
Integer Programming and IP
Proof Systems Part 2

Noah Fleming
University of California, San Diego

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}

For each
Ci = ⋁
i∈I

xi ∨ ⋁
j∈J

¬xj

Include in
Ax ≥ b

∑
i∈I

xi + ∑
j∈J

(1 − xj) ≥ 1 and ,
xi ≥ 0 −xi ≥ − 1

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}
Consider proof systems for proving that a polytope
does not contain integer points 

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}
Consider proof systems for proving that a polytope
does not contain integer points 

 Cutting Planes — captures Cutting Planes method

 Stabbing Planes — captures branch-and-cut

→
→

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}
Consider proof systems for proving that a polytope
does not contain integer points 

 Cutting Planes — captures Cutting Planes method

 Stabbing Planes — captures branch-and-cut

→
→
Last time: Cutting Planes Stabbing Planes≤

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}
Consider proof systems for proving that a polytope
does not contain integer points 

 Cutting Planes — captures Cutting Planes method

 Stabbing Planes — captures branch-and-cut

→
→
Last time: Cutting Planes Stabbing Planes≤
Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

Recap of Last Time
Encode unsatisfiable CNF formulas as polytopes (systems of linear inequalities)

 with no integer points

F

PF

PF

F = C1 ∧ … ∧ Cm ⟹ PF = {x : Ax ≥ b}
Consider proof systems for proving that a polytope
does not contain integer points 

 Cutting Planes — captures Cutting Planes method

 Stabbing Planes — captures branch-and-cut

→
→
Last time: Cutting Planes Stabbing Planes≤
Thm [FGI+21] 
Any Stabbing Planes proof with coefficients at most (SP*) can be
translated into Cutting Planes with a quasi-polynomial blow-up in the size.

2𝗉𝗈𝗅𝗒𝗅𝗈𝗀 n

 Can prove bounds on branch-and-cut by proving bounds on Cutting Planes⟹

Today
Lower bounds on the size of Cutting Planes proofs!

Let’s recall Cutting Planes…

Cutting Planes Proofs
Suppose has no integer solutions
Ax ≥ b

P

Cutting Planes Proofs
Suppose has no integer solutions

 Prove this fact using cutting planes!
Ax ≥ b

→

P

Cutting Planes Proofs

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

P

Cutting Planes Proofs
ax ≥ b

cx ≥ d

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDeduce new inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs
ax ≥ b

cx ≥ d

(αa + βc)x ≥ αb + βd

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDeduce new inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs

Preserves all points in P

ax ≥ b

cx ≥ d

(αa + βc)x ≥ αb + βd

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

PDeduce new inequalities from old ones by:

Non-negative linear Combination:
ax ≥ b, cx ≥ d

(αa + βc)x ≥ αb + βd
, α, β ∈ ℤ≥0

Cutting Planes Proofs
ax ≥ b

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs
(a/d)x ≥ ⌈b/d⌉

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs
ax ≥ ⌈b⌉

Preserves integer points in P

P
Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→ P

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:
Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→ P

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Cutting Planes Proofs

Rules

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

Suppose has no integer solutions

 Prove this fact using cutting planes!

Ax ≥ b
→

∅

Cutting Planes Proof 
Derivation of from

equivalently, the empty polytope
0 ≥ 1 Ax ≥ b

, if divides
ax ≥ b

(a/d)x ≥ ⌈b/d⌉
d ∈ ℤ≥0 a

ax ≥ b, cx ≥ d
(αa + βc)x ≥ αb + βd

, α, β ∈ ℤ≥0

Deduce new inequalities from old ones by:

Non-negative linear Combination:

Cut:

Today
Lower bounds on the size of Cutting Planes proofs!

Today
Lower bounds on the size of Cutting Planes proofs!

Unlike other proof systems, there is only one lower bound technique for

 Cutting Planes
→

Today
Lower bounds on the size of Cutting Planes proofs!

How? An exciting connection between proofs and circuits!

Unlike other proof systems, there is only one lower bound technique for

 Cutting Planes
→

Monotone Feasible Interpolation
For many (all?) proof systems it is possible to relate their complexity to the
complexity of circuits in some associated model of monotone computation

P
CP

Monotone Feasible Interpolation

-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For many (all?) proof systems it is possible to relate their complexity to the
complexity of circuits in some associated model of monotone computation

P
CP

Where is an associated monotone function (defined later)fF : {0,1}m → {0,1}

Monotone Feasible Interpolation

-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For many (all?) proof systems it is possible to relate their complexity to the
complexity of circuits in some associated model of monotone computation

P
CP

Where is an associated monotone function (defined later)fF : {0,1}m → {0,1}
Upshot: computational lower bounds imply proof lower bounds!

Monotone Feasible Interpolation

-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For many (all?) proof systems it is possible to relate their complexity to the
complexity of circuits in some associated model of monotone computation

P
CP

Where is an associated monotone function (defined later)fF : {0,1}m → {0,1}
Upshot: computational lower bounds imply proof lower bounds!
In many cases, a converse is possible as well!

Split Formulas
-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For simplicity, we’ll restrict to the case of split formulas:

F(x, y, z) = A(x, y) ∧ B(y, z)
Where are CNF and all variables occur positively in A, B y A

Split Formulas
-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For simplicity, we’ll restrict to the case of split formulas:

F(x, y, z) = A(x, y) ∧ B(y, z)
Where are CNF and all variables occur positively in A, B y A

Let be any assignment to or is unsatisfiableα ∈ {0,1}y y ⟹ A(x, α) B(α, z)
The Function Computed

Split Formulas
-proof of P F -Computation of CP fF→of size s of size 𝗉𝗈𝗅𝗒(s)

For simplicity, we’ll restrict to the case of split formulas:

F(x, y, z) = A(x, y) ∧ B(y, z)
Where are CNF and all variables occur positively in A, B y A

Let be any assignment to or is unsatisfiableα ∈ {0,1}y y ⟹ A(x, α) B(α, z)

IF(y) = {0 if A(x, α) is unsatisfiable
1 if B(α, z) is unsatisfiable

Define monotone “interpolant” function

The Function Computed

Split Formulas
-proof of split P F -Computation of CP IF→of size s of size 𝗉𝗈𝗅𝗒(s)

For simplicity, we’ll restrict to the case of split formulas:

F(x, y, z) = A(x, y) ∧ B(y, z)
Where are CNF and all variables occur positively in A, B y A

Let be any assignment to or is unsatisfiableα ∈ {0,1}y y ⟹ A(x, α) B(α, z)

IF(y) = {0 if A(x, α) is unsatisfiable
1 if B(α, z) is unsatisfiable

Define monotone “interpolant” function

The Function Computed

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph :y ∈ {0,1}(n

2) n G(y) = (V, E)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff
y ∈ {0,1}(n

2) n G(y) = (V, E) e ∈ E ye = 1

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in :

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of :

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

1

e.g. suppose ,  n = 3 k = 3
2

3

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

1

e.g. suppose ,  
If

n = 3 k = 3
y = [1,1,1]

2

3

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

1

e.g. suppose ,  
If

 satisfies the constraints

n = 3 k = 3
y = [1,1,1]

→ x = [1,0,0,0,1,0,0,0,1] Clique(x, y)

2

3

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

1

2

3

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

1

2

3

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

e.g. suppose ,  
If

n = 3 k = 3
y = [1,1,0]

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

1

e.g. suppose ,  
If

 satisfies the constraints

n = 3 k = 3
y = [1,1,0]

→ z = [1,0,1,0,1,0] Color(y, z)

2

3

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)

Unsatisfiable!

• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — some vertex is the -th clique member
∀ t ∈ [k] ∨v∈[n] xv,t t
Constraints of Clique(x, y)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — some vertex is the -th clique member

• : — no vertex is the -th and -th clique member

∀ t ∈ [k] ∨v∈[n] xv,t t
∀v, ∀t ≠ ℓ ¬xv,t ∨ ¬xv,ℓ t ℓ

Constraints of Clique(x, y)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — some vertex is the -th clique member

• : — no vertex is the -th and -th clique member

• : — if are in the clique then edge must be present

∀ t ∈ [k] ∨v∈[n] xv,t t
∀v, ∀t ≠ ℓ ¬xv,t ∨ ¬xv,ℓ t ℓ
∀u ≠ v, ∀t ≠ ℓ ¬xu,t ∨ ¬xv,ℓ ∨ ¬yuv u, v uv

Constraints of Clique(x, y)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — every vertex gets a color
∀ v ∈ [n] ∨c∈[k−1] zv,c

Constraints of Color(y, z)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — every vertex gets a color

• : — no vertex gets two different colors

∀ v ∈ [n] ∨c∈[k−1] zv,c
∀v, ∀c ≠ d ¬zv,c ∨ ¬zv,d

Constraints of Color(y, z)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

• : — every vertex gets a color

• : — no vertex gets two different colors

• : — adjacent vertices must receive different colors

∀ v ∈ [n] ∨c∈[k−1] zv,c
∀v, ∀c ≠ d ¬zv,c ∨ ¬zv,d
∀u ≠ v, ∀c ¬zu,c ∨ ¬zv,c ∨ yuv

Constraints of Color(y, z)

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

IF(y) = {0 if Clique(x, α) is unsatisfiable
1 if Color(α, z) is unsatisfiable

Interpolant function:

Split Formulas F(x, y, z) = A(x, y) ∧ B(y, z)

E.g. Clique(x, y) ∧ Color(y, z)n,k

“There is a graph containing both a -clique and a -coloring” k (k − 1)
• defines an -vertex graph : iff

• defines a -clique in : iff is -th member of clique

• defines a -coloring of : has color iff

y ∈ {0,1}(n
2) n G(y) = (V, E) e ∈ E ye = 1

x ∈ {0,1}nk k G(y) xv,t = 1 v t
z ∈ {0,1}n(k−1) (k − 1) G(y) v c zv,c = 1

IF(y) = {0 if Clique(x, α) is unsatisfiable
1 if Color(α, z) is unsatisfiable

Interpolant function:

Interpolation theorem for implies -proof of
-computation separating graphs with -cliques from -colorable graphs

P P Clique(x, y) ∧ Color(y, z)n,k ⟹
CP k (k − 1)

Feasible Interpolation Theorems
[R95] Boolean circuitsS2

1(α) ⟹

Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a
general method. Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a
general method.
[PS97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a
general method.
[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹

Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a
general method.
[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹
[P97] Cutting Planes Monotone real circuits⟹

Feasible Interpolation Theorems
[R95]
[K97] Defined interpolation as a
general method.
[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹
[P97] Cutting Planes Monotone real circuits⟹

Only worked for split formulas!

Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹
[P97] Cutting Planes Monotone real circuits⟹
[FPPR17, HP17] Generalized
Interpolation to work for any
unsatisfiable formula

 Monotone circuitsCCO(log n) ⟺
 Monotone real circuitsRCC1 ⟺

[K97] Defined interpolation as a
general method.

Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹
[P97] Cutting Planes Monotone real circuits⟹
[FPPR17, HP17] Generalized
Interpolation to work for any
unsatisfiable formula

 Monotone circuitsCCO(log n) ⟺
 Monotone real circuitsRCC1 ⟺

[FGGR22] Sherali-Adams Extended Formulations⟹

[K97] Defined interpolation as a
general method.

Feasible Interpolation Theorems
[R95]

[PS97]

[BPR97]

Resolution Monotone circuits⟹

 Boolean circuitsS2
1(α) ⟹

Nullstellensatz Monotone span programs⟹

Cutting Planes* Monotone circuits⟹
[P97] Cutting Planes Monotone real circuits⟹
[FPPR17, HP17] Generalized
Interpolation to work for any
unsatisfiable formula

 Monotone circuitsCCO(log n) ⟺
 Monotone real circuitsRCC1 ⟺

[FGGR22]

[FGR22 unpublished]

Sherali-Adams Extended Formulations⟹
SoS Semidefinite EFs⟹

[K97] Defined interpolation as a
general method.

Feasible Interpolation For CP

[P97] Cutting Planes Monotone real circuits⟹

Feasible Interpolation For CP

[P97] Cutting Planes Monotone real circuits⟹

Remainder of today:
1. Prove this theorem

Feasible Interpolation For CP

[P97] Cutting Planes Monotone real circuits⟹

Remainder of today:
1. Prove this theorem

2. Use known lower bounds on monotone real circuits computing clique to obtain  

Cutting Planes lower bounds for Clique − Color

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

The following claim will allow us to define our algorithm

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

The following claim will allow us to define our algorithm

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.
ax + by + cz ≥ d Π δ0, δ1

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

The following claim will allow us to define our algorithm

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

The following claim will allow us to define our algorithm

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α

Feasible Interpolation For CP
[P97] Cutting Planes Monotone real circuits⟹

We will first prove the following simpler lemma

The following claim will allow us to define our algorithm

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP
Lemma: There is a time poly algorithm which given a split formula

, a size CP proof of of , and outputs
(s)

F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

F = A(x, y) ∧ B(y, z)

Π

0 ≥ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP
Lemma: There is a time poly algorithm which given a split formula

, a size CP proof of of , and outputs
(s)

F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

F = A(x, y) ∧ B(y, z)

Π

0 ≥ 1

A(x, α)

Π0

0 ≥ δ0

B(α, z)

Π1

0 ≥ δ1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma:

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Claim allows us to extract from a proof of  
 if is unsatisfiable

 if is unsatisfiable

Π
→ A(x, α) A(x, α)
→ B(α, z) B(α, z)

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Claim allows us to extract from a proof of  
 if is unsatisfiable

 if is unsatisfiable

Indeed, …

Π
→ A(x, α) A(x, α)
→ B(α, z) B(α, z)

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Applying claim to the last line of , we get
0 ≥ 1 Π

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Applying claim to the last line of , we get

• Derivation of from

• Derivation of from

0 ≥ 1 Π
0 ≥ δ0 A(x, α)
0 ≥ δ1 B(α, z)

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Applying claim to the last line of , we get

• Derivation of from

• Derivation of from

0 ≥ 1 Π
0 ≥ δ0 A(x, α)
0 ≥ δ1 B(α, z)

With δ0 + δ1 ≥ 1

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: Applying claim to the last line of , we get

• Derivation of from

• Derivation of from

0 ≥ 1 Π
0 ≥ δ0 A(x, α)
0 ≥ δ1 B(α, z)

With δ0 + δ1 ≥ 1

Either and so is unsatisfiable  
 or and so is unsatisfiable

δ0 > 0 A(x, α)
δ1 > 0 B(α, z)

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: The poly-time algorithm:

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: The poly-time algorithm:  
on input
α ∈ {0,1}y

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: The poly-time algorithm:  
on input

1. Constructs and in time poly

α ∈ {0,1}y

δ0 δ1 (s)

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: The poly-time algorithm:  
on input

1. Constructs and in time poly

2. If then is unsatisfiable and we output

α ∈ {0,1}y

δ0 δ1 (s)
δ0 > 0 A(x, α) 0

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof of Lemma: The poly-time algorithm:  
on input

1. Constructs and in time poly

2. If then is unsatisfiable and we output

3. Otherwise, and is unsatisfiable, so output

α ∈ {0,1}y

δ0 δ1 (s)
δ0 > 0 A(x, α) 0

δ1 > 0 B(α, z) 1

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to then  

 Let and the proof be the axiom of  
 Let and the proof be the trivial axiom

• If is an axiom of then  
 Let and be  
 Let and be the axiom of

ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

ax + by + cz ≥ d B(y, z) a = 0
→ δ0 = 0 Π0 0 ≥ 0
→ δ1 = d − bα Π1 cz ≥ d − bα B(α, z)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to
ax + by + cz ≥ d A(x, y)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to then
ax + by + cz ≥ d A(x, y) c = 0

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to then  

 Let and the proof be the axiom of

ax + by + cz ≥ d A(x, y) c = 0

→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to then  

 Let and the proof be the axiom of  
 Let and the proof be the trivial axiom

ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: by induction. Base case:
• If belongs to then  

 Let and the proof be the axiom of  
 Let and the proof be the trivial axiom

• If is an axiom of then

ax + by + cz ≥ d A(x, y) c = 0
→ δ0 = d − bα Π0 ax ≥ d − bα A(x, α)
→ δ1 = 0 Π1 0 ≥ 0

ax + by + cz ≥ d B(y, z) a = 0

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

ax + by + cz ≥ d

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

From : A(x, α)
From : B(α, z)

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)

(a′ /t)x ≥ ⌈δ′ 0/t⌉
(c′ /t)z ≥ ⌈δ′ 1/t⌉

 Cut → →
 Cut → →

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

With δ′ 0 + δ′ 1 ≥ d′ − b′ α

From : A(x, α)
From : B(α, z)

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:

δ0 + δ1

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉

Invariant:
δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉ ≥ ⌈(d − bα)/t⌉

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →

Feasible Interpolation For CP

Proof: Cut:

a′ x + b′ y + c′ z ≥ d′

(a′ /t)x + (b′ /t)y + (c′ /t)z ≥ ⌈d′ /t⌉

Suppose that is deduced by cut in ax + by + cz ≥ d Π

For dividing t a′ , b′ , c′

And by induction we have derived
a′ x ≥ δ′ 0
c′ z ≥ δ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

(a′ /t)x ≥ ⌈δ′ 0/t⌉ = δ0
(c′ /t)z ≥ ⌈δ′ 1/t⌉ = δ1

 Cut → →
 Cut → →Invariant:

δ0 + δ1 = ⌈δ′ 0/t⌉ + ⌈δ′ 1/t⌉ ≥ ⌈(δ′ 0 + δ′ 1)/t⌉ ≥ ⌈(d − bα)/t⌉ = ⌈d/t⌉ − bα/t

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

ax + by + cz ≥ d

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

From A(x, α)
From B(α, z)

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′)x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0
(γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′)x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′)x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′)x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1 = γ′ (δ′ 0 + δ′ 1) + γ′ ′ (δ′ ′ 0 + δ′ ′ 1)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →

Feasible Interpolation For CP

Proof: Non-negative Linear Combination:

a′ x + b′ y + c′ z ≥ d′ , a′ ′ x + b′ ′ y + c′ ′ z ≥ d′ ′

(γ′ a′ + γ′ ′ a′ ′)x + (γ′ b′ + γ′ ′ b′ ′)y + (γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ d′ + γ′ ′ d′ ′

For γ′ , γ′ ′ ≥ 0

And by induction we have derived
, a′ x ≥ δ′ 0 a′ ′ x ≥ δ′ ′ 0
, c′ z ≥ δ′ 1 c′ ′ z ≥ δ′ ′ 1

(γ′ a′ + γ′ ′ a′ ′)x ≥ γ′ δ′ 0 + γ′ ′ δ′ ′ 0 = δ0
(γ′ c′ + γ′ ′ c′ ′)z ≥ γ′ δ′ 1 + γ′ ′ δ′ ′ 1 = δ1

Invariant: δ0 + δ1 = γ′ (δ′ 0 + δ′ 1) + γ′ ′ (δ′ ′ 0 + δ′ ′ 1) ≥ γ′ (d′ − b′ α) + γ′ ′ (d′ ′ − b′ ′ α)

Claim: For each inequality in there are constants s.t.

1. There are CP derivations of from and from

2. are constructible in poly time from and

3.

ax + by + cz ≥ d Π δ0, δ1
ax ≥ δ0 A(x, α) cz ≥ δ1 B(α, z)

δ0, δ1 (s) Π α
δ0 + δ1 ≥ d − bα

 non-neg combo → →
 non-neg combo → →

Feasible Interpolation by Real Circuits

This lemma is overkill!

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation by Real Circuits

This lemma is overkill!
 Don’t need the full power of poly-time algorithms to construct .
→ δ0, δ1

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation by Real Circuits

This lemma is overkill!
 Don’t need the full power of poly-time algorithms to construct .

 In order to calculate , only need a computational model which supports

addition, multiplication, division, ceiling

→ δ0, δ1
→ δ0, δ1

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation by Real Circuits

This lemma is overkill!
 Don’t need the full power of poly-time algorithms to construct .

 In order to calculate , only need a computational model which supports

addition, multiplication, division, ceiling

→ δ0, δ1
→ δ0, δ1

We will define a computational model can do all of this but is still weak enough to
prove lower bounds on!

Lemma: There is a time poly algorithm which given a split formula
, a size CP proof of of , and outputs

(s)
F = A(x, y) ∧ B(y, z) s Π F α ∈ {0,1}y IF(α)

Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only and gates — no ∧ ∨ ¬

Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only and gates — no ∧ ∨ ¬

∨

∧

∨

x1 x2 x3

Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only and gates — no ∧ ∨ ¬

Monotone Real Circuits [P97]: A monotone real circuit computing
 is a circuit in which gates are any monotone real-valued

function on (at most) two inputs!
f : {0,1}n → {0,1}

g : ℝ × ℝ → ℝ

∨

∧

∨

x1 x2 x3

Feasible Interpolation by Real Circuits
Monotone Circuits: boolean circuits using only and gates — no ∧ ∨ ¬

Monotone Real Circuits [P97]: A monotone real circuit computing
 is a circuit in which gates are any monotone real-valued

function on (at most) two inputs!
f : {0,1}n → {0,1}

g : ℝ × ℝ → ℝ

∨

∧

∨

x1 x2 x3

+

×

x3x2 x1

> 0

Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .
y A(x, y)

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate using same argument as in the previous lemma, observing that each
operation is monotone.

y A(x, y)
−δ0

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate using same argument as in the previous lemma, observing that each
operation is monotone.

Let be a line in

y A(x, y)
−δ0

ax + by + cz ≥ d Π

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate using same argument as in the previous lemma, observing that each
operation is monotone.

Let be a line in

 Axiom of : then . Monotone in as only positive -vars.

y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Recall that -variables occurs only positively in .

Calculate using same argument as in the previous lemma, observing that each
operation is monotone.

Let be a line in

 Axiom of : then . Monotone in as only positive -vars.

 Non-neg combo: From and derive

y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y
→ −δ′ 0 −δ′ ′ 0 −δ0 = γ′ (−δ′ 0) + γ′ ′ (−δ′ ′ 0)

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits
Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Proof: Recall that -variables occurs only positively in .

Calculate using same argument as in the previous lemma, observing that each
operation is monotone.

Let be a line in

 Axiom of : then . Monotone in as only positive -vars.

 Non-neg combo: From and derive

 Cut: From derive

y A(x, y)
−δ0

ax + by + cz ≥ d Π
→ A(x, α) −δ0 = bα − d α y
→ −δ′ 0 −δ′ ′ 0 −δ0 = γ′ (−δ′ 0) + γ′ ′ (−δ′ ′ 0)
→ −δ′ 0 ⌈−δ′ 0/t⌉

Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated for the last line in . What do we output?−δ0 Π

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated for the last line in . What do we output?−δ0 Π

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated for the last line in . What do we output?−δ0 Π

IF(y) = {0 if A(x, α) is unsatisfiable
1 if B(α, z) is unsatisfiable

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated for the last line in . What do we output?−δ0 Π

IF(y) = {0 if A(x, α) is unsatisfiable
1 if B(α, z) is unsatisfiable

If then is satisfiable , so we should output  0 ≥ δ0 A(x, α) 1

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Proof: Suppose we have calculated for the last line in . What do we output?−δ0 Π

IF(y) = {0 if A(x, α) is unsatisfiable
1 if B(α, z) is unsatisfiable

If then is satisfiable , so we should output  
 Let the output gate of the circuit be .

0 ≥ δ0 A(x, α) 1
⟹ −δ0 ≥ 0

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits
Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing Cutting
Planes lower bounds on split formula !

IF ⟹
F

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing Cutting
Planes lower bounds on split formula !

IF ⟹
F

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Recall formulaClique − Color

IF(y) = {0 if Clique(x, α) is unsatisfiable
1 if Color(α, z) is unsatisfiable

Interpolant function:

Upshot: Lower bounds on Clique imply lower bounds on IF

Feasible Interpolation by Real Circuits

Lower bounds on the size of monotone real circuits computing Cutting
Planes lower bounds on split formula !

IF ⟹
F

Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

Recall formulaClique − Color

IF(y) = {0 if Clique(x, α) is unsatisfiable
1 if Color(α, z) is unsatisfiable

Interpolant function:

Upshot: Lower bounds on Clique imply lower bounds on IF

Thm[P97]: Any monotone real circuit computing Clique requires exponential size

Interpolation for any Formula
Thm: If there is a size CP proof of then there is a size
poly monotone real circuit computing

s Π F = A(x, y) ∧ B(y, z)
(s) IF(y)

