\lceil (d - b\alpha)/t \right\rceil$$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$
- **Proof: Cut:** Suppose that $ax + by + cz \ge d$ is deduced by cut in Π $a'x + b'y + c'z \ge d'$
 - $(a'/t)x + (b'/t)y + (c'/t)z \ge \lceil d'/t \rceil$

And by induction we have derived

 \rightarrow Cut $a'x \geq \delta'_0$ $c'z \geq \delta'_1$ \rightarrow Cut **Invariant:** $\delta_0 + \delta_1 = \left\lceil \delta'_0/t \right\rceil + \left\lceil \delta'_1/t \right\rceil \ge \left\lceil (\delta'_0 + \delta'_0) \right\rceil + \left\lceil \delta'_0/t \right\rceil \ge \left\lceil \delta'_0 \right\rceil + \left\lceil \delta'_0/t \right\rceil \ge \left\lceil \delta'_0/t \right\rceil + \left\lceil \delta'_0/t \right\rceil + \left\lceil \delta'_0/t \right\rceil \le \left\lceil \delta'_0/t \right\rceil \ge \left\lceil \delta'_0/t \right\rceil \le \left\lceil \delta'_0/t \right\rceil \ge \left\lceil \delta'_0/t \right\rceil \le \left\lceil \delta'_0/t \right\rceil \ge \left\lceil$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$

$$\rightarrow \qquad (a'/t)x \ge \lceil \delta'_0/t \rceil = \delta_0 \\ \rightarrow \qquad (c'/t)z \ge \lceil \delta'_1/t \rceil = \delta_1 \\ \cdot \delta'_1)/t \rceil \ge \lceil (d-b\alpha)/t \rceil = \lceil d/t \rceil - b\alpha/t$$

Claim: For each inequality $ax + by + cz \ge d$ in Π there are constants δ_0, δ_1 s.t. 1. There are CP derivations of $ax \geq \delta_0$ from $A(x, \alpha)$ and $cz \geq \delta_1$ from $B(\alpha, z)$ 2. δ_0, δ_1 are constructible in poly(s) time from Π and α

- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination:

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $ax + by + cz \ge d$

For $\gamma', \gamma'' \ge 0$ $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

 $c'z \ge \delta'_1, \quad c''z \ge \delta''_1$ From $B(\alpha, z)$

And by induction we have derived $a'x \ge \delta'_0, \quad a''x \ge \delta''_0$ From $A(x, \alpha)$

For $\gamma', \gamma'' \ge 0$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

And by induction we have derived

For $\gamma', \gamma'' \ge 0$ $a'x \ge \delta'_0, \quad a''x \ge \delta''_0 \to \text{non-neg combo} \to (\gamma'a' + \gamma''a'')x \ge \gamma'\delta'_0 + \gamma''\delta''_0$ $c'z \ge \delta'_1, \quad c''z \ge \delta''_1 \to \text{non-neg combo} \to (\gamma'c' + \gamma''c'')z \ge \gamma'\delta'_1 + \gamma''\delta''_1$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

And by induction we have derived

For $\gamma', \gamma'' \ge 0$ $a'x \ge \delta'_0, \quad a''x \ge \delta''_0 \to \text{non-neg combo} \to (\gamma'a' + \gamma''a'')x \ge \gamma'\delta'_0 + \gamma''\delta''_0 = \delta_0$ $c'z \ge \delta'_1, \quad c''z \ge \delta''_1 \to \text{non-neg combo} \to (\gamma'c' + \gamma''c'')z \ge \gamma'\delta'_1 + \gamma''\delta''_1 = \delta_1$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Invariant: $\delta_0 + \delta_1$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

And by induction we have derived

For $\gamma', \gamma'' \ge 0$ $a'x \ge \delta'_0, \quad a''x \ge \delta''_0 \to \text{non-neg combo} \to (\gamma'a' + \gamma''a'')x \ge \gamma'\delta'_0 + \gamma''\delta''_0 = \delta_0$ $c'z \ge \delta'_1, \quad c''z \ge \delta''_1 \to \text{non-neg combo} \to (\gamma'c' + \gamma''c'')z \ge \gamma'\delta'_1 + \gamma''\delta''_1 = \delta_1$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

And by induction we have derived

Invariant: $\delta_0 + \delta_1 = \gamma'(\delta'_0 + \delta'_1) + \gamma''(\delta''_0 + \delta''_1)$

For $\gamma', \gamma'' \ge 0$ $a'x \ge \delta'_0, \quad a''x \ge \delta''_0 \to \text{non-neg combo} \to (\gamma'a' + \gamma''a'')x \ge \gamma'\delta'_0 + \gamma''\delta''_0 = \delta_0$ $c'z \ge \delta'_1, \quad c''z \ge \delta''_1 \to \text{non-neg combo} \to (\gamma'c' + \gamma''c'')z \ge \gamma'\delta'_1 + \gamma''\delta''_1 = \delta_1$

- 2. δ_0, δ_1 are constructible in poly(s) time from Π and α
- 3. $\delta_0 + \delta_1 \ge d b\alpha$

Proof: Non-negative Linear Combination: $a'x + b'y + c'z \ge d',$ $a''x + b''y + c''z \ge d''$

 $(\gamma'a' + \gamma''a'')x + (\gamma'b' + \gamma''b'')y + (\gamma'c' + \gamma''c'')z \ge \gamma'd' + \gamma''d''$

And by induction we have derived

For $\gamma', \gamma'' \ge 0$ $a'x \ge \delta'_0, \quad a''x \ge \delta''_0 \to \text{non-neg combo} \to (\gamma'a' + \gamma''a'')x \ge \gamma'\delta'_0 + \gamma''\delta''_0 = \delta_0$ $c'z \ge \delta'_1, \quad c''z \ge \delta''_1 \to \text{non-neg combo} \to (\gamma'c' + \gamma''c'')z \ge \gamma'\delta'_1 + \gamma''\delta''_1 = \delta_1$ Invariant: $\delta_0 + \delta_1 = \gamma'(\delta'_0 + \delta'_1) + \gamma''(\delta''_0 + \delta''_1) \ge \gamma'(d' - b'\alpha) + \gamma''(d'' - b''\alpha)$

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

This lemma is overkill!

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

This lemma is overkill!

 \rightarrow Don't need the full power of poly-time algorithms to construct δ_0, δ_1 .

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

This lemma is overkill!

- \rightarrow Don't need the full power of poly-time algorithms to construct δ_0, δ_1 .
- addition, multiplication, division, ceiling

 \rightarrow In order to calculate δ_0, δ_1 , only need a computational model which supports

Lemma: There is a time poly(s) algorithm which given a split formula $F = A(x, y) \wedge B(y, z)$, a size s CP proof of Π of F, and $\alpha \in \{0, 1\}^y$ outputs $I_F(\alpha)$

This lemma is overkill!

- \rightarrow Don't need the full power of poly-time algorithms to construct δ_0, δ_1 .
- addition, multiplication, division, ceiling

We will define a computational model can do all of this but is still weak enough to prove lower bounds on!

 \rightarrow In order to calculate δ_0, δ_1 , only need a computational model which supports

Monotone Circuits: boolean circuits using only \land and \lor gates — no \neg

Monotone Circuits: boolean circuits using only \land and \lor gates — no \neg

Monotone Circuits: boolean circuits using only \wedge and \vee gates — no \neg

Monotone Real Circuits [P97]: A monotone real circuit computing $f: \{0,1\}^n \to \{0,1\}$ is a circuit in which gates are any monotone real-valued function $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ on (at most) two inputs!

Monotone Circuits: boolean circuits using only \wedge and \vee gates — no \neg

Monotone Real Circuits [P97]: A monotone real circuit computing $f: \{0,1\}^n \rightarrow \{0,1\}$ is a circuit in which gates are any monotone real-valued function $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ on (at most) two inputs!

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y).

- **Thm:** If there is a size s CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y). operation is monotone.

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Calculate $-\delta_0$ using same argument as in the previous lemma, observing that each

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y). operation is monotone.

Let $ax + by + cz \ge d$ be a line in Π

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Calculate $-\delta_0$ using same argument as in the previous lemma, observing that each

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y). operation is monotone. Let $ax + by + cz \ge d$ be a line in Π

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Calculate $-\delta_0$ using same argument as in the previous lemma, observing that each

 \rightarrow Axiom of $A(x, \alpha)$: then $-\delta_0 = b\alpha - d$. Monotone in α as only positive y-vars.

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y). operation is monotone.

Let $ax + by + cz \ge d$ be a line in Π

 \rightarrow Non-neg combo: From $-\delta'_0$ and $-\delta''_0$ derive $-\delta_0 = \gamma'(-\delta'_0) + \gamma''(-\delta''_0)$

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Calculate $-\delta_0$ using same argument as in the previous lemma, observing that each

 \rightarrow Axiom of $A(x, \alpha)$: then $-\delta_0 = b\alpha - d$. Monotone in α as only positive y-vars.

poly(s) monotone real circuit computing $I_F(y)$

Proof: Recall that y-variables occurs only positively in A(x, y). operation is monotone.

Let $ax + by + cz \ge d$ be a line in Π

 \rightarrow Non-neg combo: From $-\delta'_0$ and $-\delta''_0$ derive $-\delta_0 = \gamma'(-\delta'_0) + \gamma''(-\delta''_0)$

 \rightarrow Cut: From $-\delta'_0$ derive $\left[-\delta'_0/t\right]$

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Calculate $-\delta_0$ using same argument as in the previous lemma, observing that each

 \rightarrow Axiom of $A(x, \alpha)$: then $-\delta_0 = b\alpha - d$. Monotone in α as only positive y-vars.

poly(s) monotone real circuit computing $I_F(y)$

- **Thm:** If there is a size s CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- **Proof:** Suppose we have calculated $-\delta_0$ for the last line in II. What do we output?

poly(s) monotone real circuit computing $I_F(y)$

- **Thm:** If there is a size s CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- **Proof:** Suppose we have calculated $-\delta_0$ for the last line in II. What do we output?

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size poly(s) monotone real circuit computing $I_F(y)$
- **Proof:** Suppose we have calculated $-\delta_0$ for the last line in Π . What do we output? $I_F(y) = \begin{cases} 0 & \text{if } A(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } B(\alpha, z) \text{ is unsatisfiable} \end{cases}$

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size poly(s) monotone real circuit computing $I_F(y)$
- **Proof:** Suppose we have calculated $-\delta_0$ for the last line in Π . What do we output? $I_F(y) = \begin{cases} 0 & \text{if } A(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } B(\alpha, z) \text{ is unsatisfiable} \end{cases}$
- If $0 \geq \delta_0$ then $A(x, \alpha)$ is satisfiable, so we should output 1

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size poly(s) monotone real circuit computing $I_F(y)$
- **Proof:** Suppose we have calculated $-\delta_0$ for the last line in Π . What do we output? $I_F(y) = \begin{cases} 0 & \text{if } A(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } B(\alpha, z) \text{ is unsatisfiable} \end{cases}$
- If $0 \geq \delta_0$ then $A(x, \alpha)$ is satisfiable, so we should output 1
- \implies Let the output gate of the circuit be $-\delta_0 \ge 0$.

poly(s) monotone real circuit computing $I_F(y)$

Thm: If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size

poly(s) monotone real circuit computing $I_F(y)$

Planes lower bounds on split formula F!

- **Thm:** If there is a size s CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Lower bounds on the size of monotone real circuits computing $I_F \Longrightarrow$ Cutting

poly(s) monotone real circuit computing $I_F(y)$

Planes lower bounds on split formula F!Recall *Clique* – *Color* formula

Upshot: Lower bounds on Clique imply lower bounds on I_F

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Lower bounds on the size of monotone real circuits computing $I_F \implies$ Cutting

- Interpolant function: $I_F(y) = \begin{cases} 0 & \text{if } Clique(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } Color(\alpha, z) \text{ is unsatisfiable} \end{cases}$

poly(s) monotone real circuit computing $I_F(y)$

Planes lower bounds on split formula F!Recall *Clique* – *Color* formula

Upshot: Lower bounds on Clique imply lower bounds on I_F

- **Thm:** If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size
- Lower bounds on the size of monotone real circuits computing $I_F \implies$ Cutting

- Interpolant function: $I_F(y) = \begin{cases} 0 & \text{if } Clique(x, \alpha) \text{ is unsatisfiable} \\ 1 & \text{if } Color(\alpha, z) \text{ is unsatisfiable} \end{cases}$
- Thm[P97]: Any monotone real circuit computing Clique requires exponential size

Interpolation for any Formula

Thm: If there is a size *s* CP proof Π of $F = A(x, y) \land B(y, z)$ then there is a size poly(*s*) monotone real circuit computing $I_F(y)$